Режим подводного погружения по Холдейну. Декомпрессионные схемы

Обновлено: 30.04.2024

Вы когда-нибудь были на декомпрессионном погружении? Возможно, вы не занимались техническим дайвингом или погружениями, выходящими за пределы досягаемости без декомпрессии, но если вы вообще ныряете, вы погружались с декомпрессией. Подробнее мы расскажем в этой статье.

Каждое погружение предполагает некоторый уровень декомпрессии, даже если оно не требует декомпрессионных остановок. Это может звучать как чепуха, но изменение взгляда на рекреационные погружения обеспечивает соблюдение правил безопасного погружения и приводит к более консервативным практикам погружения.

Почему каждое погружение включает некоторую декомпрессию

Под водой, воздух которым дышит дайвер подается под давлением равным атмосферному давлению+давлению водяного столба. Ткани тела дайвера поглощают сжатый азот из воздуха (или другого дыхательного газа).

Этот поглощенный азот декомпрессируется во время подъема дайвера, когда он медленно движется вверх через постепенное снижение давления. При нормальных обстоятельствах тело дайвера устраняет расширяющийся азот, когда он поднимается.

Однако даже после всплытия небольшое количество азота остается в организме дайвера, и его тело продолжает вырабатывать азот в течение нескольких часов после погружения. Каждое погружение включает сжатие и поглощение азота, а также декомпрессию и удаление азота при подъеме и всплытии.

Похожие статьи: Плавучесть

Если мне не нужно делать декомпрессионную остановку, зачем мне об этом беспокоиться?

Понимание того, что даже мелкие рекреационные погружения с технической точки зрения включают декомпрессию, подчеркивает важность поддержания медленной, безопасной скорости всплытия и остановки безопасности при каждом погружении.

Нарушение правил безопасного погружения, даже при погружениях, которые не превышают или не приближаются к пределам без декомпрессии, могут увеличить риск для декомпрессионной болезни у дайвера, потому что каждое погружение связано с поглощением азота. Быстрое всплытие или нарушение других правил безопасного погружения может привести к тому, что азот в теле дайвера быстро разряжается и образует пузырьки в тканях его тела (DCS) или артериях (AGE).

Тот факт, что каждое погружение технически включает декомпрессию азота, также помогает объяснить, почему в редких случаях некоторые дайверы получают «незаслуженную» декомпрессионную болезнь — декомпрессионную болезнь, которая проявляется, даже если дайвер следовал правилам безопасного погружения.

Хотя «незаслуженные» декомпрессионные удары необычны в рекреационном дайвинге, они случаются. Это происходит из-за того, что по какой-то причине тело дайвера не смогло достаточно эффективно удалить разлагающийся азот из своей системы, чтобы предотвратить образование пузырьков азота.

Похожие статьи: Опасные морские животные

Дайверы имеют разные физиологии

Дайвер может заболеть декомпрессионной болезнью при соблюдении правил безопасного погружения. Пределы без декомпрессии, таблицы погружений и инструкции по безопасной скорости всплытия — это просто инструменты, которые дайвер может использовать, чтобы избежать поглощения такого большого количества азота или всплытия так быстро, что его тело не сможет эффективно устранить распадающийся азот.

Дайверы должны понимать, что эти рекомендации созданы с учетом «среднего» дайвера. Они основаны на экспериментальных данных, статистике несчастных случаев и математических алгоритмах. Ни один алгоритм или правило не гарантирует, что каждый дайвер, который следует ему, будет на сто процентов безопасен. Дайверы имеют разные физиологии.

Вывод один, дайверам имеющих временные или постоянные условия, которые могут предрасполагать их к декомпрессионной болезни, как и дайверам, которые имели несколько дней интенсивного дайвинга, следует совершать погружения более консервативно, чем рекомендовано в руководствах.

Взять на себя ответственность за безопасность

Вывод здесь состоит в том, что можно погрузиться в 40-футовое погружение (около 12 метров). Можно погрузиться в 30-футовое погружение (9 метров). Означает ли это, что дайверы должны паниковать и перестать нырять? Конечно, нет! Дайвинг, как и приключенческие виды спорта, имеет потрясающие показатели безопасности с относительно низким уровнем риска.

Мудрый дайвер возьмет на себя личную ответственность за безопасность своего погружения. Владение подводным компьютером отличное решение для мониторинга скорости всплытия. При погружениях на большие глубины всплытие должно осуществляться ступеньками. (поднялись на 1-2 метра выдержали на этой глубине 1- 2 мин, далее поднимаемся 1-2 метра и снова выдерживаем некоторое время и так далее). Избегайте физических нагрузок под водой и обязательно овладейте искусством расслабленной остановки безопасности. Сохраняйте спокойствие и неподвижность во время трех-пятиминутной остановки в конце каждого погружения, чтобы облегчить выброс азота.

Консервативный и безопасный дайвер проверит свое здоровье и физическое состояние перед погружением. Избегайте похмелья перед погружением. Не ныряйте, когда вы больны, истощены или испытываете сильный стресс, так как эти состояния могут повлиять на функционирование организма. И самое главное, вы должны быть хорошо увлажнены до и после погружения (пейте воду до и после погружения).

Помните также, что, хотя погружение заканчивается, когда дайвер достигает поверхности, его тело все еще выделяет азот в течение нескольких часов, если не дней, после погружения. Физическая нагрузка, физические упражнения и обезвоживание сразу после погружения могут усугубить или — в крайних случаях — привести к удару декомпрессии, которого можно было избежать!

Похожая статья: 5 советов плавания в водорослях

Вывод

Собираетесь ли вы нарушить правила безопасного погружения во время вашего следующего развлекательного погружения с аквалангом? Очень маловероятно. Тем не менее, рассмотрение каждого погружения как декомпрессионного погружения приводит к более консервативным методам погружения и объясняет многие правила безопасного погружения. Дайверы, которые понимают причины, лежащие в основе правил, с большей вероятностью будут следовать им!

"Санкт-Петербург" Школа технического дайвинга с углубленным обучением

Обучение дайвингу от начального до технического уровня!

Тема 5. Декмпрессионные таблицы.

Во избежание губительных последствий ДБ необходимо всплывать так, чтобы весь азот, растворенный в крови и тканях, выходил потихоньку через легкие, не успевая образовывать пузырьки, нарушающие кровоток. Для этого при всплытии приходится останавливаться на некоторое время на определенных глубинах. Как определить глубину и продолжительность декомпрессионных остановок после погружения, и нужно ли останавливаться вообще? Вопрос жизненно важный!

Расчет режима погружения производится по так называемым таблицам погружений. Их принцип достаточно прост: по данным погружения — глубинам и времени, проведенному на них — вы вычисляете глубину и продолжительность декомпрессионных остановок. В настоящее время используют таблицы разных авторов, в том числе заложенные в память подводных компьютеров.

  • Пользование таблицами
  • Таблицы NAUI
  • Таблицы PADI
  • Таблицы DCIEM
  • Таблицы Макса Ханна
  • Таблицы Бульмана

Пользование таблицами

В основу большинства современных таблиц заложена мультитканевая математическая модель декомпрессии, которая учитывает процессы насыщения и рассыщения азотом, протекающие в разных тканях организма с различной скоростью. Все декомпрессионные таблицы построены принципиально одинаково, показывая основные параметры любого погружения с аквалангом:

  • Время, проведенное под водой на определенной глубине;
  • Бездекомпрессионный предел — время пребывания на определенной глубине, после которого декомпрессионные остановки не нужны;
  • Глубины и продолжительность декомпрессионных остановок при превышении бездекомпрессионного предела;
  • Уровень насыщения организма остаточным азотом, который необходимо учитывать при повторном погружении;
  • Поверхностный интервал между повторными погружениями;

Три составных части таблиц

  • Часть 1 показывает количество азота, которое подводник “впитал” во время погружения, бездекомпрессионный предел, а также длительность и глубину декомпрессионных остановок, если таковые необходимы.
  • Часть 2 показывает количество избыточного азота, от которого подводник рассыщается на поверхности во время интервала между погружениями и уровень остаточного азота в организме перед повторным погружением.
  • Часть 3 показывает параметры повторного погружения: количество остаточного азота в начале погружения и бездекомпрессионные пределы для различных значений глубины. Уровень насыщения тканей азотом выражен буквенными латинскими индексами от А до Z — чем далее буква от начала алфавита, тем сильнее насыщение азотом.

Условные параметры, обозначающие количество азота в организме и время его насыщения — рассыщения:

  • RNT (Residual Nitrogen Time — время остаточного азота) — условное время в начале повторного погружения, которое мы как будто бы уже находились на заданной глубине, если бы это погружение было первым.
  • АВТ (Actual Bottom Time — действительное время на дне) — время повторного погружения.
  • ТВТ (Total Bottom Time — общее время погружения) — сумма действительного времени и времени остаточного азота, показывающая условное время погружения на данной глубине, если бы оно было не повторным, а первым.
  • NDL (No—Decompression Limit — бездекомпрессионный предел) — максимально допустимое время погружения, не требующее декомпрессии на всплытии.
  • ANDL (Adjusted No—Decompression Limit — приобретенный бездекомпрессионный предел) — максимально допустимое время повторного погружения, не требующее декомпрессии на всплытии.
  • Несмотря на одинаковое обозначение групп RNT латинскими буквами A—Z, их смысл и значение в разных таблицах отличаются и обозначают различные уровни насыщения азотом. Поэтому нельзя переходить с одних таблиц на другие в течение одного цикла погружений!

Таблицы NAUI

Таблицы погружений NAUI (National Association of Underwater Instructors) — прямые наследницы классических таблиц USN с некоторыми изменениями в консервативную безопасную сторону, поскольку предназначены не для боевых пловцов, а для широкого круга подводников—любителей.

  • Первая таблица показывает бездекомпрессионное время (в мин) на глубинах до 40 м (в кружках);
  • В черных ячейках — продолжительность декомпрессионных остановок при превышении предела (в мин) на глубине 5 м;
  • Величина действительной глубины округляется всегда до большего табличного значения;
  • Рассмотрим конкретный пример. Допустим, мы провели 33 мин на глубине 17м — таким образом, нам не нужна декомпрессия, и после выхода на поверхность мы попадаем в группу “G”. Мы садимся на судно и через 45 мин прибываем на другое место погружения. Во второй таблице находим этот интервал он в ячейке от41 мин до 1ч.15мин. Оказывается, что за час, проведенный на борту, часть азота вышла из организма, и мы стали “F—подводниками”. Однако некоторое количество азота осталось в организме, и нам придется сделать поправку при следующем погружении. Каждая ячейка третьей таблицы содержит два числа: верхнее, отражающее уровень остаточного азота, обозначает время, как будто бы уже проведенное на данной глубине (RNT — residual nitrogen time), а нижнее показывает допустимое бездекомпрессионное время на данной глубине (ADT — actual dive time).
  • Допустим, будучи в группе “F”, погружаемся на 15 м: таблица 3 показывает, что уровень остаточного азота соответствует 47 минутам, уже проведенным на этой глубине. До бездекомпрессионного предела у нас остается 33 мин (см. таблицу 1). Проведя там полчаса, мы фактически приближаемся к пределу и по всплытии переходим уже в группу “J” — согласно первой таблице. Если бы мы задержались на дне на 10 минут больше, нам пришлось бы сделать пятиминутную декомпрессионную остановку на 5 м, с переходом в L — группу.
  • Если вы через несколько часов хотим погрузиться еще раз, начинаем новые расчеты со второй таблицы.

Таблицы PADI

  • Планер любительских погружений PADI (RDP — Recreational Dive Planner) был создан и опробован независимо от таблиц ВМФ. Планер рассчитан на широкий круг подводников—любителей, совершающих неглубокие и частые многократные погружения во время отпуска. В связи со своим предназначением, он отличается от других таблиц, прежде всего тем, что является бездекомпрессионной таблицей, вообще не допускающий декомпрессионных погружений с декомпрессионными остановками на всплытии, тем самым отражая концепцию PADI, что любительское подводное плавание — строго бездекомпрессионное.
  • Если же вы нарушили бездекомпрессионный предел, необходимо сделать аварийную декомпрессионную остановку: при его превышении менее, чем на 5 мин, планер предписывает сделать аварийную декомпрессионную остановку на 8 мин на глубине 5 м, а после выхода на поверхность отложить все погружения на 6 ч. Если же бездекомпрессионный предел нарушен более чем на 5 мин, аварийная декомпрессионная остановка на 5 м должна длиться не менее 15 мин, причем следующее погружение возможно только через сутки. Такие жесткие правила обеспечивают безопасность от декомпрессионного заболевания аквалангистов любого возраста и комплекции.
  • Трехтабличная структура Планера и принципы пользования им примерно такие же, как у таблицы NAUI.
  • Согласно первой таблице, в конце 33-минутного погружения на 17 м мы оказались в группе “М”, а через 45 минут, проведенных на корабле — в группе “F” (по таблице 2). Следуя табличным указаниям (таблица 3), мы можем находиться еще 49 мин на глубине 15м без декомпрессии. Если же мы плаваем 40 мин, то, суммировав с 23 мин RNT и возвратившись к первой таблице, определяем нашу принадлежность после повторного погружения к группе “U”. Первая таблица планера окрашена неоднородно. Ячейки черного цвета содержат бездекомпрессионный предел, а серого — время на дне, после которого остановка безопасности не только желательна, но настоятельно рекомендована. Если ваша группа остаточного азота в конце погружения Z или Y, повторное погружение можно совершать только через 3 ч, а, будучи в группах Х или W — через час.
  • Планер существует не только в табличном варианте, но и в виде так называемого Колеса. Пользоваться Колесом интереснее и быстрее, чем таблицей. Главное же его преимущество в том, что по колесу можно рассчитывать режим многоуровневых погружений, т.е. погружений, во время которых мы плаваем на различных уровнях глубины. Если время погружения по таблице рассчитывают по максимально достигнутой глубине, то Колесо учитывает и все более мелководные уровни, позволяя значительно увеличить время нашего пребывания под водой.

Таблицы погружений DCIEM

Таблицы погружений DCIEM (Canada’s Defence and Civil Institute of Environmental Medicine) — одни из самых популярных сегодня — отличаются от предшествующих и дизайном, и форматом, и методом пользования.

  • Пример:
  • Согласно таблице А, 33 — минутное погружение на 17 м делает нас Е — подводниками. Через 45 мин (интервал 30 мин — 1ч) уровень остаточного азота — в данном случае названный просто остаточным фактором (ОФ) — у нас соответствует 1,6 (таблица В). Если бы величина ОФ не превышала единицу, мы имели бы полное право сразу возвращаться к первой таблице. С ОФ более 2 лучше вообще воздержаться от повторного погружения. С ОФ= 1.6 на глубине 15 м без декомпрессии можно находиться максимум 38 мин. Допустим, мы продержались там полчаса и планируем еще одно погружение через несколько часов — как нам быть? Умножаем наше “донное” время на ОФ и получаем величину “эффективного донного времени” 48 мин, с которым и возвращаемся к А—таблице — там ему соответствуют число 50 и группа “Е”. Планируя следующее — скажем, вечернее — погружение, смотрим таблицу “В”, и так далее.
  • Важное преимущество таблиц DCIEM — таблица “D” для поправок глубин в случае погружений в горных озерах и реках. Для тех, кто увлекается подводным плаванием в высокогорных озерах, это весьма важное добавление к стандартным таблицам.

Таблицы Макса Ханна

  • Таблицы погружений Макса Ханна удобны в обращении во время погружения благодаря рациональному дизайну. Их алгоритм заложен в память компьютеров SCUBAPRO: DC- 12, EDI, TRAC.
  • Первая составляющая таблица разбита на 19 табличек по глубинам от 9 м до 63 м. Каждая такая табличка показывает продолжительность и глубины декомпрессионных остановок. В левом столбце под глубиной погружения отдельно стоит бездекомпрессионное предельное время, в следующем столбце — реальное время погружения, а в крайнем правом — группы насыщения азотом.
  • Вторая табличка не только содержит интервалы отдыха на поверхности, но и показывает допустимый временной интервал до перелета на самолете для каждой повторной группы. Так, аквалангисты группы “В” могут садиться в самолет уже через 6 ч после всплытия, Е — подводники — через сутки, а самые насыщенные азотом из группы “G” — лишь через 36 ч. Второй справа столбец показывает для каждой группы время, по прошествии которого рассыщение тканей азотом таково, что второе погружение становится первым. В этом случае мы опускаем третью таблицу и сразу обращаемся к первой. Например, подводники группы “В” могут снова погружаться по первой таблице уже через полтора часа, а группы “G” — через 6 ч.
  • Третья составляющая таблица учитывает уровень азота в организме перед началом повторного погружения. Он условно выражен во времени, проведенном на данной глубине. Чтобы определить режим всплытия, нужно сложить эту условную величину с действительным временем, проведенным на данной глубине при повторном погружении, и поставить это значение в первую таблицу.

Таблицы погружений Бульмана

Таблицы погружений Бульмана по дизайну и принципу пользования очень похожи на таблицы Макса Ханна. Более того, первые таблицы обоих исследователей выпускались в соавторстве (таблицы погружений Бульмана—Ханна). В силу этих причин мы опускаем подробный разбор таблиц Бульмана.

Таблицы различаются по своему предназначению. Например, таблицы PADI рассчитаны на туристов—любителей, совершающих бездекомпрессионные повторные погружения через короткие интервалы. Таблицы DCIEM проходили тесты в холодной воде во время активной физической работы и поэтому более консервативны, чем другие.

Старайтесь не только не нарушать указаний таблиц, но и не подходить к их пределам. Представьте, что вы быстро бежите и вдруг тормозите у края пропасти; можно, конечно, резко и ловко остановиться у самого края, но, чем раньше вы начнете притормаживать и останавливаться, тем больше у вас шансов остаться в добром здравии. Погружаясь на большие глубины близко от бездекомпрессионных пределов, представляйте себя бегущими к краю пропасти и заранее начинайте тормозить…

Декомпрессионная таблица

Декомпрессионная таблица (обычно имеются в виду сразу несколько) - ключевое понятие в дайвинге. По ней производят подсчеты режима безопасных погружений. Данные основываются на содержании инертных газов и глубины дайва. При неправильном изменении условий для организма существует высокая вероятность развития патологий, опасных для здоровья. Именно для уменьшения риска возникновения таких состояний в практике дайвинга пользуются определенные меры при подъеме на поверхность.


Потребность в декомпрессии

Согласно закону Дальтона или Генри, растворимость газа жидкости является прямо пропорциональной его давлению над ней. Он был сформулирован еще в 1803 г. Из него следует, что в момент погружения инертные газы, которые вдыхаются человеком из специальной смеси, растворяются и накапливаются в жидких тканях тела. Чтобы понять это было проще, можно представить открытую газированную воду. Становится ясно, что такие условия могут пагубно повлиять на процесс кровообращения. Также возникают нарушения лимфатической и нервной систем (в частности спинной, головной мозг).

Каждое погружение состоит из нескольких этапов.

  1. Компрессия (повышение давления).
  2. Пребывание в кессоне - повышенном, но стабильном давлении.
  3. Декомпрессия - момент резкого падения давления.

Кессонная болезнь большей частью связана именно с III этапом, работающим по закону Генри.

Что собой представляют

Еще в XIX впервые обратили внимание влияния изменений показателей давления при подъеме/погружении на состояние организма. Наиболее важным трудом по данной теме является работа Поля Бэра. Она называется «Барометрическое давление». Первая когда-либо разработанная декомпрессионная таблица была создана по ней Джоном Холдейном для адмиралтейства Британии.

Такая таблица представляла собой математическую модель необходимых остановок при выходе на поверхность. В данном случае стояла цель безопасного высвобождения азота.

Со временем на основе таблиц Холдейна были составлены новые с применением полученного опыта.


Современные примеры

Исследователями военной медицины ВМС США была создана база данных, на основании статистики свыше 2000 погружений. Согласно ей вывели такие виды декомпрессионных таблиц:

  • RDP PADI;
  • NAUI;
  • DCIEM;
  • Макса Ханна;
  • Бульмана;
  • другие.

Каждая такая таблица имеет сходные параметры, определяемые глубиной, временем, уровнем насыщения тканей организма инертными газами (в том числе остаточными). При помощи их ведутся расчеты таких переменных:

  • бездекомпрессионный предел;
  • количество, время, глубина остановок;
  • промежуток между дайвами;
  • формат повторного погружения (учитывается остаточное насыщение тканей газами).


Основное различие систем состоит в области применения. Так, например, стандарт NAUI максимально близок к классической наиболее безопасной системе. Он используется широким кругом ныряльщиков-любителей. RDP PADI в свою очередь применяется теми, кто практикует частые неглубокие погружения: предполагает аварийную остановку при превышении выбранных параметров.

DCIEM используется при погружении в условии горных водоемов, а также дайве при низких температурах во время высокой физической активности. Таблицы Хинна и Бульмана включают в себя расчет безопасного времени для перелета на авиатехнике.

Сегодня существуют специальные компьютеры, которые значительно упрощают работу с декомпрессионными таблицами. Современное планирование погружений осуществляется относительно просто. Однако процесс все равно требует от ныряльщика максимальной вовлеченности.

Глубже подлодок: как человек выживает на глубине 700 метров под водой

Глубже подлодок: как человек выживает на глубине 700 метров под водой

Мы живем на планете воды, но земные океаны знаем хуже, чем некоторые космические тела. Больше половины поверхности Марса артографировано с разрешением около 20 м — и только 10−15% океанского дна изучены при разрешении хотя бы 100 м. На Луне побывало 12 человек, на дне Марианской впадины — трое, и все они не смели и носа высунуть из сверхпрочных батискафов.

Погружаемся

Главная сложность в освоении Мирового океана — это давление: на каждые 10 м глубины оно увеличивается еще на одну атмосферу. Когда счет доходит до тысяч метров и сотен атмосфер, меняется все. Жидкости текут иначе, необычно ведут себя газы. Аппараты, способные выдержать эти условия, остаются штучным продуктом, и даже самые современные субмарины на такое давление не рассчитаны. Предельная глубина погружения новейших АПЛ проекта 955 «Борей» составляет всего 480 м.

Водолазов, спускающихся на сотни метров, уважительно зовут акванавтами, сравнивая их с покорителями космоса. Но бездна морей по-своему опаснее космического вакуума. Случись что, работающий на МКС экипаж сможет перейти в пристыкованный корабль и через несколько часов окажется на поверхности Земли. Водолазам этот путь закрыт: чтобы эвакуироваться с глубины, могут потребоваться недели. И срок этот не сократить ни при каких обстоятельствах.

Клетки не противостоят водному столбу, как твердые корпуса субмарин, они компенсируют внешнее давление внутренним. Недаром обитатели «черных курильщиков», включая круглых червей и креветок, прекрасно себя чувствуют на многокилометровой глубине океанского дна. Некоторые виды бактерий неплохо переносят даже тысячи атмосфер. Человек здесь не исключение — с той лишь разницей, что ему нужен воздух.

Под поверхностью

Кислород Дыхательные трубки из тростника были известны еще могиканам Фенимора Купера. Сегодня на смену полым стеблям растений пришли трубки из пластика, «анатомической формы» и с удобными загубниками. Однако эффективности им это не прибавило: мешают законы физики и биологии.

Чтобы доставлять свежий воздух, требуется принудительная вентиляция. Нагнетая газ под повышенным давлением, можно облегчить работу мускулам грудной клетки. Такой подход применяется уже не одно столетие. Ручные насосы известны водолазам с XVII века, а в середине XIX века английские строители, возводившие подводные фундаменты для опор мостов, уже подолгу трудились в атмосфере сжатого воздуха. Для работ использовались толстостенные, открытые снизу подводные камеры, в которых поддерживали высокое давление. То есть кессоны.

Глубже 10 м

Азот Во время работы в самих кессонах никаких проблем не возникало. Но вот при возвращении на поверхность у строителей часто развивались симптомы, которые французские физиологи Поль и Ваттель описали в 1854 году как On ne paie qu’en sortant — «расплата на выходе». Это мог быть сильный зуд кожи или головокружение, боли в суставах и мышцах. В самых тяжелых случаях развивались параличи, наступала потеря сознания, а затем и гибель.

Проблема в том, что количество растворенного в жидкости газа прямо зависит от давления над ней. Это касается и воздуха, который содержит около 21% кислорода и 78% азота (прочими газами — углекислым, неоном, гелием, метаном, водородом и т. д. — можно пренебречь: их содержание не превышает 1%). Если кислород быстро усваивается, то азот просто насыщает кровь и другие ткани: при повышении давления на 1 атм в организме растворяется дополнительно около 1 л азота.

При быстром снижении давления избыток газа начинает выделяться бурно, иногда вспениваясь, как вскрытая бутылка шампанского. Появляющиеся пузырьки могут физически деформировать ткани, закупоривать сосуды и лишать их снабжения кровью, приводя к самым разнообразным и часто тяжелым симптомам. По счастью, физиологи разобрались с этим механизмом довольно быстро, и уже в 1890-х годах декомпрессионную болезнь удавалось предотвратить, применяя постепенное и осторожное снижение давления до нормы — так, чтобы азот выходил из организма постепенно, а кровь и другие жидкости не «закипали».

В начале ХХ века английский исследователь Джон Холдейн составил детальные таблицы с рекомендациями по оптимальным режимам спуска и подъема, компрессии и декомпрессии. Экспериментируя с животными, а затем и с людьми — в том числе с самим собой и своими близкими, — Холдейн выяснил, что максимальная безопасная глубина, не требующая декомпрессии, составляет около 10 м, а при длительном погружении — и того меньше. Возвращение с глубины должно производиться поэтапно и не спеша, чтобы дать азоту время высвободиться, зато спускаться лучше довольно быстро, сокращая время поступления избыточного газа в ткани организма. Людям открылись новые пределы глубины.

Глубже 40 м

Гелий Борьба с глубиной напоминает гонку вооружений. Найдя способ преодолеть очередное препятствие, люди делали еще несколько шагов — и встречали новую преграду. Так, следом за кессонной болезнью открылась напасть, которую дайверы почти любовно зовут «азотной белочкой». Дело в том, что в гипербарических условиях этот инертный газ начинает действовать не хуже крепкого алкоголя. В 1940-х опьяняющий эффект азота изучал другой Джон Холдейн, сын «того самого». Опасные эксперименты отца его ничуть не смущали, и он продолжил суровые опыты на себе и коллегах. «У одного из наших испытуемых произошел разрыв легкого, — фиксировал ученый в журнале, — но сейчас он поправляется».

Несмотря на все исследования, механизм азотного опьянения детально не установлен — впрочем, то же можно сказать и о действии обычного алкоголя. И тот и другой нарушают нормальную передачу сигналов в синапсах нервных клеток, а возможно, даже меняют проницаемость клеточных мембран, превращая ионообменные процессы на поверхностях нейронов в полный хаос. Внешне то и другое проявляется тоже схожим образом. Водолаз, «словивший азотную белочку», теряет контроль над собой. Он может впасть в панику и перерезать шланги или, наоборот, увлечься пересказом анекдотов стае веселых акул.

Наркотическим действием обладают и другие инертные газы, причем чем тяжелее их молекулы, тем меньшее давление требуется для того, чтобы этот эффект проявился. Например, ксенон анестезирует и при обычных условиях, а более легкий аргон — только при нескольких атмосферах. Впрочем, эти проявления глубоко индивидуальны, и некоторые люди, погружаясь, ощущают азотное опьянение намного раньше других.

Избавиться от анестезирующего действия азота можно, снизив его поступление в организм. Так работают дыхательные смеси нитроксы, содержащие увеличенную (иногда до 36%) долю кислорода и, соответственно, пониженное количество азота. Еще заманчивее было бы перейти на чистый кислород. Ведь это позволило бы вчетверо уменьшить объем дыхательных баллонов или вчетверо увеличить время работы с ними. Однако кислород — элемент активный, и при длительном вдыхании — токсичный, особенно под давлением.

Чистый кислород вызывает опьянение и эйфорию, ведет к повреждению мембран в клетках дыхательных путей. При этом нехватка свободного (восстановленного) гемоглобина затрудняет выведение углекислого газа, приводит к гиперкапнии и метаболическому ацидозу, запуская физиологические реакции гипоксии. Человек задыхается, несмотря на то что кислорода его организму вполне достаточно. Как установил тот же Холдейн-младший, уже при давлении в 7 атм дышать чистым кислородом можно не дольше нескольких минут, после чего начинаются нарушения дыхания, конвульсии — все то, что на дайверском сленге называется коротким словом «блэкаут».

Пока еще полуфантастический подход к покорению глубины состоит в использовании веществ, способных взять на себя доставку газов вместо воздуха - например, заменителя плазмы крови перфторана. В теории, легкие можно заполнить этой голубоватой жидкостью и, насыщая кислородом, прокачивать ее насосами, обеспечивая дыхание вообще без газовой смеси. Впрочем, этот метод остается глубоко экспериментальным, многие специалисты считают его и вовсе тупиковым, а, например, в США применение перфторана официально запрещено.

Поэтому парциальное давление кислорода при дыхании на глубине поддерживается даже ниже обычного, а азот заменяют на безопасный и не вызывающий эйфории газ. Лучше других подошел бы легкий водород, если б не его взрывоопасность в смеси с кислородом. В итоге водород используется редко, а обычным заменителем азота в смеси стал второй по легкости газ, гелий. На его основе производят кислородно-гелиевые или кислородно-гелиево-азотные дыхательные смеси — гелиоксы и тримиксы.

Глубже 80 м

Сложные смеси Здесь стоит сказать, что компрессия и декомпрессия при давлениях в десятки и сотни атмосфер затягивается надолго. Настолько, что делает работу промышленных водолазов — например, при обслуживании морских нефтедобывающих платформ — малоэффективной. Время, проведенное на глубине, становится куда короче, чем долгие спуски и подъемы. Уже полчаса на 60 м выливаются в более чем часовую декомпрессию. После получаса на 160 м для возвращения понадобится больше 25 часов — а ведь водолазам приходится спускаться и ниже.

Поэтому уже несколько десятилетий для этих целей используют глубоководные барокамеры. Люди живут в них порой целыми неделями, работая посменно и совершая экскурсии наружу через шлюзовой отсек: давление дыхательной смеси в «жилище» поддерживается равным давлению водной среды вокруг. И хотя декомпрессия при подъеме со 100 м занимает около четырех суток, а с 300 м — больше недели, приличный срок работы на глубине делает эти потери времени вполне оправданными.

Методы длительного пребывания в среде с повышенным давлением прорабатывались с середины ХХ века. Большие гипербарические комплексы позволили создавать нужное давление в лабораторных условиях, и отважные испытатели того времени устанавливали один рекорд за другим, постепенно переходя и в море. В 1962 году Роберт Стенюи провел 26 часов на глубине 61 м, став первым акванавтом, а тремя годами позже шестеро французов, дыша тримиксом, прожили на глубине 100 м почти три недели.

Здесь начались новые проблемы, связанные с длительным пребыванием людей в изоляции и в изнурительно некомфортной обстановке. Из-за высокой теплопроводности гелия водолазы теряют тепло с каждым выдохом газовой смеси, и в их «доме» приходится поддерживать стабильно жаркую атмосферу — около 30 °C, а вода создает высокую влажность. Кроме того, низкая плотность гелия меняет тембр голоса, серьезно затрудняя общение. Но даже все эти трудности вместе взятые не поставили бы предел нашим приключениям в гипербарическом мире. Есть ограничения и поважнее.

Глубже 600 м

Предел В лабораторных экспериментах отдельные нейроны, растущие «в пробирке», плохо переносят экстремально высокое давление, демонстрируя беспорядочную гипервозбудимость. Похоже, что при этом заметно меняются свойства липидов клеточных мембран, так что противостоять этим эффектам невозможно. Результат можно наблюдать и в нервной системе человека под огромным давлением. Он начинает то и дело «отключаться», впадая в кратковременные периоды сна или ступора. Восприятие затрудняется, тело охватывает тремор, начинается паника: развивается нервный синдром высокого давления (НСВД), обусловленный самой физиологией нейронов.

Помимо легких, в организме есть и другие полости, содержащие воздух. Но они сообщаются с окружающей средой очень тонкими каналами, и давление в них выравнивается далеко не моментально. Например, полости среднего уха соединяются с носоглоткой лишь узкой евстахиевой трубой, которая к тому же часто забивается слизью. Связанные с этим неудобства знакомы многим пассажирам самолетов, которым приходится, плотно закрыв нос и рот, резко выдохнуть, уравнивая давление уха и внешней среды. Водолазы тоже применяют такое «продувание», а при насморке стараются вовсе не погружаться.

Добавление к кислородно-гелиевой смеси небольших (до 9%) количеств азота позволяет несколько ослабить эти эффекты. Поэтому рекордные погружения на гелиоксе достигают планки 200−250 м, а на азотсодержащем тримиксе — около 450 м в открытом море и 600 м в компрессионной камере. Законодателями в этой области стали — и до сих пор остаются — французские акванавты. Чередование воздуха, сложных дыхательных смесей, хитрых режимов погружения и декомпрессии еще в 1970-х позволило водолазам преодолеть планку в 700 м глубины, а созданную учениками Жака Кусто компанию COMEX сделало мировым лидером в водолазном обслуживании морских нефтедобывающих платформ. Детали этих операций остаются военной и коммерческой тайной, поэтому исследователи других стран пытаются догнать французов, двигаясь своими путями.

Пытаясь опуститься глубже, советские физиологи изучали возможность замены гелия более тяжелыми газами, например неоном. Эксперименты по имитации погружения на 400 м в кислородно-неоновой атмосфере проводились в гипербарическом комплексе московского Института медико-биологических проблем (ИМБП) РАН и в секретном «подводном» НИИ-40 Министерства обороны, а также в НИИ Океанологии им. Ширшова. Однако тяжесть неона продемонстрировала свою обратную сторону.

Новые рекорды погружения еще могут быть поставлены, но мы, видимо, подобрались к последней границе. Невыносимая плотность дыхательной смеси, с одной стороны, и нервный синдром высоких давлений — с другой, видимо, ставят окончательный предел путешествиям человека под экстремальным давлением.

За помощь в подготовке статьи автор благодарит заведующего Отделом барофизиологии, баротерапии и водолазной медицины ИМБП РАН Владимира Комаревцева

Декомпрессионные таблицы

Декомпрессионные таблицы

Чтобы профессионально заниматься дайвингом, придется уделить внимание математическим расчетам. Одним из ключевых моментов является изучение декомпрессионных таблиц, составленных для расчета безопасного подъема с глубины.

Специфика дайвинга на разных глубинах

Погружения подразделяются на 2 вида.

  • Декомпрессионные - при всплытии нужно на некоторое время останавливаться на указанных глубинах. Если этого не сделать, тело не успеет избавиться от накопившегося азота.
  • Бездекомпрессионные - погружения, которые не требуют остановок при всплытии (хотя их все же желательно выполнять).

Бездекомпрессионными погружениями занимаются дайверы-любители. У профессионалов все намного сложнее.

Немного истории (и биологии)

В 1908 году Джон Холден, ученый из Шотландии, опубликовал доклад, в котором изучал механизм явлений, происходящих в человеческом организме при подъеме с глубины. Научная работа дала толчок дальнейшим исследованиям, и в 1958 ВМФ США опубликовали первые декомпрессионные таблицы. Они использовались около 30 лет.

В 1983 в существующих таблицах были обнаружены ошибки. С помощью компьютеров и иных чувствительных приборов удалось составить новые, более точные. При их подготовке использовались данные с оборудования, регистрирующего появление пузырьков в крови.

Существует множество таблиц. Наиболее распространены DCIEM, PADI, NDL и некоторые другие.

Как выбрать декомпрессионную таблицу для дайвинга?

Все зависит от цели погружения. Например, PADI - вариант для любителей, которые опускаются на сравнительно небольшие глубины. Для всех начинающих и подавляющего большинства любителей подойдет именно он. DCIEM предназначены для профессионалов (в том числе водолазов, работающих под водой). Есть варианты для погружений с обогащенным воздухом.

При анализе представленной информации учитываются следующие моменты:

  • ABT (время погружения на определенной глубине);
  • NDL (бездекомпрессионный предел);
  • степень насыщения азотом;
  • RNT (время по остаточному азоту);
  • TNT (общее время на дне);
  • срок остановом для декомпрессии при превышении NDL;
  • SI (время между погружениями).

Важно! Показатели в разных таблицах отличаются. Если вы выбрали одну, то не переходите к другой во время одного цикла погружений. Кроме того, на состояние здоровья влияют индивидуальные особенности организма. Не приближайтесь к максимальным показателям.

Если вы не хотите ориентироваться по таблицам, используйте подводный компьютер - в него уже заложена вся необходимая информация. Однако для максимальной безопасности рекомендуется изучить общие понятия.

Читайте также: