Рецепторная теория действия лекарств. Комплекс агонист-рецептор

Обновлено: 14.05.2024

Эффективность агонистов 5 HT1B /1D рецепторов при мигрени обусловлена 3 механизмами действия, соответственно основным компонентам патогенеза приступа мигрени 5.

Сосудистый механизм действия. Оказывая непосредственное агонистическое действие в отношении постсинаптических серотониновых 5-HT1B рецепторов гладко-мышечных элементов сосудистой стенки, препараты вызывают сужение избыточно расширенных церебральных сосудов. Это снижает стимуляцию болевых рецепторов сосудистой стенки и способствует уменьшению боли. Триптаны обладают высокой селективностью в отношении интракраниальных сосудов.

Нейрогенный периферический механизм действия. Триптаны являются агонистами серотониновых пресинаптических 5-HT1D рецепторов, расположенных на чувствительных афферентных волокнах тройничного нерва, иннервирующих церебральные сосуды. Активация этого типа рецепторов приводит к ингибированию выделения алгогенных и вазоактивных нейропептидов из периваскулярных нервных волокон тройничного нерва. Это приводит к уменьшению нейрогенного воспаления, боли, и нормализации тонуса сосудов.

Нейрогенный центральный механизм действия. Триптаны активируют центральные 5-HT1D рецепторы, расположенные в стволе головного мозга на чувствительных ядрах тройничного нерва. Препараты ингибируют выделение алгогенных нейропептидов из центральных терминалей тройничного нерва, снижая возбуждение, и блокируя проведение боли на уровне чувствительных ядер ствола мозга.

2.5.3. Основные механизмы действия лекарств

Многие лекарства имеют одинаковый механизм действия и, следовательно, могут быть объединены в группы и подгруппы. Количество различных фармакологических групп (подгрупп) ограничивается десятками. Лекарственные препараты и фармгруппы изучаются будущим врачом в институте, но для глубокого понимания фармакологии требуется немало специальных знаний и опыт работы в клинике. Однако и неспециалисту полезно попытаться понять хотя бы общие принципы действия лекарств. Тогда пациент сможет вести более аргументированный диалог с врачом, что повысит эффективность их общения. Давайте попробуем разобраться, что же происходит внутри нас, когда мы принимаем лекарство?

Под действием лекарств в организме не происходит новых биохимических реакций или физиологических процессов. Большинство лекарств только стимулируют, имитируют, угнетают или полностью блокируют действие внутренних посредников, передающих сигналы между различными органами и системами через биологические субстраты.

Под действием лекарств в организме не происходит новых биохимических реакций. Лекарства лишь корректируют (стимулируют или угнетают) физиологические и патологические процессы.

Каждое звено механизма обратной связи участвует в регулировании функций клетки и целого организма, а, следовательно, может служить “мишенью” - биологическим субстратом - для лекарственных средств. Из двух участников реакции “лекарство + биологический субстрат” первый обычно хорошо известен, специалисты знают его структуру и свойства. О втором зачастую информация более скудная: хотя последние 10-20 лет интенсивно изучается структура и функции различных биологических субстратов, однако до полной ясности пока еще далеко.

Многие ферменты являются “мишенями” для лекарств. Лекарства могут угнетать или - реже - повышать активность этих ферментов, а также являться для них “ложными” субстратами. Например, угнетающими активность (ингибирующими) ферментов средствами являются ненаркотические анальгетики и нестероидные противовоспалительные средства (глава 3.9), некоторые противоопухолевые препараты (метотрексат), а ложным субстратом - метилдофа. Ингибиторы ангиотензинпревращающего фермента (АПФ) (каптоприл и эналаприл) широко применяются в качестве понижающих артериальное давление (гипотензивных) средств (глава 3.5). Изменяя активность ферментов, лекарства изменяют внутриклеточные процессы и тем самым обеспечивают лечебный эффект.

В основе фармакологического действия лекарств лежит их физико-химическое или химическое взаимодействие с такими “мишенями”. Возможность взаимодействия лекарства с биологическим субстратом зависит в первую очередь от химического строения каждого из них. Последовательность расположения атомов, пространственная конфигурация молекулы, величина и расположение зарядов, подвижность фрагментов молекулы относительно друг друга влияют на прочность связи и, тем самым, на силу и продолжительность фармакологического действия. Молекула лекарственного вещества в большинстве случаев имеет очень маленький размер по сравнению с биологическими субстратами, поэтому она может соединяться только с небольшим фрагментом макромолекулы рецептора. При любой реакции между лекарством и биологическим субстратом образуется химическая связь (смотри главу 1.4).

Из школьного курса химии известно, что связь между двумя различными веществами может быть обратимой или необратимой, временной или прочной. Она образуется благодаря электростатическим и ван-дер-ваальсовым силам, водородным и гидрофобным взаимодействиям. Прочные ковалентные связи между лекарством и биологическим субстратом встречаются редко. Например, некоторые противоопухолевые средства за счет ковалентного взаимодействия “сшивают” соседние спирали ДНК, являющейся в данном случае субстратом, и необратимо повреждают ее, вызывая гибель опухолевой клетки.

Итак, есть сигнальные молекулы (медиаторы, гормоны, эндогенные биологически активные вещества), и есть биологические субстраты, с которыми эти молекулы взаимодействуют. Лекарства, введенные в организм, могут воспроизводить или блокировать эффекты естественных сигнальных молекул, изменяя тем самым функции клеток, тканей, органов и систем органов. Этим определяется фармакологическое действие лекарств (таблица 2.5.1).

Таблица 2.5.1. Основные принципы действия лекарственных средств (ЛС)
Вид взаимодействияМеханизм взаимодействия ЛС и рецептораЦель создания и примеры таких препаратов
Воспроизведение действия (миметический эффект, агонизм)ЛС по физико-химической структуре очень похоже на сигнальную молекулу (гормон, медиатор). Рецептор, взаимодействуя с ЛС, активирует или тормозит соответствующую функцию клетки. Таким образом, ЛС имитирует действие естественного гормона или медиатораПрепараты оказывают более выраженное, стабильное и длительное по сравнению с медиатором действие. Так действуют адрено- и холиномиметики (смотри адренергические и холинергические средства) и некоторые другие препараты
Конкурентное действие (блокирующий, литический эффект, антагонизм)ЛС по структуре частично похоже на сигнальную молекулу, что позволяет взаимодействовать с рецептором, образуя над ним экран. Возникает конкурентная борьба за рецептор, в которой ЛС имеет “численное преимущество”! Поэтому естественный медиатор или гормон остается “не у дел”, и реакция не “запускается”Препараты позволяют корректировать (блокировать) физиологические реакции клетки. Примером таких препаратов являются адрено-, холино- и гистаминоблокаторы (смотри соответствующие главы)
Неконкурентное взаимодействиеМолекула ЛС связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на другом участке. При этом изменяется пространственная структура рецептора, что облегчает или затрудняет его контакт с естественным медиаторомБензодиазепины (оказывают анксиолитическое, седативное и противосудорожное действие), взаимодействуя с бензодиазепиновыми рецепторами, увеличивают прочность связи ГАМК (нейромедиатор с тормозящим действием на центральную нервную систему) с ГАМК-рецепторами

Воспроизведение действия (миметический эффект) наблюдается в тех случаях, когда молекула лекарственного вещества и естественная сигнальная молекула очень похожи: имеют высокое соответствие физико-химических свойств и структуры, обеспечивающих одинаковые внутриклеточные изменения. Результатом взаимодействия лекарства с рецептором в этом случае является активация или торможение определенной функции клеток в полном соответствии с действием эндогенной (внутренней) сигнальной молекулы. Подобным образом действуют очень многие аналоги гормонов и медиаторов (глава 3.1, глава 3.2, глава 3.3). Цель создания подобных лекарств - получение препаратов с более выраженным, стабильным и длительным по сравнению с медиатором (адреналин, ацетилхолин, серотонин и другие) действием, а также восполнение дефицита медиатора или гормона и, соответственно, их функций.

Конкурентное действие (блокирующий, литический эффект) встречается часто и присуще лекарствам, которые лишь частично похожи на сигнальную молекулу (например, медиатор). В этом случае лекарство способно связываться с одним из участков рецептора, но оно не вызывает комплекса реакций, сопутствующих действию естественного медиатора. Такое лекарство как бы создает над рецептором защитный экран, препятствуя его взаимодействию с естественным медиатором, гормоном и так далее. Конкурентная борьба за рецептор, называемая антагонизмом (отсюда и название лекарств - антагонисты), позволяет корректировать физиологические и патологические реакции. Подобным образом действуют адрено-, холино- и гистаминолитики (глава 3.2, глава 3.7, глава 3.10).

Следующий тип взаимодействия лекарства с рецептором называют неконкурентным, и в этом случае молекула лекарства связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на рядом расположенном участке, то есть действует опосредованно. При этом происходит изменение пространственной структуры рецептора, вызывающее раскрытие или закрытие его для естественного медиатора. В этих случаях рецептор для лекарства и рецептор для медиатора не совпадают, но находятся в одном рецепторном комплексе, и лекарство не вступает в прямое взаимодействие с рецептором. Ярким примером лекарств, действующих по этому типу, являются бензодиазепины - большая группа структурно родственных соединений, обладающих анксиолитическими, снотворными и противосудорожными свойствами (глава 3.1). Соединяясь со специфическими бензодиазепиновыми рецепторами, которые взаимосвязаны с рецепторами гамма-аминомасляной кислоты (ГАМК), лекарственное средство изменяет пространственную конфигурацию ГАМК-рецепторов и увеличивает прочность их связи с субстратом - гамма-аминомасляной кислотой. В результате усиливается тормозящее влияние этого медиатора на центральную нервную систему, чем обеспечивается лечебный эффект препаратов.

Некоторые лекарства способны повышать или понижать синтез естественных регуляторов (медиаторов, гормонов и так далее), влиять на процессы их накопления в клетках или ферментного разрушения. Подробнее такие эффекты будут рассмотрены, в частности, в главе 3.1, посвященной средствам, влияющим на функции центральной нервной системы.

Механизм действия лекарств на молекулярном и клеточном уровнях имеет очень большое значение, но не менее важно знать, на какие физиологические процессы влияет препарат, то есть каковы его эффекты на системном уровне. Возьмем, к примеру, лекарственные средства, снижающие артериальное давление. Один и тот же результат - снижение давления - может быть достигнут разными способами:

1) угнетением сосудодвигательного центра (магния сульфат);

2) угнетением передачи возбуждения в вегетативной нервной системе (ганглиоблокаторы);

3) ослаблением работы сердца, уменьшением его ударного и минутного объемов (бета-адреноблокаторы);

6) снижением активности системы ренин-ангиотензин (ингибиторы АПФ, антагонисты ангиотензиновых рецепторов) и другие.

Таким образом, одни и те же фармакологические эффекты (увеличение частоты сокращений сердца, расширение бронхов, устранение боли и так далее) можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Одни и те же фармакологические эффекты можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Еще один пример - кашель. Если кашель обусловлен воспалением дыхательных путей, назначают противокашлевые средства периферического действия, причем, часто комбинируют их с отхаркивающими препаратами. Кашель у больных туберкулезом или при новообразованиях бронхов устраняют центрально действующие наркотические анальгетики (кодеин). А в детской практике в тяжелых случаях коклюша кашель лечат введением нейролептика хлорпромазина (препарат Аминазин).

Выбор лекарства, необходимого конкретному больному, осуществляет врач, руководствуясь знанием механизма действия лекарственных препаратов и обусловленных им терапевтических и побочных эффектов. Мы надеемся, что теперь вам стало понятнее, как сложен этот выбор, и какими знаниями и опытом надо обладать, чтобы правильно его сделать.

Но поскольку все органы и системы взаимосвязаны, то какие-либо изменения функции одного органа или системы вызывают сдвиги в работе других органов и систем. Кроме того, субстраты для взаимодействия могут находиться в разных органах, что также обеспечивает их взаимосвязь. Она проявляется как на физиологическом, так и на биохимическом уровнях, определяя неоднозначность и многогранность действия лекарств, наличие не только лечебного, но и побочного действия у большинства препаратов.

Механизм фармакологического действия препарата обусловливает не только лечебный, но и, зачастую, побочный эффект лекарственного средства.

Так, расширение сосудов и понижение артериального давления при приеме нитроглицерина сопровождаются рефлекторным повышением частоты сердечных сокращений, а также обусловленной расширением сосудов головного мозга, так называемой нитратной головной болью. Атропин, обладающий выраженными спазмолитическими свойствами, за счет своего механизма действия может нарушить отток внутриглазной жидкости, вызвав приступ глаукомы, и так далее.

На взаимодействие лекарств с биологическим субстратами, а, соответственно, и на эффекты препарата, большое влияние оказывают прием пищи, алкоголя, возраст пациента, одновременный прием других препаратов и еще ряд факторов, роль которых рассматривается в следующих главах.

Взаимодействия лекарственного вещества с рецептором

Рецепторы - это макромолекулы, участвующие в передаче химических сигналов как между клетками, так и внутри одной клетки; они могут находится на поверхности клеточной мембраны или в цитоплазме (см. таблицу Некоторые типы физиологических рецепторов и рецепторов лекарственных препаратов Влияние возраста на особенности клинических эффектов некоторых лекарственных препаратов ). Активированные рецепторы прямо или косвенно регулируют клеточные биохимические процессы (например, проводимость ионных каналов, фосфорилирование белков, транскрипцию ДНК, ферментативную активность).

Молекулы (к примеру, лекарственные препараты, гормоны, нейротрансмиттеры), которые связываются с рецептором, называются лигандами. Связывание может быть специфическим и обратимым. Связывание с лигандом может приводить к активации либо инактивации рецептора; активация может стимулировать либо ингибировать ту или иную клеточную функцию. Каждый лиганд способен взаимодействовать с различными подтипами рецепторов. Почти не существует препаратов, абсолютно специфичных к одному рецептору или его подтипу, но большинство из них имеет относительную селективность. Селективность - это степень, с которой лекарственное средство действует на определенный участок относительно других участков; селективность относится в основном к физико-химическому связыванию препарата с клеточными рецепторами. (См. также Обзор фармакодинамики Обзор фармакодинамики (Overview of Pharmacodynamics) Фармакодинамика (под которой понимают то, как препарат действует на организм) - это изучение биохимических, физиологических и молекулярных эффектов лекарственных средств на организм, в том числе. Прочитайте дополнительные сведения ).

Способность лекарственного препарата воздействовать на конкретный тип рецептора зависит от его аффинности (вероятности того, что ЛС займет рецептор в определенный момент времени) и внутренней активности (степени активации рецептора после связывания с лигандом и развития клеточной реакции). Аффинность и внутренняя активность лекарственного вещества в свою очередь определяются его химической структурой.

Фармакологический эффект определяется также длительностью сохранения комплекса "препарат-рецептор" (время удержания). На продолжительность существования комплекса "препарат-рецептор" влияют динамические процессы (изменения конформации), которые контролируют скорость ассоциации и диссоциации лекарственных веществ от своей мишени. Большее время удержания служит объяснением продолжительному фармакологическому действию. К препаратам с длительным временем удержания относятся финастерид и дарунавир. Длительное время удержания может быть потенциальным недостатком, если за этот счет продлевается и токсический эффект препарата. Для некоторых рецепторов транзиторное связывание производит нужный фармакологический эффект, в то время как длительное связывание провоцирует токсичность.

Физиологические функции (такие как сокращение, секреция), как правило, регулируются множественными рецептор-опосредованными механизмами и включают несколько этапов (связывание с рецептором, активация внутриклеточных вторичных мессенджеров и т. д.) между первоначальным взаимодействием лекарственного вещества с рецептором и конечным ответом ткани или органа. По этой причине один и тот же желаемый фармакологический эффект может быть достигнут применением ЛС с разной химической структурой.

На способность препарата связываться с рецептором оказывают влияние внешние факторы, а также внутриклеточные регуляторные механизмы. Исходная плотность рецепторов и эффективность механизмов ответа на стимул варьируют от ткани к ткани. Лекарственные средства, старение, мутации и заболевания могут повышать (активировать) или снижать (подавлять) число и аффинность рецепторов. Например, клонидин снижает активность альфа-2-адренорецепторов; по этой причине быстрая отмена клонидина может спровоцировать гипертонический криз Неотложные состояния К неотложным состояниям относят поражения органов-мишеней (головной мозг, сердечно-сосудистая система и почки) на фоне выраженного повышения АД. Диагностика производится посредством измерения. Прочитайте дополнительные сведения . Длительная терапия бета-блокаторами повышает плотность бета-рецепторов, в связи с чем резкое прекращение приема данного класса препаратов может вызвать развитие тяжелой гипертензии или тахикардии. Стимуляция и ингибирование рецепторов влияют на механизмы приспособления организма к лекарственному средству (например, в виде гипосенсибилизации, тахифилаксии, толерантности, приобретенной резистентности и гиперчувствительности после отмены).

Лиганды связываются с определенными участками на макромолекуле рецептора, называемыми сайтами узнавания. Места связывания лекарственного вещества и эндогенного агониста (гормона или нейротрансмиттера) могут быть идентичными либо различаться. Агонисты, связывающиеся со смежным или другим сайтом, иногда называются аллостерическими агонистами. Также происходит неспецифическое связывание препаратов, т.е. с молекулярными участками, не являющимися рецепторами (например, белками плазмы крови). Связывание лекарственного вещества с подобными неспецифическими участками, например, связывание с белками сыворотки крови, препятствует его связыванию с рецептором, тем самым делая препарат неактивным. Несвязанные препараты способны взаимодействовать с рецепторами и, следовательно, вызывать эффект.

Агонисты и антагонисты

Агонисты активируют рецепторы для реализации желаемого фармакологического эффекта. Традиционные агонисты повышают долю активированных рецепторов. Обратные агонисты стабилизируют рецепторы в их неактивной конформации и действуют аналогично конкурентным агонистам. Многие гормоны, нейротрансмиттеры (например, ацетилхолин, гистамин, норадреналин ) и лекарственные средства (например, морфин, фенилэфрин, изопреналин, бензодиазепины, барбитураты) действуют как агонисты рецепторов.

Антагонисты препятствуют активации рецептора. Предотвращение активации оказывает множество эффектов. Антагонисты усиливают клеточную функцию в том случае, если они блокируют действие вещества, обычно подавляющего данную функцию. Справедлива и обратная закомерность: антагонисты снижают клеточную функцию, если блокируют действие вещества, усиливающего ее.

Антагонисты рецепторов могут быть классифицированы на обратимые и необратимые. Обратимые антагонисты легко диссоциируют от соответствующих рецепторов, необратимые - образуют стабильную, постоянную или почти постоянную химическую связь со своим рецептором (например, при алкилировании). Псевдообратимые антагонисты медленно разрывают связь со своим рецептором.

При конкурентном антагонизме связывание антагониста с рецептором препятствует связыванию с ним агониста.

При неконкурентном антагонизме агонист и антагонист могут связываться одновременно, но связывание антагониста снижает эффект агониста либо препятствует его развитию.

При обратимом конкурентном антагонизме агонист и антагонист образуют кратковременные связи с рецептором, в результате чего достигается равновесное состояние этой трехкомпонентной системы. Такой антагонизм можно преодолеть путем увеличения концентрации агониста. Например, налоксон (антагонист опиоидных рецепторов, структурно схожий с морфином) при введении незадолго до или сразу после введения морфина блокирует действие последнего. Тем не менее конкурентный антагонизм налоксона может быть преодолен с помощью введения морфина в большей дозе.

Такие лекарственные вещества называются частичными агонистами или агонистами-антагонистами. Структурные аналоги молекул агониста часто обладают одновременно свойствами агониста и антагониста. Например, пентазоцин активирует опиоидные рецепторы, но блокирует их активацию другими опиоидами. Таким образом, пентазоцин обеспечивает опиоидное действие, но ослабляет эффект другого опиоида, если последний вводится в период сохранения связи пентазоцина с рецептором. Лекарственное средство, действующее как частичный агонист в одной ткани, может действовать как полный агонист в другой.

Авторское право © 2022 Merck & Co., Inc., Rahway, NJ, США и ее аффилированные лица. Все права сохранены.

Глава 2. Фармакодинамика

Фармакодинамика - фармакологические эффекты, механизмы действия, локализация действия, виды действия лекарственных веществ.

Фармакологические эффекты лекарственного вещества - изменения в деятельности органов, систем организма, которые вызывает данное вещество (например, усиление сокращений сердца, снижение артериального давления, стимуляция умственной деятельности, устранение страха и напряжённости и т. п.).

Каждое вещество вызывает ряд характерных для него фармакологических эффектов. В каждом конкретном случае используют лишь определённые эффекты лекарственного вещества, которые определяют как основные эффекты. Остальные (неиспользуемые, нежелательные) фармакологические эффекты называют побочными.

Механизмы действия лекарственных веществ - способы, которыми вещества вызывают фармакологические эффекты, очень разнообразны. К основным вариантам механизмов действия относятся действия на:

Большинство лекарственных веществ действуют на специфические рецепторы. Эти рецепторы представлены чаще всего функционально активными белковыми молекулами, взаимодействие с которыми дает начало биохимическим реакциям, которые ведут к возникновению фармакологических эффектов.

Различают специфические рецепторы, связанные с клеточными мембранами (мембранные), и внутриклеточные рецепторы (цитоплазматические, ядерные).

Мембранные рецепторы (рецепторы цитоплазматической мембраны) делят на:

- рецепторы, непосредственно сопряжённые с ионными каналами;

- рецепторы, непосредственно сопряженные с ферментами;

- рецепторы, взаимодействующие с G-белками.

К рецепторам, непосредственно сопряженным с ионными каналами, относятся, в частности, Ν-холинорецепторы и ГАМКА-рецепторы.

При стимуляции Ν-холинорецепторов (никотиночувствительные холинорецепторы) открываются непосредственно сопряжённые с ними натриевые каналы. Стимуляция Ν-холинорецепторов ведёт к открытию Na + -каналов, входу ионов Na + в клетку, деполяризации клеточной мембраны и возбудительному эффекту.

ГАМКА-рецепторы непосредственно сопряжены с хлорными каналами. Стимуляция ГАМКА-рецепторов ведёт к открытию Сl - -каналов, входу ионов Сl - , гиперполяризации клеточной мембраны и тормозному эффекту.

К рецепторам, которые непосредственно сопряжены с ферментами, относятся, в частности, рецепторы инсулина, непосредственно сопряженные с тирозинкиназой.

Рецепторы, взаимодействующие с G-белками - М-холинорецепторы (мускариночувстви- тельные холинорецепторы), адренорецепторы, дофаминовые рецепторы, опиоидные рецепторы и др.

G-белки, то есть ГТФ-связывающие белки, локализованы в клеточной мембране и состоят из α-, β- и γ-субъединиц. При взаимодействии лекарственного вещества с рецептором α-субъединица G-белка соединяется с ГТФ (GTP) и воздействует на ферменты или ионные каналы.

Один рецептор взаимодействует с несколькими G-белками, а каждый комплекс α-субъединицы G-белка с ГТФ действует на несколько молекул фермента или на несколько ионных каналов. Таким образом осуществляется механизм амплифайера (усилителя): при активации одного рецептора изменяется активность многих молекул фермента или многих ионных каналов.

Одними из первых были обнаружены G-белки, связанные с β1- адренорецепторами сердца. При активации симпатической иннервации сердца возбуждаются β1-адренорецепторы; через посредство G-белков активируется аденилатциклаза; из АТФ образуется цАМФ, активируется протеинкиназа, при действии которой фосфорилируются и открываются Са 2+ -каналы.

Увеличение входа ионов Са 2+ в клетки синоатриального узла ускоряет четвертую фазу потенциала действия, увеличивается частота генерируемых импульсов - сокращения сердца учащаются.

Открытие Са 2+ -каналов в волокнах рабочего миокарда ведёт к увеличению концентрации Са 2+ в цитоплазме (вход Са 2+ способствует высвобождению Са 2+ из саркоплазматического ретикулума). Ионы Са 2+ связываются с тропонином С (составная часть тропонин-тропомиозина); таким образом уменьшается тормозное влияние тропонин-тропомиозина на взаимодействие актина и миозина - сокращения сердца усиливаются (рис. 10).


Рис. 10. Механизм учащения и усиления сокращений сердца при стимуляции β1-адренорецепторов. АЦ - аденилатциклаза; ПК - протеинкиназа; СА - синоатриальный узел; ТТМ - тропонин-тропомиозин.

При активации парасимпатической иннервации сердца (блуждающие нервы) возбуждаются М2-холинорецепторы, и через посредство G-белков аденилатциклаза угнетается - сокращения сердца урежаются и ослабляются (в основном ослабляются сокращения предсердий, так как парасимпатическая иннервация желудочков относительно бедна).

Таким образом, G-белки могут оказывать на аденилатциклазу как стимулирующее, так и угнетающее влияние. Стимулирующие G-белки обозначили как Gs-белки (stimulate), а угнетающие - Gi-белки (inhibit) (рис. 11).


Рис. 11. Механизм изменений частоты и силы сокращений сердца при стимуляции симпатической и парасимпатической иннервации.

Холерный токсин активирует Сs-белки (это ведёт к активации аденилатциклазы и при холере проявляется секрецией жидкости через эпителий кишечника).

Коклюшный токсин активирует Gi-белки.

При возбуждении M1-холинорецепторов, М3-холинорецепторов, α1-адренорецепторов через Gq-белки активируется фосфолипаза С, которая способствует тому, что из фосфатидилинозитол-4,5-дифосфата образуются инозитол-1,4,5-трифосфат и диацилглицерол.

Инозитол-1,4,5-трифосфат действует на чувствительные к нему рецепторы мембраны саркоплазматического ретикулума и стимулирует высвобождение ионов Са 2+ из саркоплазматического ретикулума (рис. 12). При стимуляции αι-адренорецепторов кровеносных сосудов это ведёт к сокращению гладких мышц сосудов и сужению сосудов (рис. 13).


Рис. 12. Влияние фосфолипазы С на уровень цитоплазматического С а2+ .

Чувствительность рецепторов к агонистам и количество рецепторов постоянно меняются. Так, после стимуляции β1-адренорецепторов агонистом β1-адренорецепторы фосфорилируются специальной рецепторной киназой, соединяются с белком β-аррестином и в этом комплексе теряют способность взаимодействовать с G-белками (десенситизация рецепторов). Комплекс β1-адренорецепторы с β-аррестином поглощается клеткой путём эндоцитоза (интернализация рецепторов) и захватывается эндосомами и лизосомами. В эндосомах молекулы β1-аррестина отсоединяются от рецепторов, которые вновь встраиваются в клеточную мембрану; чувствительность рецепторов к агонистам восстанавливается (ресенситизация рецепторов). В лизосомах происходит разрушение молекул рецепторов (down-regulation) (рис. 14).


Рис. 13. Механизм сокращения гладких мышц кровеносных сосудов при стимуляции симпатической иннервации. ФЛС - фосфолипаза С; ФИФ2 - фосфатидилинозитол-4,5-дифосфат; ИФ3 - инозитол-1,4,5-трифосфат; СР - саркоплазматический ретикулум; КЛЦМ - киназа лёгких цепей миозина.


Рис. 14. Десенситизация и down-regulation β-адренорецепторов.

К внутриклеточным рецепторам относятся рецепторы кортикостероидов и половых гормонов. В частности, рецепторы глюкокортикоидов локализованы в цитоплазме клеток. После соединения глюкокортикоида с цитоплазматическими рецепторами комплекс глюкокортикоид-рецептор проникает в ядро и оказывает влияние на экспрессию различных генов.

Способность веществ связываться с рецепторами (тенденция веществ к связыванию с рецепторами) обозначают термином «аффинитет». По отношению к одним и тем же рецепторам аффинитет разных веществ может быть различным. Для характеристики аффинитета используют показатель pKD - отрицательный логарифм константы диссоциации, то есть концентрации вещества, при которой занято 50 % рецепторов.

Внутренняя активность - способность веществ стимулировать рецепторы; определяется по величине фармакологического эффекта, связанного с активацией рецепторов.

В обычных условиях нет прямой корреляции между аффинитетом и внутренней активностью. Вещество может занимать все рецепторы и вызывать слабый эффект, и наоборот, вещество может занимать 10 % рецепторов и вызывать максимальный для данной системы эффект.

Агонисты - вещества, обладающие аффинитетом и внутренней активностью.

Полные агонисты обладают аффинитетом и максимальной внутренней активностью (способны вызывать максимальный для данной системы эффект), даже если занимают часть специфических рецепторов.

Частичные (парциальные) агонисты обладают аффинитетом и менее чем максимальной внутренней активностью (способны вызывать лишь менее чем максимальные эффекты, даже если занимают 100 % специфических рецепторов).

Антагонистыобладают аффинитетом, но не обладают внутренней активностью и препятствуют действию полных или частичных агонистов (вытесняют агонистов из связи с рецепторами).

Если действие антагониста устраняется при повышении дозы агониста, такой антагонизм называют конкурентным.

Частичные агонисты могут быть антагонистами полных агонистов. В отсутствие полного агониста частичный агонист стимулирует рецепторы и вызывает слабый эффект. При взаимодействии с полным агонистом частичный агонист занимает рецепторы и препятствует действию полного агониста. При этом действие полного агониста ослабляется.

Например, пиндолол - частичный агонист β-адренорецепторов - в отсутствие влияний симпатической иннервации на сердце вызывает слабую тахикардию. Но при повышении тонуса симпатической иннервации пиндолол действует как настоящий β-адреноблокатор и вызывает брадикардию. Это объясняется тем, что частичный агонист пиндолол ослабляет действие медиатора норадреналина, который по отношению к β-адренорецепторам сердца является полным агонистом.

Агонисты-антагонисты - вещества, которые по-разному действуют на подтипы одних и тех же рецепторов: одни подтипы рецепторов они стимулируют, а другие - блокируют. Например, наркотический анальгетик налбуфин по-разному действует на подтипы опиоидных рецепторов. Налбуфин стимулирует κ-рецепторы (и поэтому снижает болевую чувствительность), а μ-рецепторы блокирует (и поэтому менее опасен в плане лекарственной зависимости).

Примером влияния веществ на ферменты может быть действие антихолинэстеразных средств, которые блокируют ацетилхолинэстеразу (фермент, расщепляющий ацетилхолин) и таким образом усиливают и удлиняют действие ацетилхолина.

Известны лекарственные вещества, которые стимулируют или блокируют ионные каналы клеточных мембран, то есть каналы, которые избирательно проводят ионы Na + , K + , Са 2+ (натриевые, калиевые, кальциевые каналы) и др. Например:

- местноанестезирующие вещества блокируют Na + -каналы;

- противоаритмические средства I класса (хинидин, лидокаин) блокируют Na + -каналы;

- миноксидил активирует K + -каналы;

- гипогликемические средства из группы производных сульфонилмочевины блокируют АТФ-зависимые K + -каналы;

- верапамил, нифедипин блокируют Са 2+ -каналы.

Примером влияния веществ на транспортные системы может быть действие:

- резерпина (блокирует везикулярный захват дофамина и норадреналина);

- сердечных гликозидов (ингибируют Nа + /K + -АТФазу);

- трициклических антидепрессантов (блокируют обратный нейрональный захват норадреналина и серотонина);

- блокаторов протонового насоса (омепразол и др.).

Возможны и другие механизмы действия. Например, диуретик маннитол увеличивает диурез за счёт повышения осмотического давления в почечных канальцах. Противоатеросклеротическое средство - колестипол - связывает (секвестрирует) желчные кислоты, препятствует их всасыванию в кишечнике, в связи с чем активируется образование желчных кислот из холестерина в печени и снижается уровень холестерина в гепатоцитах.

Механизмы действия разных лекарственных веществ изучены в разной степени. В процессе их изучения представления о механизмах действия могут не только усложняться, но и существенно меняться.

Понятие «локализация действия» означает преимущественное место (места) действия тех или иных лекарственных веществ. Например, сердечные гликозиды действуют в основном на сердце.

К понятию «виды действия» относятся местное и общее (резорбтивное) действия, рефлекторное действие, основное и побочное действие, прямое и косвенное действие.

Примером местного действия может быть действие местноанестезирующих средств.

Большинство лекарств оказывают общее (резорбтивное) действие, которое обычно развивается после всасывания (резорбции) вещества в кровь и его распространения в организме.

Как при местном, так и при резорбтивном действиях вещества могут возбуждать различные чувствительные рецепторы и вызывать рефлекторные реакции.

Основное действие лекарственного вещества - его эффекты, которые используются в каждом конкретном случае. Все остальные эффекты при этом оценивают как проявления побочного действия.

Лекарственные вещества могут оказывать на те или иные органы прямое действие. Кроме того, действие лекарственных веществ может быть косвенным. Например, сердечные гликозиды оказывают на сердце прямое действие, но, улучшая работу сердца, эти вещества повышают кровоснабжение и функции других органов (косвенное действие).

Читайте также: