Тревожная сигнализация при пульсоксиметрии. Рекомендации по применению пульсоксиметра

Обновлено: 10.05.2024


Кислород для людей жизненно необходим, так как требуется всем органам в процессе жизнедеятельности, а мозг и сердце особенно чувствительны к его недостатку. Нехватка кислорода в организме называется гипоксией.

Попав в легкие во время вдоха, кислород связывается в легочных капиллярах с гемоглобином в эритроцитах. Сердце непрерывно перекачивает кровь по всему телу, чтобы доставить кислород к тканям.

Пульсоксиметри́я (оксигемометрия, гемоксиметрия) — неинвазивный метод определения степени насыщения крови кислородом. В основе метода лежит спектрофотометрический способ определения насыщения крови кислородом.

Основу метода пульсоксиметрии составляют два ключевых физиологических явления:

  1. Способность гемоглобина в зависимости от его оксигенации в разной степени поглощать свет определенной длины волны при прохождении этого света через участок ткани (оксиметрия).
  2. Пульсация артерий и артериол в соответствии с ударным объемом сердца (пульсовая волна).

Прибор состоит из датчика, имеющего два светодиода, фотодетектора и микропроцессора. Датчик фиксируется на пальце или мочке уха пациента. При прохождении светового потока через кровь оксигемоглобин интенсивно поглощает инфракрасное излучение, а дезоксигемоглобин - красное. Показатель сатурации отражается на дисплее пульсоксиметра (в норме SpO2 = 95-98 %).

Какие показатели отражает пульсоксиметрия?

Обыкновенные пульсоксиметры, рассчитанные на применение в больницах и домашних условиях, могут регистрировать два основных показателя - сатурация (насыщение) крови кислородом и частоту пульса. Во многих случаях уже эта информация дает общее представление о состоянии пациента,

В условную подготовку пациента к пульсоксиметрии входят следующие рекомендации:

  • Не употреблять стимулирующие вещества. Любые стимулирующие вещества (наркотические препараты, кофеин, энергетические напитки) влияют на работу нервной системы и внутренних органов.
  • Отказ от курения. Курение непосредственно перед процедурой может повлиять на глубину вдоха, частоту сердцебиения, тонус сосудов. Это изменения повлекут снижение насыщения крови кислородом, которое отразит пульсоксиметрия.
  • Отказ от алкоголя. Печень ответственна за выработку многих компонентов крови и ферментов. Таким образом, результат пульсоксиметрии будет несколько искажен.
  • Не использовать крема для рук и лак для ногтей. В большинстве случаев датчик пульсоксиметра крепится на палец. Использование различных кремов для рук может повлиять на «прозрачность» кожи. Световые волны, которые должны определить насыщение крови кислородом, могут встретить препятствие, что отразится на результате исследования. Лаки для ногтей (особенно синий и фиолетовый цвета) и вовсе делают палец непроницаемым для света, и прибор не будет работать.
    Для получения достоверных результатов при использовании пульсоксиметра нужно придерживаться следующих рекомендаций:
  • Правильный выбор места исследования. Желательно проводить пульсоксиметрию в комнате с умеренным освещением. Тогда яркий свет не будет влиять на работу светочувствительных датчиков. Интенсивный свет (особенно красный, синий и других цветов) может существенно исказить результаты исследования.
  • Правильное расположение пациента. Основным требованием во время пульсоксиметрии является статичное положение пациента. Желательно проводить процедуру лежа на кушетке с минимальным количеством движений. Быстрые и резкие движения могут привести к смещению датчика, ухудшению его контакта с телом и искажению результата.
  • Включение и питание прибора. Некоторые современные пульсоксиметры включаются автоматически после надевания датчика. В других моделях аппарат нужно включить самостоятельно. В любом случае, перед использованием пульсоксиметра, нужно проверить уровень зарядки (для моделей на аккумуляторах или батарейках). Исследование может длиться довольно долго, в зависимости от информации, которую хочет получить врач. Если аппарат разрядится до окончания процедуры, ее придется повторить.
  • Прикрепление датчика. Датчик пульсоксиметра крепят на часть тела, указанную в инструкции. В любом случае он должен хорошо держаться, чтобы не упасть случайно при движениях пациента. Также датчик не должен слишком сильно зажимать палец или стягивать запястье.
  • Правильная интерпретация результатов. Пульсоксиметр выдает результаты в понятном для пациента виде. Обычно это частота сердечных сокращений и уровень насыщения крови кислородом. Однако грамотно интерпретировать результат может только лечащий врач. Он сопоставляет показатели с результатами других исследований и состоянием пациента.
    Техника проведения пульсоксиметрии включает следующие этапы:
  • пациента «готовят» к процедуре, объясняя, что и как будет происходить;
  • на палец, мочку уха или другую часть тела (по необходимости) устанавливают датчик;
  • аппарат включают, и начинается, собственно, процесс измерения, который длится не менее 20 - 30 секунд;
  • аппарат выводит результат измерений на монитор в удобной для врача или пациента форме.
    Попутно пульсоксиметры считывают и частоту сердечных сокращений (ЧСС), регистрируя пульсацию сосудов.
    Наиболее часто допускают следующие ошибки при проведении пульсоксиметрии:
  • наличие лака на ногтях;
  • неправильное прикрепление датчика (слабая фиксация, плохой контакт с тканями);
  • некоторые заболевания крови (о которых не знали до начала исследования);
  • низкая температура тела;
  • движения пациента во время исследования;
  • использование датчиков неподходящей модели (по возрасту, весу и др.).
    На точность измерений могут оказывать отрицательное влияние ряд факторов:
  • яркий внешний свет и движения могут нарушать работу прибора;
  • неправильное расположение датчика: для трансмиссионных оксиметров необходимо, чтобы обе части датчика находились симметрично относительно просвечиваемого участка ткани, иначе путь между фотодетектором и светодиодами будет неравным, и одна из длин волн будет «перегруженной»;
  • значительное снижение перфузии периферических тканей ведет к уменьшению или исчезновению пульсовой волны. В этой ситуации увеличивается ошибка измерения SpO2;
  • при значениях SaO2 ниже 70% также возрастает погрешность измерений сатурации методом пульсоксиметрии - SpO2. В связи с этим следует отметить, что в практической работе врача терапевтической специальности вероятность столкнуться со значениями SaO2 ниже 70% у пациента крайне мала;
  • анемия требует более высоких уровней кислорода для обеспечения транспорта кислорода. При значениях гемоглобина ниже 50 г/л может отмечаться 100% сатурация крови даже при недостатке кислорода;
  • отравление угарным газом (высокие концентрации карбоксигемоглобина могут давать значение сатурации около 100%);
  • красители, включая лак для ногтей, могут спровоцировать заниженное значение сатурации;
  • сердечные аритмии могут нарушать восприятие пульсоксиметром пульсового сигнала;
  • возраст, пол, желтуха и темный цвет кожи не влияют на работу пульсоксиметра.
    Требования стандартов по пульсоксиметрии устанавливают основную погрешность измерения сатурации в диапазоне (80. 99)% равную ± 2%, (50. 79)% - ± 3%, для сатурации ниже 50% погрешность обычно не нормируется. Высокая точность пульсоксиметрии для значений сатурации более 80% необходима для надежной дифференциации развития состояния гипоксемии и гипоксии. В этом диапазоне кривая диссоциации гемоглобина имеет малую крутизну (рис.38) и небольшое уменьшение сатурации означает сильное изменение напряжения кислорода в крови, что является предвестником гипоксии. Увеличение допустимой погрешности при низких уровнях оксигенации (менее 80%) является клинически обоснованным, так как в этом диапазоне наибольшей ценностью обладает не абсолютное значение сатурации, а оценка динамики процесса, т.е. изменение сатурации в течение определенного времени.
    Требования быстродействия измерений сатурации связаны с тем, что на определенных стадиях ведения наркоза, например, интубации, возможно быстрое развитие эпизодов гипоксемии, которые могут привести к гипоксическим состояниям, чреватым серьезными осложнениями. Реальным требованием анестезиологической практики является длительность процесса измерения и оценки сатурации, составляющая не более 6. 10с.
    Основные помехи, влияющие на точность измерения сатурации, имеют электрическую, оптическую и физиологическую природу.
  • Электрические помехи (“наводки”) возникают в усилительном тракте пульсоксиметра в результате влияния внешних электромагнитных полей, создаваемых, в частности, питающей сетью 50 Гц, электрохирургическим инструментом, физиотерапевтической аппаратурой. Подавление помех осуществляется путем частотной фильтрации сигналов, так как полезная информация в ФПГ сигнале сосредоточена, в основном, в диапазоне до 10 Гц, т.е. значительно ниже частотного диапазона помех. Для этой цели используются аналоговые фильтры нижних частот в усилительном тракте, а также цифровая фильтрация, дающая высокую крутизну спада частотной характеристики фильтров.
  • Помехи оптического происхождения возникают в случае попадания света от посторонних источников излучения (от хирургических ламп, ламп дневного света и т.п.) на фотоприемник датчика. Под действием данных помех уровень сигнала, снимаемого с фотоприемника, может изменяться, искажая сигнал, обусловленный абсорбцией излучения светодиодов в тканях. Для подавления оптических помех используют метод трехфазной коммутации светодиодов датчика. В первые две фазы коммутации поочередно включаются либо “красный”, либо “инфракрасный” светодиод датчика, в третьей фазе оба светодиода выключаются и фотоприемник регистрирует фоновую засветку датчика, включающую оптические помехи. Напряжение фоновой засветки запоминается и вычитается из сигналов “красного” и “инфракрасного” каналов, получаемых в первые две фазы коммутации. Таким образом, действие фоновой засветки датчика на полезный сигнал ослабляется.
  • Коммутация светодиодов с достаточно высокой частотой (намного превышающей частоты оптических помех) позволяет при выделении сигналов различных каналов в усилительном тракте использовать принципы синхронного детектирования, существенно улучшающие соотношения сигнал/шум. Сильная фоновая засветка датчика может стать причиной возникновения искажений в усилительном тракте, поэтому фотоприемник и первые каскады усиления должны обладать линейностью характеристики в большом динамическом диапазоне входных сигналов. Это необходимо для устранения амплитудных искажений переменной составляющей сигнала и подавления перекрестных помех. Ослабление фоновых засветок достигается также конструктивным построением датчика с использованием оптического экранирования.
  • Помехи физиологической природы оказывают наиболее сильное влияние на показания пульсоксиметров. К таким помехам можно отнести влияние двигательных артефактов, в том числе и дыхания, непостоянство формы пульсовой волны и снижение ее амплитуды у различных пациентов. Движение конечности с закрепленным на ней датчиком вызывает, например, перераспределение объема крови, находящегося в поле зрения датчика, что дает на выходе фотоприемника помеховый сигнал. Ослабление указанных помех особенно важно при выделении максимумов артериальных пульсаций фотоплетизмографических сигналов обоих каналов.

    Возможные источники погрешностей при пульсоксиметрии
  • Особенность определения уровня оксигенации крови с помощью пульсоксиметра заключается в том, что, в соответствии с принципом действия прибора, в нем производится измерение величины поглощения света, прошедшего через ткани, содержащие артериальные сосуды, в красном и инфракрасном диапазоне и вычисление R - отношения измеренных величин. Значение сатурации определяется по величине R в соответствии с калибровочной зависимостью, устанавливаемой параллельными градуировочными измерениями функциональной или фракционной сатурации у добровольцев с помощью отбора проб крови и их анализа в кюветном оксиметре.
  • Показания пульсоксиметра при определении оксигенации крови у пациентов соответствуют градуировочной сатурации только тогда, когда доля дисгемоглобинов у пациентов и у лиц, участвующих в градуировке прибора, совпадают. В большинстве случаев предполагается, что фракция дисгемоглобинов (СОНb, МеtНb) не превышает 2% и ее долей в определении сатурации можно пренебречь. Однако при колебаниях этой фракции показания пульсоксиметра отличаются от величин SaО2функ или SaО2фр, по которым производилась градуировка прибора. Поэтому для более корректного обозначения показаний пульсоксиметров используется термин SрО2, применяемый большинством изготовителей аппаратуры, который подчеркивает возможность ошибок определения сатурации при возрастании фракции дисгемоглобинов.
  • Влияние СОНb на показания сатурации определяются спектром его поглощения (рис.40). На волне 940нм СОНb обладает очень низким поглощением и не вносит вклад в общее поглощение. На волне 660нм СОНb обладает поглощением очень близким к поглощению НвО2. Следовательно, показания пульсоксиметра будут ошибочно завышены по отношению к величине SаО2фр. Это может маскировать опасные для жизни состояния с низким значением фракционной сатурации (например, при присутствии во вдыхаемом газе СО). Так при содержании СОНb - 50% SрО2 оказывается равным 95% / 96 /.
  • Фракция МеtНb поглощает больше света на волне 940нм чем Нb, но на волне 660нм имеет почти равное с ним поглощение. Это приводит к завышению SрО2 при низких значениях SaО2фр и к занижению показаний при больших значениях. При высоких концентрациях МеtНb SрО2 приближается к 85% (отношение близко к 1) и не зависит от реальной оксигенации артериальной крови.
  • Высокий уровень билирубина не оказывает влияние на поглощение света на используемых длинах волн и не искажает показания пульсоксиметра. Однако для кюветных оксиметров ошибки возникают при более низких длинах волн и могут привести к занижению показаний.
  • Фетогемоглобин (НвF), имеющийся у новорожденных в первые несколько месяцев после рождения, и Нb имеют очень близкие характеристики поглощения, совпадающие на волне 940нм и различающиеся на несколько процентов на волне 660нм / 87 /. Это требует небольшого уточнения калибровочной зависимости, используемой в приборах фетального мониторинга / 88 /.
  • Красящие вещества, вводимые в кровь, оказывают влияние на показания пульсоксиметров. Метилен голубой дает уменьшение величины SрО2, более значительно влияет введение индигокармина, используемого для измерения сердечного выброса.
  • Ошибки в определении состояния пациента по данным SрО2 могут возникнуть из-за маскирования снижения величины РО2, которое может наступить прежде, чем начнется значительное падение SрО2. Это обстоятельство объясняется ходом кривых диссоциации НвО2 (рис.38). При больших сдвигах PО2 (в диапазоне выше 60 мм рт.ст.) наблюдаются небольшие изменения SаО2, но если PО2 становится меньше 60 мм рт.ст., малые изменения PО2 приводят к большим сдвигам SаО2 .Поэтому нижняя граница уровня тревожной сигнализации должна быть установлена равной 94%, что соответствует безопасному значению PО2.
  • Ошибки могут возникать при низкой тканевой перфузии или выраженной вазоконстрикции вследствие слабости пульсации в месте расположения датчика прибора. Следует отметить, что при выраженной гемодилюции, анемии и кровопотере высокие показатели SpО2 отнюдь не гарантируют безопасный уровень доставки кислорода к тканям, т.к. общая кислородная емкость крови при этом может оказаться недостаточной.

1.Шурыгин, И.А. Мониторинг дыхания: пульсоксиметрия, капног- рафия, оксиметрия. - СПб.: Невский Диалект; М.: БИНОМ, 2000. - 301 с
2.«Руководство ВОЗ по пульсоксиметрии». Женева, Швейцария. 2009 год. 1- 23;
3.«Базовый курс анестезиолога». Учебное пособие, электронный вариант / под ред. Э. В. Недашковского, В. В. Кузькова. — Архангельск: Северный государственный медицинский университет, 2010 год. 184 — 188.
4. «Стандартизация клинических и неклинических производственных процессов в медицинских организациях, их внедрение и мониторинг» Методические рекомендации, РГП «РЦРЗ», Астана, 2017 год);
5.«Компьютерная пульсоксиметрия. В диагностике нарушений дыхания во сне.» Р.В.Бузунов, И.Л.Иванова, Ю.Н.Кононов, С.Л.Лопухин, Л.Т.Пименов. Учебно-методическое пособие для врачей.
6.Инструкция производителя по эксплуатации прибора «Пульсоксиметр»

Пульсоксиметрия в преддиагностике вируса

Пульсоксиметрия в преддиагностике вируса

Пульсоксиметрия в подарок к любой консультации в медцентре!

Вы можете узнать, достаточно ли кислорода у вас в крови прямо в нашем центре сразу после посещения любого специалиста. А это важный показатель, в том числе и как преддиагностика при вирусе.
А если вы хотите получить более полные данные о своем состоянии за целую ночь, пройдите ночную пульсоксиметрию всего за 59 р., для этого возьмите прибор к себе домой. Мы предоставим вам подробную расшифровку с комментариями.

Что такое пульсоксиметрия?

Зачем нужна пульсоксиметрия при подозрении на наличие вируса?

Диагностика позволяет установить уровень сатурации и отследить динамику ее изменения, на основе этих данных можно предположить наличие легочных патологий, в частности при вирусной инфекции. Так, например, одни из самых частых осложнений коронавирусной инфекции COVID-19 — дыхательная недостаточность и поражение легких.

Какие параметры важно контролировать при подозрении на вирус?

Коронавирусная инфекция COVID-19, охватившая весь мир, — это острое вирусное заболевание, поражающее главным образом дыхательную систему. Инкубационный период (т.е. период между заражением и появлением клинических симптомов) в среднем составляет 5-10 дней, и очень важно, по возможности, проводить преддиагностику вируса, позволяющую на ранних стадиях выявить отклонения в работе организма и дыхательной системы и установить возможные причины их возникновения.

  • температуру тела;
  • симптомы респираторного заболевания, такие как: кашель, чихание, насморк, головная боль;
  • состояние сильной слабости;
  • уровень насыщения крови кислородом.

Как проводится пульсоксиметрия?

Исследование проводится с помощью специального прибора — пульсоксиметра, который закрепляется на руке и, не нарушая целостность кожных покровов, измеряет частоту пульса и процент насыщения крови кислородом. Метод абсолютно безопасен, не вызывает неприятных ощущений и не имеет противопоказаний.

В «Центре здорового сна» можно провести разовую пульсоксиметрию (проводится в подарок при записи на любую консультацию) и ночную (мониторинг показателей в течение ночи, проводится амбулаторно на дому при помощи компактного прибора).
Проводится пульсоксиметрия надежным и точным оборудованием от немецкого бренда «Beurer», отечественного производителя «Пульсар» и немецкой компании «Löwenstein Medical».

Записаться на проведение данного исследования и узнать более подробную информацию можно по телефонам центра:

Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Методическое пособие по пульсоксиметрии. Часть 2

Методическое пособие по пульсоксиметрии. Часть 2

Проанализированы возможности пульсоксиметрии в диагностике и контроле эффективности лечения нарушений дыхания во сне.

В данной статье представлена информация из методического пособия по пульсоксиметрии: «Диагностические возможности неинвазивного мониторирования насыщения гемоглобина артериальной крови кислородом в клинике внутренних болезней: метод.рекомеменд. / Д.В. Лапицкий [и др.]. - Минск : БГМУ, 2015. - 71 с.»

Предназначено для врачей терапевтических специальностей, студентов 5-6 курсов лечебного факультета, клинических ординаторов, врачей-интернов.

3. Патофизиологические механизмы развития гипоксемии артериальной крови.

В настоящее время установлено, что в клинической практике в большинстве случаев артериальная гипоксемия является следствием нарушения способности органов дыхания оксигенировать притекающую к легким венозную кровь. Выделяют следующие основные причины гипоксемии [1,2,8,9,10,11,12]:

  1. Гиповентиляция легких, апноэ;
  2. Уменьшение содержания кислорода во вдыхаемом воздухе;
  3. Шунтирование крови в малом круге кровообращения;
  4. Нарушение вентиляционно-перфузионных соотношений в отдельных легочных зонах;
  5. Нарушение диффузии кислорода из альвеол в кровь легочных капилляров;
  6. Повышение экстракции кислорода из артериальной крови.

Гиповентиляция легких и апноэ. Снижение минутного объема вентиляции легких приводит к уменьшению доставки кислорода в альвеолы и нарушению эвакуации углекислого газа из альвеолярного пространства. При этом доставка в альвеолы углекислого газа с периферии и извлечение из них кислорода кровью, протекающей по легким, не прекращаются. Упрощенное уравнение альвеолярного газа определяет, что при дыхании комнатным воздухом парциальное давление кислорода в альвеолах (РАО2) изменяется однонаправленно с атмосферным давлением (Ратм) и противоположно с напряжением углекислого газа в артериальной крови (РаСО2):

(**) Р А О 2 (мм рт.ст.) = (Ратм - 47)×FiO 2 - 1,25×РаСО 2 ,

где Ратм - атмосферное давление (мм рт.ст.), FiO2 - концентрация кислорода во вдыхаемом воздухе (в долях), РаСО2 - напряжение углекислого газа в артериальной крови (мм рт.ст.).

Из уравнения альвеолярного газа следует, что при нарастании концентрации СО2 в альвеолярном газе содержание кислорода в альвеолах уменьшается. Соответственно изменяется газовый состав крови, оттекающей от легких. Таким образом, развиваются артериальная гипоксемия, выявляемая в анализе газов артериальной крови по снижению РаО2 и SаО2 и с помощью пульсоксиметрии по снижению SрO2 (рис. 5).


Рис. 5. Эпизод снижения SpO2 на кривой мониторирования при дыхании воздухом, обусловленный нарастанием альвеолярной гиповентиляции. Восстановление SpO2 проведено с помощью ингаляции кислорода (повышение концентрации О2 во вдыхаемом воздухе - FiO2 - (**)).

Степень гиповентиляции традиционно оценивают по напряжению СO2 в артериальной крови, потому что величина данного показателя обратно пропорциональна объему альвеолярной вентиляции:

(***) РаСО 2 = К×[V CO 2 / V A ],

где К - константа, VCO2 - объем образуемого в организме углекислого газа, VA - объем альвеолярной вентиляции.

Из уравнения (***) следует, что напряжение СО2 в артериальной крови может повышаться при увеличении выработки углекислого газа организмом (VCO2), что имеет значение при физической нагрузке, если прирост альвеолярной вентиляции не адекватен выработке СО2.

Снижение SрO2 можно определенно связать с гиповентиляцией лишь тогда, когда для этого есть реальные клинические предпосылки.

Адекватность вентиляции зависит от следующих факторов:

  • состояния центральной регуляции дыхания;
  • активности дыхательной мускулатуры;
  • целостности и подвижности грудной клетки;
  • проходимости дыхательных путей;
  • растяжимости легочной ткани;
  • внутрилегочного распределения газа соответственно степени перфузии различных отделов.

Уменьшение содержание кислорода во вдыхаемом газе. Из уравнения альвеолярного газа (**) следует, что при уменьшении содержания кислорода во вдыхаемом газе (FiO2) снижается парциальное давление кислорода в альвеолах (РАО2). В результате напряжение кислорода и, соответственно, насыщение гемоглобина кислородом в крови, оттекающей от легких, снижаются и через некоторое время устанавливаются на новом, более низком уровне. При этом пульсоксиметр обнаруживает артериальную гипоксемию, выраженность которой зависит от степени уменьшения FiO2.

Снижение содержания кислорода во вдыхаемом газе может быть вызвано двумя причинами:

  1. избыточной концентрацией других компонентов газовой смеси;
  2. существенным падением атмосферного давления (дыхание разреженным воздухом высокогорья).


Шунтирование крови в малом круге кровообращения
. Шунт — это часть легочного кровотока, проходящая по невентилируемым участкам легких. Венозная кровь, притекающая к легким и попадающая в шунты, не изменяет свой состав и на выходе из легких встречается с кровью, оттекающей от нормально работающих альвеол. В результате смешивания этих двух потоков образуется артериальная кровь, напряжение кислорода в которой снижено из-за примеси венозной крови (рис. 6). Поэтому шунтирование крови относят к группе расстройств легочного газообмена, объединенных названием «венозная примесь».

Рис. 6. Шунтирование крови в легких.


Прекращению вентиляции отдельных кровоснабжаемых участков легких способствуют самые разные причины :

  1. полная обструкция части дыхательных путей пробками вязкой мокроты, аспирированными рвотными массами, сгустками крови, опухолью и пр.;
  2. пневмония — в пневмонических очагах альвеолы безвоздушны, так как заполнены экссудатом, а кровоток усилен из-за воспалительной гиперемии;
  3. микро- и макроателектазы;
  4. при альвеолярном отеке легких зоны, заполненные транссудатом, превращаются в шунт.


Еще один вероятный механизм шунтирования - раскрытие артериовенозных анастомозов, имеющихся в легких, но не функционирующих в нормальных условиях. Предполагается, что эти анастомозы предназначены для сброса части венозной крови при резком повышении давления в легочной артерии.

Достаточно близки к механизму шунтирования нарушения вентиляционно-перфузионных соотношений в отдельных легочных зонах. Шунтирование крови в легких происходит при полном прекращении вентиляции кровоснабжаемого участка. Однако часто вентиляция отдельных легочных зон сохраняется, но становится недостаточной для обеспечения в них нормального газообмена. Возникает регионарная гиповентиляция. В идеальном случае объем вентиляции легких в целом и каждого легочного региона в частности должен соответствовать объему общего и регионарного кровотока. Но даже у здорового человека в легких, наряду с такими «идеальными» регионами, есть области, где вентиляция избыточна по отношению к кровотоку (зоны с высокими вентиляционно-перфузионными отношениями). Насыщение кислородом гемоглобина крови, оттекающей от этих зон, на несколько процентов выше, чем в идеальных регионах. Существуют также регионы, вентиляция которых недостаточна для полноценной обработки потока венозной крови (зоны с низкими вентиляционно-перфузионными отношениями). От таких областей поступает кровь с уменьшенным насыщением гемоглобина кислородом. В норме избыточное насыщение гемоглобина крови кислородом в одних регионах эффективно компенсирует нехватку насыщения гемоглобина крови кислородом в других. Таким образом, формируется нормальный газовый состав артериальной крови (рис. 7).

Рис. 7. Влияние различий регионарных вентиляционно-перфузионных отношений на SаO2 при дыхании атмосферным воздухом.

Появление в легких областей с низкими вентиляционно-перфузионными отношениями обусловлено двумя причинами: локальным уменьшением вентиляции и/или локальным увеличением кровотока. Вентиляция региона может уменьшиться из-за сужения или обтурации бронхов, снижения растяжимости отдельных участков легочной ткани, ограничения подвижности одного из куполов диафрагмы, одностороннего пневмо-, гемо- или гидроторакса. Локальное увеличение легочного кровотока происходит в результате его патологического перераспределения. Когда давление в легочной артерии снижается (применение некоторых вазодилататоров, действующих на артериолы малого круга, снижение минутного объема кровообращения) и становится недостаточным для подъема крови в верхние зоны легких, кровоток осуществляется главным образом через нижележащие отделы, вентиляция которых перестает соответствовать возросшему потоку крови. Сходная картина наблюдается при росте внутрилегочного давления (например, при ИВЛ), которое пережимает альвеолярные капилляры в верхних зонах легких и тем самым направляет кровоток в нижние регионы, где капиллярное давление выше.

Нарушение диффузии кислорода из альвеол в кровь легочных капилляров. Уменьшение диффузионной способности легких сказывается на переносе кислорода из альвеол в кровь и служит причиной развития гипоксемии. Внутрилегочный обмен углекислого газа не страдает даже при выраженных диффузионных расстройствах, так как СO2, в силу своей высокой растворимости в водных средах, обладает очень большой проникающей способностью.

Причины нарушения диффузии кислорода из альвеол в кровь легочных капилляров достаточно разнообразны:

  1. уменьшение общей площади функционирующих альвеол (обширные резекции легочной ткани, ателектазы, пневмония, отек легких, тромбоэмболия легочных сосудов);
  2. утолщение альвеолокапиллярной мембраны из-за ее отека или фиброза;
  3. увеличении линейной скорости движения крови по легочным сосудам, когда времени нахождения эритроцита в капилляре не хватает для завершения насыщения гемоглобина кислородом (сепсис, инфузия адреномиметиков, физическая нагрузка).


Повышение экстракции кислорода из артериальной крови.
Десатурация венозной крови не является самостоятельной причиной гипоксемии, если отсутствуют другие факторы развития нарушений газообмена. Этот фактор имеет значение для пациентов с уже существующими нарушениями газообмена и снижением сердечного выброса. Содержание О2 в венозной крови (SvO2) определяется как:

(****) SvO 2 = SaO 2 - [V O 2 :(Hb×Q)],

где VO2 - потребление О2, Hb - гемоглобин, Q - сердечный выброс.

Из данного уравнения ясно, что SvO2 зависит от баланса между доставкой О2 и его потреблением. Поэтому любой фактор, нарушающий этот баланс, может привести к снижению SvO2. Данный механизм играет роль в формировании гипоксемии при тромбоэмболии легочных артерий, при физической нагрузке у лиц с хронической легочной патологией и/или сердечной недостаточностью.

Методическое пособие по пульсоксиметрии. Часть 1

Методическое пособие по пульсоксиметрии. Часть 1

1. Основы метода пульсоксиметрии.

В физиологии дыхания принято выделять два ключевых процесса: клеточное (тканевое) дыхание и внешнее дыхание (газообмен) [1,2]. Клеточное дыхание является тем процессом, посредством которого в клетке высвобождается энергия из углеводов, жиров и белков [3]. Внешнее дыхание обеспечивает поступление в организм кислорода для использования его в биологическом окислении органических веществ (т.е. в процессе клеточного дыхания), и удаление из организма продукта этого окисления - углекислого газа. Таким образом, артериальную кровь можно представить как связующее звено между внешним и внутренним дыханием. Газовый состав артериальной крови отражает эффективность внешнего дыхания и позволяет косвенно предположить риск развития тканевой гипоксии. Исходя из этих позиций, становится понятным диагностическое значение оценки газового состава артериальной крови.

Изучению газового состава альвеолярного газа и артериальной крови положил начало английский физиолог Джон Скотт Холдейн в начале XX века. Успехи в науке и технике за прошедшее столетие позволили сформировать стройную теорию газообмена и сконструировать приборы (например, Radiometer Medical ApS, Дания) для определения газов в пробах выдыхаемого воздуха, артериальной и венозной крови [4,5]. Однако проведение данного обследования требует стационарного оборудования и является инвазивным.

Для нужд практической и прикладной медицины требуется способ быстрой и неинвазивной оценки кислородного статуса артериальной крови. Поиски такого способа проводились с 30-х годов 20 столетия. В 1940 году был сконструирован первый гемоксиметр для выявления гипоксемии у летчиков во время полета. Разработанное оборудование было громоздким и требовало сложного обслуживания. Указанные обстоятельства явились причиной ограниченного применения гемоксиметров в клинической практике. Развитие технологий позволило уже в 1975 году выпустить на рынок первый мобильный неинвазивный пульсоксиметр, позволяющий осуществлять длительное мониторирование насыщения гемоглобина артериальной крови кислородом.

Основу метода пульсоксиметрии составляют два ключевых физиологических явления :

  1. Способность гемоглобина в зависимости от его оксигенации в разной степени поглощать свет определенной длины волны при прохождении этого света через участок ткани (оксиметрия).
  2. Пульсация артерий и артериол в соответствии с ударным объемом сердца (пульсовая волна).


Принцип оксиметрии заключается в следующем. Дезоксигемоглобин (гемоглобин, не содержащий кислорода - RHb) интенсивно поглощает красный свет, слабо задерживая инфракрасный. Оксигемоглобин (полностью оксигенированный гемоглобин, каждая молекула которого содержит четыре молекулы кислорода - HbO2) хорошо поглощает инфракрасное излучение, слабо задерживая красное. По соотношению красного (R) и инфракрасного (IR) потоков, дошедших от источника излучения до фотодетектора через участок ткани (например, мочку уха, палец) определяется степень насыщения гемоглобина крови кислородом - сатурация, SO2 (рис. 1).

Рис. 1 Принцип оксиметрии (объяснения в тексте).

Пульсовая волна образуется в результате пульсации артерий и артериол, вызванной выбросом определенного объема крови (ударного объема) в аорту левым желудочком. Каждая пульсовая волна приводит к ритмичному, в такт сокращения сердца, изменению кровенаполнения исследуемого участка ткани. Результатом регистрации таких колебаний кровенаполнения является фотоплетизмограмма (ФПГ). Анализ ФПГ позволяет определить частоту сердечных сокращений и оценить качество периферического кровотока (рис. 2). В различных клинических ситуациях амплитуда ФПГ способна меняться в десятки раз. ФПГ позволяет составить довольно точное впечатление о локальном кровотоке. Снижение амплитуды ФПГ служит признаком периферической вазоконстрикции и/или уменьшения ударного объема сердца, а повышение амплитуды свидетельствует об обратном. Тонус сосудов - основной фактор, определяющий высоту волн ФПГ.

Рис. 2 Фотоплетизмограмма.

Еще одним важным достоинством регистрации фотоплетизмограммы является возможность выделить долю интенсивности светового потока, который поглощается непосредственно гемоглобином артериальной крови. При прохождении света через участок ткани он встречает различные препятствия, которые условно можно разделить на несколько слоев (рис. 3). Слой 1 - это ткани (кожа, подкожная клетчатка, ноготь, кость), слой 2 - капиллярная и венозная кровь, слой 3 - кровь, остающаяся в артериолах к концу каждой пульсации, своего рода «конечно-систолический объем» артериального русла, слой 4 - дополнительный объем артериальной крови, притекающий в артериолы во время систолы сердца.


Рис. 3 Поглощение световых потоков от светодиодов различными тканями (объяснение в тексте).

В момент, предшествующий сердечному сокращению, ослабление световых потоков обусловлено первыми тремя слоями: на фотодиод падает излучение, которое расценивается как фоновое. Когда до артерий доходит очередная пульсовая волна, объем крови в них увеличивается и поглощение света изменяется. На пике пульсовой волны различие между фоновым и текущим излучениями становится максимальным. Фотодетектор измеряет это различие и считает, что его причина - дополнительное количество артериальной крови, появившейся на пути излучения. Этой информации оказывается достаточно, чтобы по специальному алгоритму рассчитать степень насыщения гемоглобина артериальной крови кислородом - SaO2, которая обозначается как SpO2 при измерении пульсоксиметром.

Таким образом, применение одного принципа измерения (просвечивание тканей) позволяет определить сразу три диагностических параметра: степень насыщения гемоглобина артериальной крови кислородом (SpO2), частоту сердечных сокращений, объемную амплитуду кровенаполнения участка ткани. Поскольку измерение проводится путем просвечивания тканей, такой метод получил название «трансмиссионная пульсоксиметрия». На основе данного метода функционируют подавляющее большинство используемых в медицинской практике пульсоксиметров.

Медицинскому персоналу, который использует пульсоксиметры в повседневной деятельности, необходимо представлять недостатки и ограничения метода пульсоксиметрии. Пульсоксиметрия является непрямым методом оценки вентиляции и не дает информации об уровне pH, напряжении кислорода (РаО2) и углекислого газа (РаСО2) в артериальной крови. Для практической работы полезно знать, что показатели SpO2 коррелируют с парциальным давлением кислорода в крови: снижение PaO2 влечет за собой снижение SpO2. Указанная зависимость носит нелинейный характер, что объясняется S-образным видом кривой диссоциации оксигемоглобина (рис. 4):

  • 80-100 мм рт. ст. PaO2 соответствует 95-100% SpO2;
  • 60 мм рт. ст. PaO2 соответствует 90% SpO2;
  • 40 мм рт. ст. PaO2 соответствует 75% SpO2.

Кроме этого, на точность измерений могут оказывать отрицательное влияние ряд факторов:

  • яркий внешний свет и движения могут нарушать работу прибора;
  • неправильное расположение датчика: для трансмиссионных оксиметров необходимо, чтобы обе части датчика находились симметрично относительно просвечиваемого участка ткани, иначе путь между фотодетектором и светодиодами будет неравным, и одна из длин волн будет «перегруженной»;
  • значительное снижение перфузии периферических тканей ведет к уменьшению или исчезновению пульсовой волны. В этой ситуации увеличивается ошибка измерения SpO2;
  • при значениях SaO2 ниже 70% также возрастает погрешность измерений сатурации методом пульсоксиметрии - SpO2. В связи с этим следует отметить, что в практической работе врача терапевтической специальности вероятность столкнуться со значениями SaO2 ниже 70% у пациента крайне мала;
  • анемия требует более высоких уровней кислорода для обеспечения транспорта кислорода. При значениях гемоглобина ниже 50 г/л может отмечаться 100% сатурация крови даже при недостатке кислорода;
  • отравление угарным газом (высокие концентрации карбоксигемоглобина могут давать значение сатурации около 100%);
  • красители, включая лак для ногтей, могут спровоцировать заниженное значение сатурации;
  • сердечные аритмии могут нарушать восприятие пульсоксиметром пульсового сигнала;
  • возраст, пол, желтуха и темный цвет кожи не влияют на работу пульсоксиметра.

Именно простота и неинвазивность оценки качества периферического кровотока и насыщения гемоглобина артериальной крови кислородом, а также способность мониторных систем проводить сколь угодно длительное наблюдение за указанными параметрами способствовали распространению метода пульсокиметрии в отделениях анестезиологии и интенсивной терапии/реанимации для наблюдением за пациентами в тяжелых состояниях. При этом специально разработанные алгоритмы подавляют излишнюю пульсацию тканей, тканевое рассеяние светового потока и уменьшают влияние внешнего освещения и других артефактов на показания прибора, делая снимаемые показатели достоверными и пригодными к систематическому анализу.

2. Параметры оксигенации артериальной крови.

Качество оксигенации артериальной крови оценивают по следующим показателям [6,7]:

1. РаО2 - напряжение кислорода в артериальной крови, мм рт. ст.

РаО2 представляет собой давление, необходимое для удержания кислорода в артериальной крови в растворенном состоянии. Чем выше данный показатель, тем больше кислорода содержится в крови и тем выше градиент давления, определяющий скорость движения кислорода из капиллярной крови в ткани. В норме РаО2 составляет 92-98 мм рт. ст. и измеряется в лабораторных условиях в микропробе артериальной крови;

2. SaO2 - степень насыщения гемоглобина артериальной крови кислородом, %.

SaO2 зависит от РаО2. Отношения между РаО2 и SaO2 регулируются несколькими физиологическими факторами (напряжением углекислого газа в артериальной крови - РаСО2, кислотностью крови - РН, температурой тела и др.) и выражаются S-образной кривой диссоциации оксигемоглобина (рис. 4). Нормальные значения данного показателя составляют 95 - 99% и могут быть получены в микропробе артериальной крови. Именно этот параметр измеряется пульсоксиметром. При этом он обозначается - SpO2.

3. Р50 - напряжение кислорода крови при ее полунасыщении кислородом (S O2. = 50%), мм рт. ст.

Данный показатель определяется в микропробе артериальной крови и отражает сродство гемоглобина к кислороду. Нормальные значения данного показателя - 26 - 27 мм рт. ст. Уменьшение значения Р50 соответствует сдвигу кривой диссоциации оксигемоглобина влево и соответственно увеличению сродства гемоглобина к кислороду, увеличение Р50 свидетельствует о сдвиге кривой диссоциации оксигемоглобина вправо с уменьшением сродства гемоглобина к кислороду (рис. 4).

4. СаО2 - кислородная емкость крови, отражающая количество кислорода в артериальной крови, мл/л.

Как правило, данный показатель получают расчетным путем. Кислород содержится в крови в растворенном состоянии и в обратимой связи с гемоглобином. Константа растворимости кислорода в артериальной крови составляет 0,031 мл на каждый 1 мм рт.ст. Таким образом, произведение - 0,031×РаО2 - представляет количество растворенного в артериальной крови кислорода. Один грамм полностью насыщенного кислородом гемоглобина содержит 1,39 мл кислорода. Однако с учетом поправки на патологические гемоглобины (карбоксигемоглобин, метгемоглобин) этот показатель принимают как 1,34 мл/г. Количество кислорода, присоединенное к гемоглобину (Hb), рассчитывается - 1,34×Hb×SaO2/100 (мл/л). Таким образом, кислородная емкость артериальной крови равна:

(*) СаО 2 (мл/л) = 1,34×Hb×SaO 2 /100 + 0,031×РаО 2 .

Нормальные значения данного показателя составляют - 180 - 204 мл/л.

Оценить СаО2 можно, используя значения SpO2. В связи с тем, что метод пульсоксиметрии не позволяет оценить РаО2, вторая составляющая правой части уравнения (*) − 0,031×РаО2 − игнорируется. При этом СаО2 уменьшится несущественно - от 1,5 до 3,0 мл/л. Таким образом, уравнение (*) для пульсоксиметра записывается:

СаО 2 (мл/л) = 1,34×Hb×SaO 2 /100.


Рис. 4. Кривая диссоциации оксигемоглобина.

Пульсоксиметрия

Пульсоксиметрия: показания, особенности подготовки и проведения исследования

Чтобы установить степень насыщенности крови кислородом, проводят специальное исследование - пульсоксиметрию. В основу диагностики положена способность таких видов гемоглобина, как карбоксигемоглобин, оксигемоглобин, поглощать с разной интенсивностью световые лучи. На степень поглощения влияет количество оксигемоглобина. Уровень поглощения выше при большом количестве гемоглобина указанного типа. Сделать пульсоксиметрию в клинике Ростова-на-Дону можете по предварительной записи.

Пульсоксиметрия в Ростове-на-Дону

Показания к проведению исследования

Аппаратный метод определения уровня насыщения крови кислородом применяется с целью наблюдения за состоянием пациента. Обычно он показывает данные в режиме реального времени. Есть модели пульсоксиметров, сохраняющие данные, создающие графики. В более редких случаях рассматриваемый способ определения уровня кислорода в крови назначают в качестве отдельного метода диагностики.

Пульсоксиметрия в отделении сомнологии показана пациентам, которые страдают от нарушений дыхания во время ночного отдыха. Нарушения дыхания ночью наблюдается при таких патологиях:

  • гипертония;
  • ожирение;
  • ХОБЛ;
  • синдром Пиквика;
  • дыхательная недостаточность (от 2-й степени).

Пульсоксиметрия в отделении сомнологии нужна людям с подозрением на апноэ, при котором наблюдаются такие признаки:

  • задержка ненадолго дыхания во сне, возникающая периодически;
  • потливость ночью;
  • храп;
  • сонливость днем + депрессия;
  • частые пробуждения ночью, из-за которых снижается эффективность сна.

Пульсоксиметрия в Клинике медицины сна проводится также в нижеприведенных случаях:

  • Применение наркоза. Когда пациент под наркозом, он не может указать на ухудшение состояния, поэтому пульсоксиметр покажет необходимые данные о состоянии оперируемого.
  • Транспортировка пациента. Благодаря портативности аппарата, его применяют с целью наблюдения за пациентом при перевозке. Это оборудование имеется на многих машинах скорой помощи, самолетах, вертолетах санитарного назначения.
  • Операции на конечностях. Подобные хирургические процедуры сопровождаются временной закупоркой сосудов. Это необходимо для предупреждения обильных кровотечений. При этом аппарат крепят на палец для контроля за кровообращением. Слабое насыщение тканей кислородом опасно их отмиранием.
  • Болезни легких, сердца. Некоторые патологии указанных органов сопровождаются проблемами с насыщением организма кислородом. Пульсоксиметр помогает врачам установить степень тяжести болезни, подобрать соответствующую тактику лечения. Благодаря процедуре возможно быстрое определение патологий, проявляющихся приступообразно: апноэ, бронхиальная астма.
  • Реанимация. В указанном отделении диагностику проводят непрерывно в течение нескольких дней пациентам после операции или тем, чья жизнь под угрозой из-за тяжелой болезни.
  • Подготовка спортсменов. Процедуру в Ростове проводят исключительно по мед. показаниям. Благодаря пульсоксиметрии тренеры контролируют насыщение крови кислородом во время экстремальных нагрузок. При этом они делают необходимые поправки в методиках проведения тренировок.
  • Отравление угарным газом, терапия кислородом. В терапии некоторых заболеваний используется терапия смесью газов, содержащих большой процент кислорода. Благодаря процедуре устанавливается эффективность проводимой терапии.

Что показывает исследование

Пульсоксиметрия проводится для определения основных показателей жизнедеятельности:

  • Частота пульса. Этот показатель показывает частоту сокращений сердца, но он не всегда совпадает на 100% с ней. Иногда есть отличия между показателями пульсоксиметра и электрокардиографа. Эта особенность объясняется частичным поглощением пульсации стенками сосудов, разной эластичностью сосудов, закупоркой просвета.
  • Сатурация. Этот термин подразумевает насыщение крови кислородом. Рассматриваемый показатель указывает на нарушения сердечной деятельности, дыхания моментально, до проявления таких признаков нехватки кислорода: посинение кожи, слизистых, изменение ритма сердца.

Результаты пульсоксиметрии

Кто дает направление на пульсоксиметрию?

Результаты диагностики чаще нужны в сфере реаниматологии, анестезиологии. В указанные отделения попадают пациенты в тяжелых состояниях. Их патологии опасны нарушением жизненно важных функций. Врачи наблюдают за уровнем в крови кислорода до тех пор, пока состояние подопечного не стабилизируется.

Пульсоксиметрию в клинике могут назначать также специалисты следующих профилей:

  • терапевт;
  • реаниматолог;
  • хирург;
  • фтизиатр;
  • пульмонолог;
  • анестезиолог.

Особенности подготовки к исследованию

Для проведения пульсоксиметри в Клинике медицины сна не требуется специфической подготовки. В любом случае аппарат покажет насыщенность крови кислородом. Но, чтобы данные были более объективными, рекомендовано соблюдать нижеприведенные правила:

  • Не употреблять стимулирующие вещества перед процедурой: энергетики, кофеин, наркотические препараты. Состояние организма меняется по мере ослабевания действия перечисленных средств.
  • Исключение спиртного. Алкоголь незначительно искажает показания аппарата.
  • Исключение табакокурения. Курение перед пульсоксиметрией способствует изменению глубины вдоха, тонуса сосудов, частоты сердцебиения, влияя на точность измерения оксигенации крови. Вредная привычка влечет снижение уровня кислорода в крови.
  • Отказ от использования лака для ногтей, крема для рук в день диагностики. Они создают препятствие для световых волн.
  • Питаться следует в обычном режиме. Нежелательно переедать, голодать в день диагностики. Иначе результаты измерения будут искажены.

Виды датчиков

Процедуру специалисты могут проводить, используя различные датчики. Их выбор зависит от предназначения, особенностей использования. Любой датчик соединен посредством гибкого провода с аппаратом. Для проведения диагностики на практике используют такие виды датчиков:

  • Клипсы. Подобны форме прищепки. Крепятся на указательный палец, мочку уха. Используют при диагностике взрослых, подростков для их наблюдения на протяжении короткого периода.
  • Силиконовые для взрослых. Они подходят для наблюдения за насыщенностью крови кислородом на протяжении длительного периода (3 - 4 часа).
  • Гибкие силиконовые. Обычно используют при исследовании новорожденных. Крепят на боковую сторону ноги.
  • Клипсы на ухо. Они отличаются наличием удобных фиксаторов, с помощью которых крепятся на ушной раковине.

Виды пульсоксиметрии

Моделей пульсоксиметра сейчас много, поэтому врачи используют разные техники проведения исследования:

  • Компьютерная. Результаты исследования обрабатываются микропроцессором, встроенным в аппарат. Преимуществами компьютерной диагностики считаются: устранение искажений (артефактов), сохранение данных, совместимость с другими устройствами, сигнал тревоги.
  • Трансмиссионная. Эта методика считается самой распространенной из-за низкой стоимости аппарата, простоты диагностики. Все модели могут использоваться дома.
  • Отраженная. Этот вид диагностики новый. Основное отличие в конструкции датчика, где детектор и источник света располагаются с одной стороны. Датчик отличается плоской формой. Закрепить такой датчик можно на любом участке тела.
  • Ночная. Используется для исследования апноэ. Датчики крепят на время сна. Процедуру проводят врачи-сомнологи Юг-клиники.
  • Суточная. Исследование проводится посредством портативного аппарата, способного считывать данные на протяжении суток.
  • Неинвазивная. Уровень оксигенации крови определяется без непосредственного контакта датчика аппарата с кровью.
  • Инвазивная. Метод довольно сложный. Его используют в специализированных отделениях клиник. Датчик вводят в предварительно рассеченный кровеносный сосуд.

Алгоритм проведения исследования

Пульсоксиметрия в Юг-клинике считается абсолютно безболезненным методом исследования. Пациент ложится на диван, кушетку. Ему на палец или запястье крепят датчик от аппарата. Травмирования кожных покровов при одевании, снятии датчика не происходит. Врачи не затягивают сильно прищепки, браслеты, чтобы не затруднять кровообращение в зоне исследования.

На практике принято использовать исследование на протяжении длительного отрезка времени (несколько часов, сутки, ночь, день).

Процедура проходит так:

  1. Подготовка к исследованию.
  2. Крепление датчика на палец, мочку уха.
  3. Включение аппарата.
  4. Выведение данных на монитор.

Где пройти диагностику?

Вам нужно провести пульсоксиметрию, но вы не знаете где ее сделать? Если вы в Ростове, запишитесь на пульсоксиметрию в нашу клинику. Цену на пульсоксиметрию в Юг-клинике уточняйте у консультанта. Записывайтесь на прием к специалисту, диагностику по номеру телефона.

Читайте также: