Клетки головного мозга эмбриона. Развитие нейроглии плода

Обновлено: 26.04.2024

С детства мы слышим, что нервные клетки не восстанавливаются. И хотя вопрос о возможности образования новых нейронов во взрослом мозге до сих пор открыт, уже есть данные, что процесс нейрогенеза у человека продолжается до глубокой старости. Любые нарушения в развитии нервных клеток могут приводить к серьезным, иногда необратимым патологиям. Одним из таких нарушений являются дефекты в защитной изоляционной оболочке (миелине) отростков нервных клеток, которые могут формироваться у человека еще до его рождения. Их практически невозможно диагностировать с помощью традиционных методов визуализации

В мозге человека в среднем содержится около 100 млрд нейронов, которые принимают, хранят, обрабатывают и передают информацию с помощью электрических и химических сигналов. Взаимодействие между нейроном и другими нервными клетками и органами происходит с помощью коротких (дендриты) и длинного (аксон) отростков.

Каждый аксон, подобно проводу, покрыт изоляционным материалом - ​миелиновой оболочкой, которая обеспечивает более высокую скорость прохождения нервных импульсов и защищает нервные волокна от повреждений. Кроме того, эта оболочка несет опорную функцию, а также, по последним данным, служит для аксона, нуждающегося в большом количестве энергии, своего рода «заправочной станцией».

Все повреждения миелиновой оболочки или дефекты, возникшие в период ее формирования, приводят к серьезным, иногда неизлечимым заболеваниям. Среди них наиболее известен рассеянный склероз - ​хроническое аутоиммунное заболевание, поражающее преимущественно молодых людей.

Аксон - главный «кабель» нейрона, покрытый миелиновой оболочкой. Он отдаленно напоминает линию электропередач с цепочкой изоляторов. Цель оболочки, которую формируют специальные обслуживающие клетки (олигодендроциты либо клетки Шванна), - обеспечить передачу электрических импульсов без потерь и с максимальной скоростью. © Servier Medical Art. Слева - аксоны седалищных нервов мыши (красные), обернутые клетками Шванна (зеленые, ядра - синие). Фото A. Alvarez-Prats и T. Balla. © Eunice Kennedy Shriver National Institute of Child Health and Human Development/NIH

При этом о «качестве» миелинизации головного мозга конкретного человека мы сегодня судим лишь по косвенным клиническим симптомам или данным магнитно-резонансной томографии (МРТ), с помощью которой обычно удается обнаруживать дефекты миелина уже на поздней, часто необратимой стадии.

Дефекты нервной «изоляции»

Развитие мозга плода - ​сложный процесс, при котором происходят быстрые перестройки морфологии и микроструктуры нервной ткани. В некоторых зонах мозга процесс формирования миелина начинается уже с 18—20-й недели беременности, а продолжается приблизительно до десятилетнего возраста.

Не все знают, что миелин - ​это множество слоев клеточной мембраны, много раз «намотанных» на аксон. Формируется миелин плоскими выростами «служебных» глиальных клеток, цитоплазма в которых практически отсутствует. Миелиновая оболочка не непрерывна, а дискретна, с промежутками (перехватами Ранвье). Поэтому аксон обладает более быстрой скачкообразной проводимостью: скорость прохождения сигнала по волокнам с миелином и без него может отличаться в сотни раз. Что касается молекулярного состава «изолятора», то он, как и все клеточные мембраны, состоит преимущественно из липидов и белков

Именно нарушения миелинизации часто лежат в основе задержек физического и умственного развития ребенка, а также служат причиной формирования ряда неврологических и психиатрических патологий. Помимо заболеваний, таких как инсульт, задержки развития головного мозга плода с нарушением миелинизации иногда наблюдаются и при многоплодной беременности. При этом десинхронизацию в развитии мозга близнецов оценить «на глаз» довольно сложно.

В головном мозге миелиновую оболочку создают олигодендроциты, в периферической нервной системе - клетки Шванна. Каждый олигодендроцит образует несколько «ножек», которые неоднократно «оборачиваются» вокруг части какого-нибудь аксона (внизу). В результате один олигодендроцит оказывается связан с несколькими нейронами. © Servier Medical Art. Вверху - олигодедроциты в культуре (красные, ядра - сиреневые). © jakeyoung64


Но как выявить дефекты миелина в период внутриутробного развития? В настоящее время акушеры-гинекологи пользуются только биометрическими показателями (например, размером мозга), однако они обладают высокой изменчивостью и не дают полной картины. В педиатрии даже при наличии явных функциональных отклонений в мозговой деятельности ребенка традиционные изображения МРТ или нейросонографии (ультразвукового исследования головного мозга новорожденных) часто не показывают структурные отклонения.

Поэтому поиск точных количественных критериев оценки формирования миелина во время беременности является актуальной задачей, которую к тому же нужно решить с помощью неинзвазивных диагностических методов, уже апробированных в акушерстве. Специалисты из новосибирского Международного томографического центра СО РАН предложили использовать для этих целей новый метод количественной нейровизуализации, уже адаптированный для дородовых (пренатальных) исследований.

На обычном томографе

Любая патология головного мозга плода, которую подозревают врачи во время ультразвукового обследования беременной, обычно является показанием к проведению МРТ; подобные исследования проводятся в МТЦ СО РАН уже более десяти лет. Результаты МРТ могут подтвердить, уточнить, опровергнуть либо вообще изменить предварительный диагноз и, соответственно, тактику ведения беременности.

Метод макромолекулярной протонной фракции (МПФ) основан на эффекте переноса намагниченности, когда протоны свободной воды «обмениваются» намагниченностью с протонами малоподвижных макромолекул, таких как белки. Скорость этого процесса влияет на величину детектируемого сигнала МРТ и зависит от площади взаимодействия макромолекулярной фракции и воды

Дело в том, что количество миелина и размеры отдельных структур головного мозга у эмбриона настолько малы, что любые измерения очень сложны и трудоемки. К тому же плод постоянно шевелится, что очень затрудняет получение качественных изображений и достоверных количественных данных. Поэтому нужна технология, позволяющая получать изображения быстро и с высокой разрешающей способностью даже на маленьких объектах.

Именно таким оказался метод быстрого картирования макромолекулярной протонной фракции (МПФ) - ​биофизического параметра, который описывает долю протонов в макромолекулах тканей, вовлеченных в формирование МРТ-сигнала, тогда как обычно источником сигнала являются протоны, содержащиеся в воде (Yarnykh, 2012; Yarnykh et al., 2015).

В основе метода лежит специализированная процедура математической обработки МРТ-изображений, которая позволяет вычленить компоненты сигнала, связанные с МПФ клеточных мембран. А в головном мозге человека и животных основная их часть содержится именно в миелине. Реконструируются карты МПФ на основе исходных данных, которые могут быть получены практически на любом клиническом томографе.

Для реконструкции карт МПФ используются четыре исходных изображения, полученные различными традиционными методами МРТ. Правильность такого подхода подтвердили результаты его апробации на лабораторных животных в Томском государственном университете: у мышей, которым вводили раствор, вызывающий разрушение миелина, результаты МПФ-картирования совпали с данными гистологического исследования тканей (Khodanovich et al., 2017).

Миелин - ​в норме и патологии

Пилотные исследования, выполненные в рамках клинических диагностических МРТ-обследований эмбрионов возрастом от 20 недель и старше, показали, что новая технология позволяет за небольшое (менее 5 мин.) время сканирования выявить очень малые количества миелина.

Карта МПФ (д) реконструируется с помощью специальной математической программы из четырех видов исходных изображений: в режиме переноса намагниченности (а) и протонной плотности (б), референсного (в) и анатомического (г), которые можно получить на обычном томографе

Они также подтвердили способность метода надежно оценивать пространственно-временные «траектории развития» миелина в различных структурах мозга. Судя по результатам исследования, в центральных структурах (стволовых, таламусе, мозжечке) процесс миелинизации начинается раньше, а ее степень пропорциональна возрасту. При этом в белом веществе полушарий головного мозга миелин в дородовом периоде практически не обнаруживается (Yarnykh, Prihod’ko, Savelov et al., 2018). Полученные новым неивазивным методом результаты хорошо согласуются с уже известными патоморфологическими данными.

Кроме того, оказалось, что изображения, полученные с помощью новой технологии, являются наиболее информативными для внутриутробной диагностики одного из видов медуллобластомы - ​врожденной злокачественной опухоли мозжечка. У плода опухоль не удалось отчетливо выявить с помощью традиционного МРТ-обследования, однако она хорошо прослеживалась с использованием количественного метода МПФ.

Наиболее высокие значения МФП и, соответственно, степени миелинизации выявлены в стволовых структурах головного мозга плода. Меньшие значения МПФ обнаружены в таламусе и мозжечке, а минимальные - в полушариях головного мозга. При этом количество миелина в центральных мозговых структурах стабильно увеличивается с эмбриональным возрастом

Дело в том, что у плода показатель МПФ для ткани медуллобластомы вдвое выше значений для окружающей здоровой ткани из-за более высокого содержания в опухоли фибриллярного белка коллагена соединительной ткани, которая широко представлена в этом виде опухоли. После рождения и до полутора лет эти различия сглаживались из-за нарастающей миелинизации мозжечка, в то время как значения МПФ в опухоли оставались практически неизменными.

Эти результаты говорят о том, что диагностическая значимость метода МПФ наиболее высока именно во внутриутробном периоде. И это очень важно, так как после рождения ребенка арсенал МРТ (в том числе с использованием контрастирующих средств), который позволяет визуализировать все детали злокачественного поражения, значительно расширяется (Korostyshevskaya, Savelov, Papusha et al., 2018).

В течение последнего десятилетия для изучения внутриутробного периода созревания мозга использовались различные количественные методы МРТ. Но оказалось, что среди всех известных на сегодня методов наиболее чувствительным к содержанию миелина в мозге взрослого человека и плода оказался метод картирования МПФ.

Медуллобластома - злокачественная опухоль центральной нервной системы, развивающаяся из эмбриональных клеток и локализующаяся преимущественно в мозжечке. Она составляет пятую часть всех опухолей головного мозга у детей. Формирование у ребенка врожденной медуллобластомы удалось проследить с внутриутробного периода. На традиционных МРТ-изображениях головного мозга (карте коэффициента диффузии воды - а и анатомических изображениях с различным контрастом - б, в) опухоль можно диагностировать после рождения: например, она хорошо видна в возрасте 4 месяцев. Однако в последнем семестре беременности опухоль не выделяется на фоне окружающей ткани, но ее можно увидеть на МПФ-карте, потому что медуллобластома содержит большое количество коллагена, влияющего на величину детектируемого сигнала МРТ. Справа - МРТ-изображение нервной системы больного в возрасте 4 месяцев, полученное при обычном сканировании с контрастным усилением. В возрасте 5,5 месяцев ребенку была сделана оперативная резекция опухоли. Внизу - гистологические срезы опухолевых фрагментов, окрашенных гематоксилин-эозином (а) и импрегнированных серебром (б), на которых видны множественные слившиеся опухолевые узлы, окруженные фиброзными волокнами, в состав которых входит коллаген. Фото из архива НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева (Москва)

С его помощью новосибирским специалистам впервые удалось разработать количественные критерии нормальной внутриутробной миелинизации, на основании которых можно оценить своевременность формирования внутренней структуры мозга от второго триместра до рождения ребенка. Эти критерии в дальнейшем можно использовать в клинической практике. Кроме того, в некоторых случаях новый метод помогает диагностировать врожденный порок развития головного мозга еще до рождения, что бывает затруднительно с использованием только традиционных методов МРТ.

Коростышевская А. М., Савелов А. А., Цыденова Д. В и др. Количественный анализ структурной зрелости головного мозга плода по данным диффузионно-взвешенной МРТ // Вест. Новосиб. гос. ун-та. Серия: Биология, клиническая медицина. 2015. Т. 13. № 4. С. 27-32.

Коростышевская А. М., Василькив Л. М., Цыденова Д. В. и др. Количественный анализ пре- и постнатальной структурной зрелости головного мозга в норме и при вентрикуломегалии по данным диффузионно-взвешенной МРТ // Мультидисциплинарный научный журнал «Архивариус». 2016. Т. 22. № 10(14). С. 33-41.

Korostyshevskaya A. M., Prihod’ko I. Y., Savelov A. A. et al. Direct comparison between apparent diffusion coefficient and macromolecular proton fraction as quantitative biomarkers of the human fetal brain maturation // J. Magn. Reson. Imaging. 2019. N. 50. P. 52-61. DOI: 10.1002/jmri.26635

Korostyshevskaya A. M., Savelov A. A., Papusha L. I. et al. Congenital medulloblastoma: fetal and postnatal longitudinal observation with quantitative MRI // Clinical imaging. 2018. N. 52. P. 172-176.

Yarnykh V., Korostyshevskaya A. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience // J. Phys.: Conf. Ser. 2017. V. 886. P. 1-5.

Yarnykh V. L., Savelov A., Prihod’ko I. Y. et al. Quantitative assessment of normal fetal brain myelination using fast macromolecular proton fraction mapping // Am. J. of Neuroradiology. 2018. V. 39(7). P. 1341-1348.

Исследование поддержано Министерством образования и науки Российской Федерации (госзадание 18.2583.2017/4.6.), Российским научным фондом (проект № 19-75-20142) и Национальными институтами здравоохранения США (National Institutes of Health, NIH)

Микроглия: роль «иммунных» клеток центральной нервной системы в здоровом мозге и при нейродегенеративных заболеваниях


Обзор

Микроглия.

Автор
Редакторы

Статья на конкурс «Био/Мол/Текст»: Микроглия — клетки, возникающие из примитивных макрофагов. Они развиваются в эмбриональном желточном мешке, затем попадают в мозг, через систему кровообращения.

Микроглия способствует выживанию и гибели нейронов, а также может обрезать синаптические связи, способствуя формированию функционирующих зрелых нервных цепей. Этот процесс напрямую связан с памятью.

Микроглия имеет большое значение при нейродегенеративных заболеваниях, таких как болезнь Альцгеймера и паркинсонизм.

В этой статье я постаралась рассказать о том, что такое микроглия и как она участвует в сложных процессах формирования памяти, забывания и в развитии заболеваний.


Конкурс «Био/Мол/Текст»-2021/2022

Эта работа опубликована в номинации «Школьная» конкурса «Био/Мол/Текст»-2021/2022.

Партнер номинации — некоммерческая школа-пансион «Летово».

Генеральный партнер конкурса — международная инновационная биотехнологическая компания BIOCAD.

Генеральный партнер конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Введение

Глия, или нейроглия — это разнофункциональные клетки нервной ткани, формирующие специфическое микроокружение для нейронов. Они обеспечивают условия для их выживания и работы.

Нейроглия

Рисунок 1. Нейроглия. Бледно-розовые клетки — эпендимоциты, голубые — олигодендроциты, зеленые — астроциты, а темно-красные — клетки микроглии. Также на картинке присутствуют кровеносные сосуды (красные) и нейроны (желтые).

Самая распространенная группа нейроглии — олигодендроциты (рис. 1). Олигодендроциты создают изолирующее покрытие вокруг аксона, которое называется миелиновым. Оно нужно для высокой скорости проведения сигналов [1].

Еще есть астроциты (рис. 1); их основной функцией является создание гематоэнцефалического барьера, который защищает нервную систему от вредных веществ, способных проникнуть через кровь. А также эпендимные клетки (рис. 1), некоторые из которых тоже участвуют в образовании гематоэнцефалического барьера, а другие выполняют секреторную функцию или передают информацию о составе цереброспинальной жидкости на капиллярную сеть. Также эпендимная глия — источник стволовых нервных клеток.

Эти три группы объединяют в макроглию, но помимо нее существует еще микроглия, о которой я и хочу рассказать в своей статье.

В последнее время количество работ, посвященных исследованию микроглии, сильно возросло. Изучаются не просто ее иммунные функции, но также влияние на память, обучение и участие в нейродегенеративных заболеваниях. История про маленькие клетки в мозге, которые «съедают» неповторяемые нами стихотворения, сама по себе интересна, а если эти клетки еще и «плохие» нейроны уничтожают — тем более.

Развитие и функции микроглии

Развитие микроглии

Схема происхождения клеток крови и лимфы из гемопоэтической стволовой клетки

Рисунок 2. Схема происхождения клеток крови и лимфы из гемопоэтической стволовой клетки.

Микроглия похожа на периферические моноциты и макрофаги (рис. 2) — клетки иммунной системы, которые производит красный костный мозг, и раньше считалось, что она происходит от циркулирующих моноцитов [2]. Но на сегодняшний день доказано, что микроглия формируется гораздо раньше и имеет немного отличное от периферических клеток происхождение. Она возникает из примитивных макрофагов эмбрионального желточного мешка [2]. Эти клетки появляются так рано, что попадают в мозг через кровеносную систему, раньше образования гематоэнцефалического барьера (рис. 3) [2].

Клетки микроглии

Рисунок 3. Клетки микроглии образуются из примитивных макрофагов, которые выделяются из эмбрионального желточного мешка во время развития (до 8,5 дня эмбриона) и попадают в зачатки мозга через систему кровообращения до появления гематоэнцефалического барьера. На 9,5 день эмбриона они окружают нейроэпителий и через день попадают туда, начиная колонизировать паренхиму центральной нервной системы.

Распределение микроглии

Микроглия распределяется неравномерно. Ее распределение может зависеть от областей мозга — и даже модулироваться половыми гормонами [3].

Региональные различия связаны с разной экспрессией генов. Например, в желудочковой/субвентрикулярной зоне базальными предшественниками (клетки-предшественники внутренних слоев субвентрикулярной зоны с неполярной морфологией) секретируется определенный ген (CXCL12). Именно CXCL12 влияет на привлечение микроглии в эти зоны. Уменьшение количества базальных предшественников уменьшает и количество микроглии, в то время как оно, в свою очередь, влияет на количество нейрональных предшественников в этих же зонах. И из-за того, что микроглия контролирует убиквитин‐специфическую протеазу 18, которая в здоровых условиях уменьшает разрушение тканей, в этой зоне ткани разрушаются чаще, чем в остальных [3].

Функции микроглии

Клетки микроглии выполняют иммунную функцию. Они подвижны — умеют ползать как амебы — и способны реагировать на широкий спектр проблем, таких как гибель дофаминергических нейронов при паркинсонизме или даже на бактериальные и паразитарные инфекции. При обнаружении специфического фактора микроглиальные клетки быстро «подстраиваются» под проблему, меняя свою морфологию, фенотип и функции. Это наблюдается при нейродегенеративных заболеваниях, инфекциях, опухолях, черепно-мозговых травмах и т. п. [2].

Например, при рассеянном склерозе микроглия активируется с помощью цитокинов и костимулирующих молекул, после чего у нее появляется способность реактивировать лимфоциты, способствуя этим уничтожению дегенерирующих нейронов [4].

Но кроме иммунной функции, микроглия напрямую связана с развитием мозга, памятью и обучением [5].

Гомеостатические функции

Во время раннего развития мозга микроглия может высвобождать нейротрофические факторы, тем самым влияя на формирование, выживание и дифференцировку нейронов, создание нейронных сетей. Например, во время развития мозга она устраняет дефектные нейроны, не подвергшиеся апоптозу [2].

Апоптоз — процесс программируемой клеточной гибели, в результате которого клетка распадается на отдельные апоптотические тельца, ограниченные плазматической мембраной. Подробнее читайте в статье «Апоптоз или Путь самурая» [6].

Синаптическая пластичность, память и обучение

Формирование памяти — это процесс, в основе которого лежит физиологическое явление, называемое долговременной потенциацией. При долговременной потенциации проведение нервного импульса между нейронами приводит к резкому усилению проведения последующих импульсов в образованном ими синапсе. Это происходит из-за того, что долговременная потенциация упрочняет связи между нейронами и ускоряет проведение нервного импульса по цепочкам нейронов, которые уже передавали информацию [7].

Сила синапса — это сила сигнала, который он посылает в клетку-мишень, а синаптическая пластичность — возможность изменения силы синапса.

Силу синапса регулируют не только сами нейроны, но и микроглия, которая, помимо «ненужных» нейронов, может разрушать синаптические связи, тем самым контролируя синаптическую активность и пластичность [5].

Эта функция микроглии крайне важна для правильного развития мозга и влияет на активность нейронов, так как клетки выборочно обрезают избыточные нейрональные процессы, которые могут мешать формированию зрелых, функционирующих нейронных сетей.

Микроглия и заболевания

Болезнь Альцгеймера

Болезнь Альцгеймера — самое распространенное нейродегенеративное заболевание, одна из важнейших причин смертности людей во всем мире. Болезнь Альцгеймера чаще всего возникает у людей старше 50 лет и характеризуется прогрессивным снижением интеллекта, нарушением памяти и изменением личности.

По одной из гипотез, причиной возникновения заболевания является накопление бета-амилоидов (пептиды, состоящие примерно из 40 аминокислотных остатков) и их отложение в бляшках.

На ранних стадиях развития болезни микроглия замедляет токсическое действие бета-амилоида, образуя защитный барьер вокруг него и замедляя повреждающее действие амилоида (рис. 4) [8].

Но позже микроглия не только перестает выполнять защитную функцию, а еще и становится причиной обострения болезни (рис. 4) [8].

Защитное действие микроглии

Рисунок 4. Левая сторона картинки (1-4) иллюстрирует защитное действие микроглии.

1 — очищение микроглией Aβ посредством макропиноцитоза;
2 — поглощение микроглией липопротеин-ассоциированного Aβ;
3 — фагоцитоз фибриллярных агрегатов Aβ;
4 — формирование больших отложений в бляшки.


Правая сторона (5-7) — действие микроглии, обостряющее БА.

5 — Аβ-фибриллы на краях бляшек, созданных микроглией, действуют как субстрат для новой Aβ-фибрилляции;
6 — секреция микроглией цитокинов, которые активируют астроциты;
7 — разрушение синапсов.

Дело в том, что белок C1q (белок, экспрессирующийся в мозге, уровень которого сильно повышается с возрастом, особенно в гиппокампе) при связывании с Aβ может вызвать активацию классического каскада комплемента, то есть активировать микроглию к разрушению синапсов [8].

К тому же микроглия усугубляет тау-патологию (возникающие в нейронах при болезни Альцгеймера агрегаты тау-белка), реагируя на умирающие нейроны и белковые агрегаты высвобождением цитокинов. Цитокины — медиаторы воспаления, активируют астроциты, способствуя этим уничтожению нейронов [8].

Из этого можно сделать вывод, что на поздних стадиях заболевания микроглия, разрушая синапсы, усугубляя патологию тау и вырабатывая медиаторы воспаления, является одной из причин снижения когнитивных функций, и поэтому возможно истощение микроглии и блокировка путей, активирующих систему фагоцитоза, могут улучшать состояние пациентов при болезни Альцгеймера.

Болезнь Паркинсона

Болезнь Паркинсона (БП) — это нейродегенеративное заболевание, при котором нейроны накапливают включения α-синуклеина (чаще всего их называют тельцами Леви), а дофаминергические нейроны черной субстанции погибают.

Как и при болезни Альцгеймера, на ранних стадиях болезни Паркинсона микроглия замедляет прогрессирование болезни, так как, разрушая α-syn, она помогает избавиться от его избытка. Эта мысль подтверждается многими исследованиями (было показано, что при препятствии очищению микроглией α-синуклеина увеличивается продукция противовоспалительных цитокинов, что способствует гибели нейронов и двигательной дисфункции) [9].

На последующих стадиях заболевания микроглия уничтожает дегенерирующие нейроны, однако «доброе» ли это дело или «злое» в контексте работы нервной системы и патогенеза болезни, сказать сложно.

Выводы

Сейчас микроглия активно изучается, и, хотя нам известно о ней далеко не все, обретенные нами знания уже дают новые шансы в лечении самых распространенных нейродегенеративных заболеваний. Поэтому дальнейшее изучение данной области может стать большим шагом для современной нейробиологии и медицины.

Особенности эмбрионального развития головного мозга

Головной мозг развивается из переднего, расширенного отдела мозговой трубки. Развитие проходит несколько стадий. У 3-х недельного эмбриона наблюдается стадия двух мозговых пузырей — переднего и заднего. Передний пузырь по темпам роста обгоняет хорду и оказывается впереди нее. Задний расположен над хордой. В возрасте 4-5 недель формируется третий мозговой пузырь. Далее первый и третий мозговые пузыри разделяются каждый на два, в результате формируется 5 пузырей. Из первого мозгового пузыря развивается парный конечный мозг (telen-cephalon), из второго — промежуточный мозг (diencephalon), из третьего — средний мозг (mesencephalon), из четвертого — задний мозг (meten-cephalon), из пятого — продолговатый мозг (myelencephalon). Одновременно с образованием 5 пузырей мозговая трубка изгибается в сагиттальном направлении. В области среднего мозга образуется изгиб в дорсальном направлении — .теменной изгиб. На границе с зачатком спинного мозга — другой изгиб идет также в дорсальном направлении — затылочный, в области заднего мозга образуется мозговой изгиб, идущий в вентральном направлении.

На четвертой неделе эмбриогенеза из стенки промежуточного мозга образуются выпячивания в виде мешков, которые в дальнейшем приобретает форму бокалов — это глазные бокалы. Они приходят в контакт с эктодермой и индуцируют в ней хрусталиковые плакоды. Глазные бокалы сохраняют связь с промежуточным мозгом в виде глазных стебельков.

В дальнейшем стебельки превращаются в зрительные нервы. Из внутреннего слоя бокала развивается сетчатка глаза с рецепторными клетками. Из наружного — сосудистая оболочка и склера. Таким образом, зрительный рецепторный аппарат является как бы вынесенным на периферию отделом мозга.

Подобное выпячивание стенки переднего мозгового пузыря дает начало обонятельному тракту и обонятельной луковице.

Гетерохронность созревания нейронных систем мозга

Последовательность созревания нейронных систем головного мозга в эмбриогенезе определяется не только закономерностями филогенеза, но, в значительной мере, обусловлена этапностью становления функциональных систем (рис. V. 1). В первую очередь, созревают те структуры, которые должны подготовить плод к рождению, т. е. к жизни в новых условиях, вне организма матери.

В созревании нейронных систем головного мозга можно выделить несколько этапов.

Первый этап. Наиболее рано созревают единичные нейроны переднего отдела среднего мозга и клетки мезенцефалического ядра тройничного (V) нерва. Волокна этих клеток раньше других прорастают в

Рис. V. 1. Реконструкция нервной системы эмбриона человека длиной 10 мм.

направлении древней коры и далее — к неокортексу. Благодаря их влиянию, неокортекс вовлекается в осуществление приспособительных процессов. Мезенцефалические нейроны участвуют в поддержании относительного постоянства внутренней среды, в первую очередь, газового состава крови и вовлечены в механизмы общей регуляции обменных процессов. Клетки мезенцефалического ядра тройничного нерва (V) связаны также с мышцами, участвующими в акте сосания и входят в функциональную систему, связанную с формированием сосательного рефлекса.

Второй этап. Под воздействием клеток, созревающих на первом этапе, развиваются нижележащие структуры ствола мозга клеток, созревающих на первом этапе. Это — отдельные группы нейронов ретикулярной формации продолговатого мозга, заднего отдела моста и нейроны двигательных ядер черепномозговых нервов. (V, VII, IX, X, XI, XII), обеспечивающие координацию трех важнейших функциональных систем: сосания, глотания и дыхания. Вся эта система нейронов отличается ускоренными темпами созревания. Они достаточно быстро обгоняют нейроны, созревающие на первом этапе, по степени зрелости.

На втором этапе проявляют активность раносозревающие нейроны вестибулярных ядер, локализированных на дне ромбовидной ямки. Вестибулярная система развивается у человека ускоренными темпами. Уже к 6-7 месяцам эмбриональной жизни она достигает степени развития, характерной для взрослого человека.

Третий этап. Созревание нейронных ансамблей гипоталамических и таламических ядер также идет гетерохронно и определяется включением их в различные функциональные системы. Например, ускоренно развиваются ядра таламуса, задействованные в системе терморегуляции.

В таламусе позднее всех созревают нейроны передних ядер, однако темп их созревания резко подскакивает к рождению. Это связано с их участием в интеграции обонятельных импульсов и импульсов других модальностей, определяющих выживание в новых условиях среды.

Четвертый этап. Созревание сначала ретикулярных нейронов, затем — остальных клеток палеокортекса, архикортекса и базальной области переднего мозга. Они участвуют в регуляции обонятельных реакций, поддержании гомеостаза и др. Древняя и старая кора, занимающие очень небольшую площадь поверхности полушария у человека, к рождению оказываются уже полностью сформированными.

Пятый этап. Созревание нейронных ансамблей гиппокампа и лимбической коры. Это происходит в конце эмбриогенеза, а развитие лимбической коры продолжается и в раннем детстве. Лимбическая система принимает участие в организации и регуляции эмоций и мотиваций. У ребенка это прежде всего пищевая и питьевая мотивации и др.

В той же последовательности, в которой созревают отделы головного мозга, происходит и миелинизация соответствующих им волоконных систем. Нейроны раносозревающих систем и структур мозга посылают свои отростки в другие участки, как правило, в оральном направлении и как бы индуцируют последующий этап развития.

Развитие неокортекса имеет свои особенности, но и оно идет по принципу гетерохронии. Так, согласно филогенетическому принципу, наиболее рано в эволюции появляется древняя кора, затем — старая, и только после этого — новая кора. В эмбриогенезе у человека новая кора закладывается раньше старой и древней коры, но последние развиваются быстрыми темпами и достигают максимальной площади и дифференцировки уже к середине эмбриогенеза. Затем они начинают смещаться на медиальную и базальную поверхность и частично редуцируются. Инсулярная область, которая занята неокортексом лишь частично, быстро начинает свое развитие и созревает уже к концу пренатального периода.

Наиболее быстро созревают те области новой коры, которые связаны с филогенетически более старыми вегетативными функциями, например, лимбическая область. Затем созревают области, формирующие так называемые проекционные поля различных сенсорных систем, куда приходят сенсорные сигналы от органов чувств. Так, затылочная область закладывается у эмбриона в 6 лунных месяцев, полное же ее созревание завершается к 7 годам жизни.

Несколько позже созревают ассоциативные поля. Самыми последними созревают наиболее филогенетически молодые и функционально самые сложные поля, которые связаны с осуществлением специфически человеческих функций высокого порядка — абстрактного мышления, членораздельной речи, гнозиса, праксиса и т. д. Таковыми являются, например, рече-двигательные поля 44 и 45. Кора лобной области закладывается у 5-месячного плода, полное созревание затягивается до 12 лет жизни. Поля 44 и 45 требуют для своего развития более длительного времени даже при высоких темпах созревания. Они продолжают рост и развитие в течение первых лет жизни, в юношеском возрасте и даже у взрослых. Количество нервных клеток при этом не нарастает, но увеличивается количество отростков и степень их разветвлений, количество шипиков на дендритах, количество синапсов, происходит миелинизация нервных волокон и сплетений. Развитию новых областей коры способствуют учебные воспитательные и образовательные программы, учитывающие особенности функциональной организации мозга ребенка.

В результате неравномерного роста участков коры в процессе онтогенеза (как пре-, так и постнатального), в одних областях наблюдается как бы оттеснение определенных отделов в глубь борозд за счет наплыва над ними соседних, функционально более важных. Примером этого является постепенное погружение островка в глубь сильвиевой щели за счет мощного разрастания соседних отделов коры, развивающихся с появлением и совершенствованием членораздельной речи ребенка — лобной и височной покрышки — соответственно рече-двигательный и рече-слуховой центры. Восходящая и горизонтальная передние ветви сильвиевой щели образуются из наплыва триангулярной извилины и развиваются у человека на самых поздних стадиях пренатального периода, но это может происходить и постнатально, довольно в зрелом возрасте.

В других областях неравномерность разрастания коры проявляется в закономерностях обратного порядка: глубокая борозда как бы разворачивается, и на поверхность выходят новые отделы коры, ранее скрытые в глубине. Именно так на поздних стадиях пренатального онтогенеза исчезает поперечно затылочная борозда, а на поверхность выходят теменно затылочные извилины — корковые отделы, связанные с осуществлением более сложных, зрительногностических функций; проекционные же зрительные поля отодвигаются на медиальную поверхность полушария.

К моменту рождения ребенка разные отделы его мозга развиты неодинаково. Более дифференцированы структуры спинного мозга, ретикулярная формация и некоторые ядра продолговатого мозга (ядра тройничного, блуждающего, подъязычного нервов, вестибулярные ядра), среднего мозга (красное ядро, черная субстанция), отдельные ядра гипоталамуса и лимбической системы. Относительно далеки от окончательного созревания нейронные комплексы филогенетически более молодых областей коры — височной, нижнетеменной, лобной, а также стриопал-лидарной системы, зрительных бугров, многих ядер гипоталамуса и мозжечка.

В слуховой системе к рождению формируется слуховой аппарат, способный воспринимать раздражения.

Наряду с обонятельным, слуховой аппарат является ведущим уже с первых месяцев жизни. Центральные же слуховые пути и корковые зоны слуха созревают позднее.

К моменту рождения полностью созревает аппарат, который обеспечивает сосательный рефлекс. Он образован ветвями тройничного (V пара), лицевого (VII пара), язычно-глоточного (IX пара) и блуждающего (X пара) нервов. Все волокна к рождению миелинизированы.

Зрительный аппарат к моменту рождения развивается частично. Зрительные центральные пути к рождению миелинизированы, периферические же (зрительный нерв) миелинизируются после рождения. Способность видеть окружающий мир — это результат научения. Он определяется условно-рефлекторным взаимодействием зрения и осязания. Руки — первый объект собственного тела, который попадает в поле зрения ребенка. Интересно, что такое положение руки, которое позволяет глазу видеть ее, формируется задолго до рождения, у эмбриона 6-7 недель (см. рис. VIII. 1).

В результате миелинизации зрительного, вестибулярного и слухового нервов у 3-месячного ребенка отмечается точная установка головы и глаз к источнику света и звука. Ребенок 6 месяцев начинает манипулировать предметами под контролем зрения.

Последовательно созревают и структуры мозга, обеспечивающие совершенствование двигательных реакций. На 6-7-й неделе у эмбриона созревает красное ядро среднего мозга, играющего важную роль в организации мышечного тонуса и в осуществлении установочных рефлексов при согласовании позы в соответствии с поворотом туловища, рук, головы. К 6-7 месяцам пренатальной жизни созревают высшие подкорковые двигательные ядра — полосатые тела. К ним переходит роль регулятора тонуса при разных положениях и непроизвольных движениях.

Движения новорожденного неточны, недифференцированы. Они обеспечиваются влияниями, идущими от полосатых тел. В первые годы жизни ребенка от коры прорастают волокна к полосатым телам, и деятельность полосатых тел начинает регулироваться корой. Движения становятся более точными, дифференцированными .

Таким образом, экстрапирамидная система становится под контроль пирамидной. Процесс миелинизации центральных и периферических путей функциональной системы движения наиболее интенсивно происходит до 2 лет. В этот период ребенок начинает ходить.

Возраст от рождения до 2 лет — это особый период, в течение которого ребенок овладевает также уникальной способностью к членораздельной речи. Развитие речи ребенка происходит только при непосредственном общении с окружающими людьми, о процессе обучения. Аппарат, регулирующий речь, включает в себя сложную иннервацию различных органов головы, гортани, губ, языка, миелинирующиеся проводящие пути в ЦНС, а также сформировавшийся специфически человеческий комплекс речевых полей коры 3 центров — рече-двигательного, рече-слухового, рече-зрительного, объединенных системой пучков ассоциативных волокон в единую морфофункциональную систему речи. Речь человека — это специфически человеческая форма высшей нервной деятельности.

Масса мозга: возрастная, индивидуальная и половая изменчивость

Масса мозга в эмбриогенезе изменяется неравномерно. У 2-месячного плода она равна ~ 3 г. За период до 3 месяцев масса мозга увеличивается в ~ 6 раз и составляет 17 г, к 6 лунным месяцам — еще в 8 раз: -130 г. У новорожденного масса мозга достигает: 370 г — у мальчиков и 360 г — у девочек. К 9 месяцам происходит ее удвоение: 400 г. К 3 годам масса мозга увеличивается втрое. К 7 годам она достигает 1260 г — у мальчиков и 1190 г — у девочек. Максимальная масса мозга достигается в 3-м десятилетии жизни. В старших возрастах она снижается.

Масса мозга взрослого мужчины — 1150-1700 г. На протяжении всей жизни масса мозга мужчин выше, чем у женщин. Масса мозга обладает заметной индивидуальной вариабельностью, но не может служить показателем уровня развития умственных способностей человека. Известно, например, что у И.С. Тургенева масса мозга была равна 2012 г, Кювье — 1829, Байрона — 1807, Шиллера — 1785, Бехтерева — 1720, И.П. Павлова — 1653, Д.И. Менделеева — 1571, А. Франса — 1017 г.

Для оценки степени развития мозга был введен «индекс церебрализации» (степень развития мозга при исключенном влиянии массы тела). По этому индексу человек резко отличается от животных. Весьма существенно, что на протяжении онтогенеза у человека можно выделить особый период в развитии, который отличается максимальным «индексом церебрализации». Этот период соответствует периоду раннего детства, от 1 года до 4-х лет. После этого периода индекс снижается. Изменения индекса церебрализации подтверждается нейрогистологическими данными. Так, например, количество синапсов на единице площади теменной коры после рождения резко увеличивается только до 1 года, затем несколько уменьшается до 4-х лет и резко падает после 10 лет жизни ребенка. Это свидетельствует о том, что именно период раннего детства является временем огромного количества возможностей, заложенных в нервной ткани мозга. От их реализации во многом зависит дальнейшее развитие умственных способностей человека.

В заключение глав о развитии мозга человека следует еще раз подчеркнуть, что важнейшей специфически человеческой особенностью является уникальная гетерохрония закладки неокортекса, при которой развитие и окончательное созревание структур мозга, связанных с осуществлением функций высшего порядка, совершаются в течение достаточно длительного времени после рождения. Возможно, это и явилось тем величайшим ароморфозом, который определил выделение человеческой ветви в процессе антропогенеза, так как «ввел» процесс научения и воспитания в формирование человеческой личности.

В этот день:

Дни рождения 1928 Родился Владимир Иванович Матющенко — доктор исторических наук, специалист по археологии Западной Сибири от палеолита до эпохи средневековья. Исследователь таких известных памятников как Ростовка, Сидоровка, Еловский могильник, Самусь.

Эмбриогенез головного мозга


Головной мозг является наиболее сложной и совершенной системой человеческого тела. В своём развитии он, будучи вершиной клеточной организации, проходит несколько непростых стадий (развития).

Следует отметить, что в периоды закладки главных элементов мозга плод является наиболее уязвимым. Знания о тератогенных периодах позволяют уберечь плод от патологических воздействий, следовательно, с большей вероятностью получить здоровое потомство.

Также отметим, что для лучшего понимания макропроцессов развития ГМ необходимо усвоить и микропроцессы.

Собственно, эмбриогенез

Итак, на этапе гаструляции в результате сложных морфогенетических изменений образуются 3 зародышевых листка, одним из которых является эктодерма - источник зачатков органов НС. Далее из дорсальной эктодермы образуется нервная пластинка, располагающаяся по средней линии спины зародыша.

Затем из последней образуются нервные валики и н. желобок. Из которых, в свою очередь, - нервная трубка. На ранних этапах эмбриогенеза нервная трубка представляет собой многорядный нейроэпителий, в дальнейшем же в ней дифференцируются 4 концентрические зоны.

Клетки первой, вентрикулярной зоны, являются предшественниками нейронов и макроглии. Клетки субвентрикулярной зоны лишены ядер и обладают большим пролиферативным потенциалом. Промежуточная/плащевая/мантийная зона является источником серого вещества спинного и головного мозга. И, наконец, четвертая, маргинальная или краевая зона нервной трубки - предшествует коре большого мозга, а также мозжечка.

Затем начинают формироваться предшественники полостей и отделов ГМ - мозговые пузыри. На четвёртой неделе внутриутробного развития наступает стадия трёх мозговых пузырей.


На данном этапе ГМ состоит их трёх структур: переднего мозга (лат. Prosencephalon), среднего мозга (лат. Mesencephalon), заднего или ромбовидного мозга (лат. Rhombencephalon)

Через 2 недели наступает стадия пяти мозговых пузырей, в процессе которой передний мозг делится на конечный (лат. Telencephalon) и промежуточный (лат. Diencephalon) мозг. А ромбовидный подразделяется на задний (лат. Metencephalon) и продолговатый мозг (лат. Myelencephalon, в дальнейшем - Medulla oblongata).

В дальнейшем из конечного мозга дифференцируются: боковые желудочки мозга, полусфера мозга, мозолистое тело, свод, прозрачная перегородка, и передняя спайка мозга.

Из промежуточного мозга образуются: третий желудочек, таламус, эпифиз, коленчатое тело, гипоталамус.

Из среднего мозга развивается: Сильвиев водопровод, ножка мозга, пластинка четверохолмия.

Четвертый желудочек, мост и мозжечок образуются из заднего мозга.

Заключение

Головной мозг - сложносочинённая, если так можно выразиться, структура. Структура, состоящая их нескольких элементов, развитие каждого из которых индивидуальное - и вместе с тем, неразрывно связанное с остальными элементами.

Утрата или недоразвитие любой части практически всегда летальна как для плода, так и для уже сформировавшегося организма, ведь патологические изменения в мозгу ведут к цепочке дегенеративных соматических изменений во всём организме. Всё это ещё раз доказывает, подчеркивает важность данной структуры организма.

Развитие нервной системы


Уже не первый день голубым пламенем горит дискуссия о том, “происходит ли в мозге взрослого порядочного человека нейрогенез?”. Так, в исследовании, опубликованном в Nature, заявляется, что, вопреки данным множества научных открытий последних 20 лет, в мозге взрослого человека не образуются новые нейроны (об этом подробно уже написал Медач). Если это действительно так, то мечты о том, что нейрогенез поможет в лечении заболеваний мозга, останутся несбыточными. Однако если с нейрогенезом всё пока неоднозначно, то с развитием нервной системы всё более-менее понятно, к тому же имеет важное клиничсекое значение, в т.ч. для психиатрии. По этому поводу у нас есть хороший материал на данную тему.

Онтогенез делится на пренатальный и постнатальный периоды. Нервная система начинает закладываться уже со второй недели пренатального периода. Из внешнего зародышевого листка - эктодермы - формируется утолщение - первичная полоска. Под ней, между эктодермой и энтодермой мигрирует тяж клеток и образует нотохорд, который служит временным скелетом для зародыша. Эктодерма, окружающая нотохорд, утолщается и формирует нервную пластинку. Далее, клетки нервной пластинки делятся, образуя нервную бороздку и нервные валики. Со временем валики смыкаются над бороздкой, образуя нервную трубку - это процесс нейруляции.

Одновременно происходит погружение нервной трубки вовнутрь зародыша и формирование и нервных гребней по бокам вдоль нее. На головном конце нервной трубки образуются три первичных мозговых пузыря, из которых впоследствии формируется головной мозг, на каудальном же конце нервная трубка соединяется со спинным мозгом. Нервный гребень в последствии дает начало образованию периферической нервной системе. Ткани, образующие нервную бороздку, и, в последствии, нервную трубку, состоят из нейробластов и спонгиобластов, из первых образуются нейроны, из вторых — клетки глии.


На четвертой неделе беременности передний и задний первичные пузыри перешнуровываются, образуя в целом уже пять пузырей. Из заднего образуется продолговатый мозг, из четвертого — варолиев мост и мозжечок, из третьего - средний мозг, из второго — зрительные бугры, гипоталамическая область, паллидум (бледный шар), из переднего - полушария головного мозга и неостриатум (полосатое тело).

По завершении нейруляции часть клеток нервного гребня мигрируют в брюшную полость, формируя вегетативные узлы и мозговое вещество надпочечников. Другие клетки образуют ганглиозную пластинку, делящуюся на ганглиозные валики. Они дают начало спинальным ганглиям, периферическим ганглионарным нейронам симпатической нервной системы, шванновским клеткам, а также клеткам, образующим внутренние листки оболочек мозга. Клетки ганглиозных валиков дифференцируются сначала в биполярные, а затем в псевдоуниполярные чувствительные нервные клетки, центральный отросток которых уходит в ЦНС, а периферический — к рецепторам других тканей и органов, образуя афферентную часть периферической соматической нервной системы.


С пятого месяца пренатального развития начинается миелинизация нейронов, которая завершается в 5-7 лет.

Вскоре после формирования трех первичных пузырей начинают развиваться глаза.

В передней (ростральной) части мозговой трубки образуются два первичных мозговых пузыря - архэнцефалон и дейтерэнцефалон. В начале четвертой недели у зародыша дейтерэнцефалон делится на средний (mesencephalon) и ромбовидный (rhombencephalon) пузыри, а архэнцефалон превращается на этой (трехпузырной) стадии в передний мозговой пузырь (prosencephalon). В нижней части переднего мозга отрастают обонятельные лопасти, дающие начало обонятельному эпителию, луковицам и трактам. Из дорзолатеральных стенок образуется сетчатка, зрительные нервы и тракты.

На шестой неделе эмбрионального развития передний и ромбовидный пузыри делятся каждый на два.

Передний пузырь — конечный мозг — разделяется продольной щелью на два полушария, так же разделяется и полость, образуя желудочки. Из-за неравномерного разрастания мозгового вещества образуются извилины. Каждое полушарие делится на четыре доли, желудочки делятся также на 4 части: центральный отдел и три рога желудочка. Серое вещество, распложенное на периферии, образует кору полушарий, а в основании полушарий - подкорковые ядра.

1. olfactory 2. optic 3. oculomotor 4. trochlear 5. trigeminal sensory 6. trigeminal motor 7. abducens 8. facial 9. vestibulocochlear 10. glossopharyngeal 11. vagus 12. cranial accessory 13. spinal accessory 14. hypoglossal 15. cervical I, II, III and IV

Задняя часть переднего пузыря является теперь промежуточным мозгом. Боковые стенки его преобразуются в зоительные бугры - таламус. В вентральной бласти (гипоталамус) образуется выпячивание - воронка, из ее нижнего конца происходит нейрогипофиз.

Третий мозговой пузырь превращается в средний мозг. Его полость превращается в Сильвиев водопровод, который соединяет III и IV желудочки. Из дорзальной стенки развивается четверохолмие, из вентральной — ножки среднего мозга.

Ромбовидный мозг делится на задний и добавочный. Из заднего формируется мозжечок, а из добавочного - продолговатый мозг. Полость превращается в IV желудочек, который сообщается с Сильвиевым водопроводом и с центральным каналом спинного мозга.

Из клеток, расположенных в боковых частях мозговой трубки, образуется спинной мозг. Развивается он быстро и у трехмесячного зародыша почти сформирован. Полость мозговой трубки превращается в канал спинного мозга. Проходящая по боковым стенкам спинного мозга и стволового отдела головного мозга парная пограничная борозда (sulcus limitons) делит мозговую трубку на основную (вентральную) и крыловидную (дорзальную) пластинки. Из основной пластинки формируются моторные структуры (передние рога спинного мозга, двигательные ядра черепно-мозговых нервов). Над пограничной бороздой из крыловидной пластинки развиваются сенсорные структуры (задние рога спинного мозга, сенсорные ядра ствола мозга), в пределах самой пограничной борозды — центры вегетативной нервной системы.

Весь передний мозг развивается из крыловидной пластинки, поэтому в нем есть только сенсорные структуры.

После рождения ребенка начинается постнатальный онтогенез нервной системы. Головной мозг новорожденного весит 300—400 г. После рождения прекращается образование новых нейронов. К восьмому месяцу после рождения вес мозга удваивается, а к 4—5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

  1. Анатомия человека учебное пособие Часть II. Южноукраинский национальный педагогический университет им. К.Д. Ушинского
  2. Воронова Н. В., Климова Н. М., Менджерицкий А. М. = Анатомия центральной нервной системы: Уч. пос. д. вуз. — М.: 2005. — 128 с
  3. Сепп Е.К. История развития нервной системы позвоночных. — М.: Медгиз, 1958.
  4. Кондрашев А.В., О.А. Каплунова. Анатомия нервной системы. М., 2010.
  5. В.В. Жуков, Е.В. Пономарева. Анатомия нервной системы: Учебное пособие / Калинингр. ун-т. - Калининград, 1998. - 68 с.
Дорогой читатель, в благодарность ты можешь материально поддержать наш проект или конкретно автора данной статьи, написав его фамилию в сопроводительном письме денежного перевода. Или можно просто щёлкнуть по рекламе в любом месте сайта 🙂
Такая поддержка являются пока единственным способом развития нашего проекта.

Сбербанк - 5469 5500 1827 1533 ЯндексДеньги - 410011063875586 Сбербанк - 5469 5500 1827 1533 ЯндексДеньги - 410011063875586 Сбербанк - 5469 5500 1827 1533 ЯндексДеньги - 410011063875586

Читайте также: