Дегенерация и регенерация ЦНС

Обновлено: 29.04.2024

Нейроглия ЦНС, шванновские клетки и глиальные клетки - сателлиты периферической нервной системы, в отличие от нервных клеток, обладают значительными пролиферативными способностями. Это обнаруживается при выявлении некоторых опухолей, например, глиом нервной системы, после ампутационных нервных рубцов, производных глии в культурах ткани (Н.Г. Хлопин, 1947). Нейроглия играет важную роль в процессах регенерации периферических и, по-видимому, центральных нервных волокон. Нейроны, как правило, не обладают способностью к размножению. При повреждении тела нервной клеткиона обычно погибает и фагоцитируется микроглиальными элементами. Фагоциты (от лат. Fagos - пожирать) - клетки микроглии, которые обладают способностью поглощать погибшие части нейронов. Если повреждается (в результате перетяжки, травмы и пр.) аксон нервной клетки, то в теле соответствующего нейрона наступает ряд характерных изменений. Во-первых, наблюдается хроматолиз, т.е. разрушение и растворение субстанции Ниссля, представляющей собой шероховатую эндоплазматическую сеть со скоплением рибосом в теле нейрона. Одновременно вследствие потери воды размеры тела нервной клетки и её ядра могут уменьшаться, цитоплазма вакуолизируется, ядро занимает краевое положение и меняет форму. Число нейрофибрилл в клетке уменьшается, они делаются тоньше и плохо различимыми. Центральный и периферический отрезки перерезанного аксона, его мякотная и безмякотная оболочки претерпевают распад; на некотором расстоянии от места поврежедения миелин растворяется. Вся эта картина получила название “первичной реакции Ниссля”, или ретроградной клеточной дегенерации, а для центрального и периферического отрезка аксона - травматической дегенерации. Особенно сложно протекают изменения в периферическом отрезке перерезанного аксона или, если речь идёт о нерве, в периферическом отрезке нерва. Эти изменения называются вторичной, или валлеровской, дегенерацией нервных волокон. Во время валлеровской дегенерации периферические отрезки аксонов, потерявшие связь с телом нервной клетки, являющейся их трофическим центром, распадаются и полностью дегенерируют. Миелиновая оболочка распадается; миелин собирается в капли, в которых иногда ещё можно проследить обломки периферических аксонов. Шванновские клетки, трофически независимые от тела нервной клетки, начинают активно пролиферировать, образуя своеобразные глиальные тяжи, которые способствуют регенерации (отрастанию) центрального отрезка перерезанного аксона. Шванновские клетки образуют синцитиальные вытянутые ленты, которые получили название «бюнгеровых тяжей». Они растут по направлению к центральным отрезкам. В безмякотных нервах процессы вторичной дегенерации протекают сходным образом. Фрагменты распавшихся нервных волокон также растворяются шванновскими клетками и поглощаются фагоцитами. Регенерация обычно начинается на центральных концах отрезанных аксонов, которые образуют утолщения - колбы роста, наподобие тех, которые наблюдаются у нейробластов. Однако электронная оптика показала, что регенерация может происходить и значительно выше новообразованных колб роста путём преобразования коллатералей, отходящих от аксона. В регенерирующихся шванновских элементах наблюдается повышенная активность ряда ферментов, в том числе и окислительных.

Преобразовавшись в пучки усиленно растущих волокон, регенерирующие центральные отрезки аксонов в конце концов проникают в бюнгеровы тяжи и начинают расти в них, как по готовому руслу, достигая старых периферических нервных чувствительных или двигательных окончаний. Шванновский синцитий распадается на отдельные клетки, в которых появляется миелин с характерными перехватами Ранвье и т.п. Аналогичным путём идёт врастание регенерирующих волокон и в безмякотных нервах, но без образования миелина. Одновременно восстанавливаются и функции регенерировавших нервов.

Регенеративные процессы в ЦНС во многих отношениях остаются ещё не изученными, хотя частичное или полное функциональное восстановление при травмах центральной нервной системы в ряде случаев имеет место. В ЦНС к регенерации отрезанных отростков способны клетки Гольджи 1-го типа с длинными аксонами. Клетки Гольджи 2-го типа с короткими отростками, по-видимому, не способны к восстановлению утраченных отростков. Однако и в случае регенерации последняя носит абортивный характер, так как полному восстановлению перерезанных аксонов мешает сложный соединительнотканноглиальный рубец, возникающий на месте травмы или перерезки. В последнее время в опытах на млекопитающих, задерживая рост глиальной части рубца подкожным введением животному пиромена, удавалось наблюдать регенерацию некоторых перерезанных нервных пучков спинного и головного мозга.

Особый интерес представляет проблема образования раковых опухолей в нервной системе. Этот процесс представляет собой патологические изменения, происходящие в клетках нервной ткани, приводящие к непрерывному их делению. Никаких других своих функций такая клетка не выполняет, только делится. Причём скорость деления раковых клеток быстрая. Вновь образованные клетки заполняют собой все нервные пути, ткани и органы, препятствуя их нормальному функционированию, и сами продолжают процесс деления. Что служит толчком к началу процесса непрерывного деления нервных клеток, пока точно не известно, как и то, что может остановить этот уже начавшийся процесс. Имя того человека, кто даст ответы на эти вопросы и решит проблему борьбы с раковыми клетками, будет золотыми буквами записано в истории человечества и на доске почёта в каждом медицинском учреждении, работающим в этом направлении. Может это будет Ваше имя? Будем надеяться!

Дегенерация и регенерация ЦНС

1. Гомазков О.А. Нейрогенез, как адаптивная функция мозга. - М.: И-т биомедицинской химии, 2014. - 85 с.

2. Григорян А.С., Кругляков П.В. Клеточная терапия при травме мозга // Клет. трансплантология и тканевая инженерия. - 2008. Т.4, № 1. - С. 35-42.

3. Коржевский Д.Э. Петрова Е.С., Кирик О.В., Безлин Г.В., Сухорурока Е.Г. Нейральные маркеры, используемые при изучении дифференцировки стволовых клеток // Клет. трансплантология и тканевая инженерия. - 2010. - Т.5, № 3. - С. 57-63.

4. Коржевский Д.Э., Кирик О.В., Григорьев И.П., Сухорукова Е.Г. Сырцова М.А. Маркирование дифференцирующихся нервных клеток при изучении развития и патологии головного мозга // Вопросы морфологии ХХI века. - 2015. - Вып. 4. - С. 34-36.

5. Обухов Д.К., Пущина Е.В. Радиальная глия - как источник новых нейронов в постнатальном развитии ЦНС // Межд. журн. экспер. обр. - 2011. - № 6. - С. 10-11.

6. Обухов Д. К., Пущина Е. В., Вараксин А. А. Структура пролиферативных зон в ЦНС взрослых позвоночных животных // Вопросы морфологии ХХI века. - 2015. - Вып. 4. - С. 43-51.

7. Полежаев Л.В., Александрова М.А., Витвицкий В.Н. Трансплантация ткани мозга в биологии и медицине. - М.: Наука, 1993. - 239 с.

8. Пущина Е.В., Вараксин А.А., Обухов Д.К. Газообразные посредники в головном мозге симы // Журн.эвол.физиол. и биох. - 2012. - Т. 48. - С. 85-96.

9. Пущина Е.В., ,Вараксин А.А., Обухов Д.К. Репаративный нейрогенез в мозге и изменения в зрительном нерве взрослой форели после механического повреждения глаза // Онтогенез. - 2016. - Т. 47, № 1. - С. 1-24.

10. Семченко В.В., Еринеев С.И., Степанов С.С. Сергиенко Г.Г. Трансплантация незрелой нервной ткани в экспериментальной и клинической неврологии. - Омск: Омский дом печати, 2000. - 340 с.

11. Семченко В.В.. и др., Регенеративная биология и медицина. Книга I. Генные технологии и клонирование / под. ред, В.П. Пузырева и др. - Омск. 2012. - 296 с.

12. Яковлев А.В., Ситдикова Г.Ф. Физиологическая роль сероводорода в нервной системе // Гены и клетки. - 2014. - Т.9, № 3. - С. 34-44.

13. Ярыгин К.Н., Ярыгин В.Н.. Нейрогенез в центральной нервной системе и перспективы регенеративной неврологии // Журнал неврологии и психиатрии им. С. С. Корсакова. - 2012. - Т. 112, № 1. - С. 4-13.

14. Ярыгин К.Н. и др., Регенеративная биология и медицина Книга II. Клеточные технологии в терапии болезней нервной системы / под ред. В.Н. Ярыгина и др. - Екатеринбург-Омск, 2015. - 360 с.

15. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus // J Comp Neurol. - 2001. - Vol. 435. - P. 406-417.

16. Grandel H , Brand M. Comparative aspects of adult neural stem cell activity in vertebrates // Dev. Genes Evol. - 2013. - Vol. 223. - P. 131-147.

17. Pinto L., Götz M. Radial glial cell heterogeneity-The source of diverse progeny in the CNS // Progress in Neurobiology. - 2007. - Vol. 83. - P. 2-23.

18. Pushchina E.V., Obukhov D.K., Varaksin A.A., Shukla S. Neurochemical signaling and participation of H2S and NO in fishes adult neurogenesis // Nitric Oxide. - 2014. - Vol. 39 (Suppl). - P. 41-43.

19. Pushchina E.V., Obukhov D.K., Varaksin A.A. Structure, сhemoarchitectonics and postembryonic histogenesis of a central nervous system in a teleost fish // In book:Teleosts: Evolutionary Development, Diversity and Behavioral Ecology / Ed. Carone S. New York: - Nova Science Publishers Inc. - USA, 2014. - Ch. 5. - P. 97-152.

20. Pushchina E. V., Varaksin A. A., Obukhov D. K. Participation of neurochemical signaling in adult neurogenesis and differentiation // In book: Neurochemistry (edt. Th.Heinboocken). 2014. - Intech Corp. USA. Ch.8. - P. 225-255.

21. Pushchina E. V., Varaksin A. A., Obukhov D. K. Cystathionine β-Synthase in the CNS of Masu Salmon Oncorhynchus masou (Salmonidae) and Carp Cyprinus carpio (Cyprinidae) // Neurochemical Journal. - 2011. - Vol. 5. - P. 24-34.

22. Pushchina E.V., Obukhov D.K. Is the brain of cherri salmon a new model for investigation of postembryonic neurogenesis? // Engineering. Supplement. - 2012. - P. 76-79.

24. Zupanc G Towards brain repair: insights from teleost fish // Seminars in Cell & Developmental Biology. - 2009. - Vol. 20. - P. 683-690.

25. Zupanc G.K.H., Sîrbulescu R.F. Teleost Fish as a Model System to Study Successful Regeneration of the Central Nervous System // Current Topics in Microbiology and Immunology. - 2013. - Vol. 367. - P. 193-233.

Введение. Проблема физиологической и репаративной регенерации нервной системы всегда была в центре внимания нейробиологов и неврологов. В конце ХХ века большое количество исследований было посвящено исследованию трансплантации нервной ткани. (Полежаев и др., 1993; Семченко и др., 2000). Однако, несмотря на определенные достижения, полноценного приживления нервной ткани и восстановления функциональных связей при разного видах алло- и ксенотрансплантациях достигнуть не удалось.

Открытие нейрональных стволовых клеток (НСК), их обнаружение во взрослой нервной системе позвоночных животных и человека и развитие клеточных технологий позволило по новому взглянуть на эту проблему (Семченко и др. 2012; К.Н. Ярыгин, В.Н. Ярыгин, 2012; Ярыгин и др., 2015). В данной работе приводится краткий обзор собственных и имеющихся в литературе данных по регенерации нервной ткани в норме и в условиях эксперимента.

Нейрональные стволовые клетки (НСК) относятся к группе тканеспецифичных или региональных стволовых клеток. Они обладают характеристиками самоподдерживающейся популяции клеток, которые при дифференцировке способны давать нейроны, астроциты и олигодендроциты в развивающемся и взрослом мозге. Впервые они были обнаружены в ЦНС человека в 1995 году при анализе посмертных срезов мозга, окрашенных иммунногистохимически на BrdU (бромдезоксиуридин) (Gage et al., 1995). В настоящее время найден целый ряд нейрональных маркеров, которые позволяют более или менее надежно идентифицировать НСК и их потомки. Среди них следует отметить: ядерный антиген нервных клеток - NeuN; маркер нейробластов - даблкортин (DCX); нейрон-специфическую энолазу - NSE; молекулы адгезии нервных клеток - PSA-NCAM; цитоскелетные белки - нестин, β-тубулин III; транскрипционные факторы - Sox-1, Sox-2, Dlx2, Pax 6 и ряд других. Часть из этих маркеров специфична для клеток нервной ткани, другие направлены на выявление свойств, характерных для разных популяций стволовых клеток. (Гомазков, 2014; Коржевский и др., 2010, 2015).

Обнаружение НСК как в развивающемся, так и во взрослом мозге поставило вопрос об их происхождении. В ранний период эмбрионального развития НСК происходят из клеток нейроэпителия, которые путем симметричного и асимметричного деления дают начало нейронам, глиальным клеткам и клеткам-предшественникам, которые включаются в процессы нейрогенеза на более поздних этапах развития, включая постнатальный период. Характер деления клеток - один из механизмов выбора НСК путей развития. В случае симметричного митоза образуются две одинаковые дочерние клетки, которые либо сохраняют пролиферативный потенциал - т.е. остаются стволовыми, либо могут уйти на путь нейрогенеза или глиогенеза - опять же обе. При втором варианте симметричного деления популяция стволовых клеток может потерять способность к самообновлению и истощится. При ассиметричном делении одна клетка остается пролиферативной (стволовой), другая выходит в дифференцировку. При этом пул НСК сохраняется.

Популяция нейрональных клеток - предшественников достаточно гетерогенна. На основную роль предшественника в позднем пренатальном и в постнатальном периодах претендует т.н. «радиальная глия - RG». Она выполняет двоякую роль - ее отростки, пронизывающие всю толщу развивающейся стенки нервной трубки, служат направляющими для миграции молодых нейробластов, а также обладает потенциями НСК, давая начало новым популяциям нейронов и глии. Особо необходимо отметить, что именно из потомков радиальной глии формируются основная масса интернейронов коры головного мозга млекопитающих животных и человека. Иммунологически в клетках радиальной глии помимо маркеров, традиционных для глиальных клеток (ГКФБ, виментин, нестин), выявляются специфические маркеры радиальной глии: фермент ароматаза-В (Aro-B), BLBP (brain lipid binding protein) и GLAST - глутаматный транспортер. Фермент ароматаза-В (Aro-B) связан с синтезом ароматизированных стероидов и синтезируется в клетках радиальной глии мозга молодых и взрослых позвоночных животных. Для них также характерна экспрессия полисиаловой молекулы адгезии нервных клеток (PSA-NCAM), транскриптационного фактора Sox-2 и фактора RG2. Важно подчеркнуть, что в клетках радиальной глии обнаруживаются маркеры и нейрональной линии дифференцировки (ТН- тирозингидроксилаза, ГАМК и NADP - диафораза). (Обухов, Пущина, 2011). На роль нейрональных предшественников также претендуют клетки эпендимы, астроциты, NG2 клетки и танициты (Гомазков, 2014; Pinto, Götz. 2007).

Таким образом, во взрослом мозге позвоночных животных и человека сохраняются группы клеток-предшественников, которые обладают свойствами НСК и способны в течение длительного периода обновлять популяции нейронов и глии.

Нейрогенные ниши. Нейрональные стволовые клетки и их потомки находятся в тесном взаимодействии со многими элементами окружающей их структуры мозга, формируя вмести с ними своеобразную - нейрогенную нишу (stem niche). В ее состав входят НСК и их потомки, клетки эпендимы, астроциты, олигодендроциты, эндотелий капилляров мозга и компоненты межклеточного матрикса (Обухов и др., 2015). Клетки «ниши» способны экспрессировать целый ряд факторов, необходимых для сохранения популяции НСК и регуляции нейро- и глиогенеза. Среди факторов, влияющих на нейрогенез следует отметить группу транскрипционных факторов (Shh, Sox1, Sox2, Tbr1, Wnt, BMP, Notch1, Pax6 и др). Они действуют на разные стадии нейро- и глиогенеза, причем часто прямо противоположно. Например: транскрипционные факторы Notch1 и BMP подавляют нейрональную дифференцировку, направляя развитие клеток предшественников в глиальном направлении, а фактор Trb2 наоборот - стимулирует нейрогенез. Фактор Shh (sonic hedgehog) и транскрипционные факторы из семейства Sox регулируют процесс пролиферации клеток-предшественников. Эти факторы могут влиять и на другие этапы нейро-и глиогенеза, проходящие в пролиферативных зонах (миграцию нейробластов, образование определенных типов клеток, формирование отростков у нейронов, развитие синаптических связей). Разнообразные ростовые факторы (эпидермальный фактор роста - EGF, трансформирующий фактор роста - TGFa, основной фактор роста фибробластов - bFGF, инсулиноподобный ростовой фактор - IGF1, фактор роста эндотелия - VEGF; интерферон гамма - IFN-γ и др.) также влияют на пролиферацию и дифференцировку клеток-предшественников. Особое место среди сигнальных молекул занимают нейромедиаторы и нейромодуляторы. В настоящее время установлено, что нейроны вскоре после образования из клеток-предшественников и задолго до начала миграции и формирования межнейрональных связей начинают секретировать молекулы нейромедиаторов, которые оказывают существенное влияние на развитие клеток в течение эмбриогенеза, а также в ходе постэмбрионального нейрогенеза. В последнее время особое внимание уделяется роли газообразных посредников (NO, H2S, CO) в регуляции процессов нейрогенеза в пре- и постнатальном периодах развития ЦНС. Было показано, что они существенно влияют на процесс миграции нейробластов, рост аксонных и дендритных ветвлений, пролиферацию и апоптоз НСК и их потомков в нейрогенных нишах и за их пределами (Пущина и др., 2012; Яковлев, Ситдикова, 2014; Puschina et al., 2011, 2014).

Особо следует отметить, что сами НСК способны синтезировать и секретировать подобные вещества, действующие в данном случае по типу пара- или аутокринной регуляции.

Организация пролиферативных зон в мозге млекопитающих. Зоны взрослого нейрогенеза у млекопитающих, включая приматов, обнаружены в субвентрикулярной зоне (SVZ) латеральных мозговых желудочков конечного мозга и в субгранулярной зоне (SGZ) зубчатой фасции гиппокампа. Наличие подобных зон в других отделах ЦНС млекопитающих в настоящее время не доказано, а имеющиеся данные носят крайне противоречивый характер. (Ярыгин и др., 2014; Ярыгин, Ярыгин, 2012). Субвентрикулярная зона (SVZ) образована несколькими слоями клеток (от двух до пяти), в составе которых выделяют несколько типов клеток. Скорость увеличения числа новых клеток в зубчатой извилине гиппокампа (SGZ) взрослого мозга определяется как 9000 единиц в течение суток, что составляет примерно 6 % от ощего количества нейронов в зубчатой фасции гиппокампа крысы.или около 250 тысяч в месяц. (Cameron, McKay, 2001). Вновь образованные нервные клетки мигрируют на места своей локализации в данной структуре мозга, формируют систему отростков и синапсов и встраиваются в функциональные нейронные сети. Cледует отметить, что, хотя факт интеграции новых нейронов в существующие нейронные сети доказан, функциональные аспекты этого процесса во многом еще неясны.

В этом плане весьма интересным является обнаружение подобных пролиферативных зон в разных отделах головного мозга у представителей других групп позвоночных животных (рыб, амфибий, птиц). Взрослый нейрогенез у этих животных идет более интенсивно и дольше, чем у млекопитающих. (Обухов и др., 2015; Puschina et al., 2014; Grandel, Brand, 2013).

Взрослый нейрогенез и перспективы репаративной регенерации нервной ткани. Исследование последствий ишемии мозга показали, что она сопровождается усилением нейрогенеза в пролиферативных зонах и миграцией молодых клеток в зону повреждения. (Гомазков, 2014; Solway et al., 1998). Эти данные вызвали целую серию работ, направленных на изучение возможности использования НСК и их потомков для трансплантации в поврежденный мозг, а также поиска модельных объектов для экспериментальных работ (Григорьян, Кругляков, 2008; Семченко и др., 2012). Одной из удачных моделей явились рыбы разных видов. В серии работ с помощью иммуногистохимического маркирования PCNA (пролиферативного ядерного антигена), ядерного маркера нейрональной дифференцировки (HuCD), транскриптационного фактора Pax6 и серии других маркеров, в разных отделах мозга рыб был идентифицирован ряд пролиферативных зон (ПВЗ), свидетельствующих о наличии постоянного постнатального нейрогенеза в ЦНС рыб. (Обухов и др., 2015; Zupanc, 2009; Zupanc, Sîrbulescu, 2013; Puschina, Obukhov, 2012; Pushchina et al., 2014 a, b). Однако, в настоящее время неизвестно как этот процесс связан с нейрогенезом во взрослом мозге, и какие элементы матричных зон мозга рыб участвуют в репаративном нейрогенезе.

Были поставлены эксперименты на молоди нескольких видов рыб, которым наносили механическую травму в разные структуры мозга (зрительный нерв, крыша среднего мозга, полушария конечного мозга). При механическом повреждении разных отделов мозга молоди рыб (сетчатки, среднего мозга и мозжечка) было выявлено усиление пролиферативной активности как в традиционных пролиферативных зонах нейрогенеза (перивентрикулярные области), так зафиксировано появление новых нейрогенных участков. Процесс репарации после нанесения механической травмы глаза начинается с апоптоза поврежденных элементов. Апоптотический ответ наблюдается уже через полчаса после нанесения повреждающего воздействия и продолжается до 21 дня после нанесения травмы. Эти данные подтверждены результатами маркирования TUNEL-позитивных фрагментов ДНК в зоне повреждения (зрительного нерва), а также данными электронно-микроскопического анализа. Ультраструктурные изменения ядра свидетельствуют о различных стадиях процесса апоптоза в поврежденных клетках. Апоптоз, как механизм элиминации поврежденных в результате травмы клеток мозга рыб существенно отличается от такового у млекопитающих. У последних, основным способом элиминации поврежденных клеток в зоне травмы является некроз. Апоптоз же затрагивает незначительный объем клеток в прилегающих к травме областях. Наличие некроза в зоне травмы млекопитающих является одной из причин развития последующего вторичного воспаления в зоне повреждения, что в свою очередь вызывает дальнейшее нарастание некротического ответа в области травмы, в результате которого формируются большие полости, лишённые клеток. Эти полости, как правило, ограничены зоной реактивных астроцитов, создающих как механический, так и биохимический барьеры, затрудняющие рост нервных волокон и миграцию клеток в зону повреждения. В отличие от некроза при апоптозе отсутствуют признаки воспалительной реакции, а сами клетки впоследствии уничтожаются с помощью макрофагов/микроглии. Прижизненный мониторинг клеток в зоне повреждения с помощью мультифотонной конфокальной микроскопии показал, что уже через час после повреждающего воздействия наблюдается физиологический ответ со стороны макрофагов и микроглии, которые мигрируют в область нанесения механической травмы и активно участвуют в элиминации поврежденных клеток с помощью фагоцитоза. Дифференцировка клеток в нейрональном направлении, обнаруженная при помощи маркирования клеток антителами против белка HuC/D, происходила в пролиферативных зонах теленцефалона, зрительного тектума, мозжечка и продолговатого мозга форели уже через 2 дня после травмы (Пущина и др., 2016; Puschina et al., 2014).

Таким образом, показано, что после механической травмы в мозге экспериментальных животных источником новых нейронов являются появляющиеся в пролифератиных областях мозга новые зоны индуцированного нейрогенеза: нейрогенные ниши и участки вторичного нейрогенеза. (Пущина и др., 2016). Полученные данные послужат основой для дальнейших исследований особенностей постнатального нейрогенеза в ЦНС животных и человека в норме и при патологии.

Работа выполнена при финансовой поддержке гранта Президента РФ (МД 4318.2015.04) и Программы фундаментальных исследований ДВО РАН «Дальний Восток» (проект № 15-I-6-116).

Дегенеративные заболевания ЦНС

Дегенерация центральной нервной системы представляет собой необратимые органические и функциональные изменения в спинном и головном мозге, которые приводят к психической дегенерации. Выделяют множество видов заболеваний, последствием которых являются нарушения работы нервной системы. Соответственно, лечение будет зависеть от вида заболевания и причин, его вызывающих. К сожалению, далеко не все болезни ЦНС поддаются лечению. Успешную терапию дегенеративных заболеваний ЦНС выполняют в Юсуповской больнице.

Дегенеративные заболевания ЦНС

Дегенеративные заболевания ЦНС: общие понятия

Основными характеристиками группы дегенеративных заболеваний ЦНС являются следующие критерии:

  • заболевания начинаются незаметно, до их появления нервная система могла работать абсолютно нормально;
  • заболевания имеют постепенно прогрессирующее течение, могут длиться годы или десятилетия;
  • некоторые дегенеративные заболевания связаны с наследственными факторами и развиваются у нескольких членов одной семьи;
  • нейродегенеративное заболевание ЦНС характеризуется постепенной гибелью нейронов и заменой их глиальными элементами;
  • атрофические процессы на начальной стадии развития патологии возникают в каком-либо определенном участке одного из полушарий головного мозга; далее в периоде развернутой стадии дегенерации атрофия в головном мозге становится практически симметричной.

Различные заболевания ЦНС, список которых достаточно длинный, остаются на стадии изучения. Достоверно неизвестны причины возникновения атрофических процессов при нормальном функционировании нервной системы большую часть жизни человека. Тем не менее, существует ряд факторов, которые могут провоцировать дегенерацию головного мозга:

  • злоупотребление алкоголем, наркомания;
  • токсическое влияние пестицидов и гербицидов;
  • менингококковая инфекция;
  • вирусные энцефалиты;
  • дефицит витамина В12 и фолиевой кислоты.

Органические заболевания ЦНС

Наличие органического заболевания центральной нервной системы означает, что головной мозг неполноценен. Патология может быть врожденной или приобретенной. Неврологи утверждают, что органические нарушения ЦНС первой стадии можно найти у 98% населения, однако они не требуют лечения. Вторая и третья стадии характеризуется более серьезными поражениями и сопровождаются значительными отклонениями.

Врожденные органические поражения головного мозга происходят в период эмбрионального развития или во время родов в результате родовой травмы. Причинами их появления могут быть неблагоприятные факторы, которые влияли на беременную женщину:

  • употребление женщиной алкоголя, наркотиков;
  • тяжелое течение гриппа или других инфекционных заболеваний во время беременности;
  • действие некоторых лекарственных препаратов;
  • сильный стресс.

Приобретенные органические поражения могут возникнуть после инсульта, черепно-мозговой травмы, злоупотребления алкоголем и наркотиками, инфекционных заболеваний с поражением головного мозга.

Среди болезней, которые вызваны органическими поражениями ЦНС, выделяют олигофрению и деменцию. При олигофрении происходит задержка умственного развития. Заболевание возникает в период внутриутробного развития или на первом году жизни. У детей снижен интеллект, плохо развивается речь и моторика. При деменции происходит утрата уже приобретенных навыков и знаний. Постепенно деменция приводит к полной деградации человека. Рассматривая данное заболевание ЦНС, симптомы выделяют следующие: нарушение памяти, речи, ориентации в пространстве, человек не может учиться новому и теряет старые навыки и знания.

Инфекционные заболевания ЦНС

Инфекция может поражать нервную систему как первичное заболевание или возникнуть вторично, в результате развития инфекционного процесса вне ЦНС. К инфекционным заболеваниям ЦНС относят:

  • менингит,
  • энцефалит,
  • полиомиелит,
  • сифилис нервной системы,
  • токсоплазмоз нервной системы,
  • неврологические проявления ВИЧ-инфекции,
  • паразитарные заболевания нервной системы.

Сосудистые заболевания ЦНС

Нарушение кровообращения в головном мозге провоцирует развитие сосудистых заболеваний ЦНС. Эти патологии чрезвычайно опасны, поскольку приводят в большинстве случаев к инвалидизации человека. Также сосудистые заболевания ЦНС имеют большой процент смертности. Поражение головного мозга происходит в результате ишемических и геморрагических инсультов, транзиторных ишемических атак, спонтанных субарахноидальных кровоизлияний. Причинами подобных патологий являются:

  • аневризмы,
  • тромбоэмболии,
  • атеросклероз сосудов,
  • гипертоническая болезнь,
  • острые токсические поражения стенок сосудов,
  • хронические дегенеративные заболевания стенок сосудов.

Пусковым механизмом развития инсультов могут быть сильные стрессы, судорожные припадки, алкогольная интоксикация, резкие перепады температуры тела. Сосудистое заболевание ЦНС чаще всего возникает спонтанно и требует незамедлительного обращения за медицинской помощью.

Лечение и диагностика дегенеративных заболеваний ЦНС

Опасность дегенеративных заболеваний ЦНС состоит в том, что их сложно предвидеть. При наличии провоцирующих факторов в жизни человека рекомендуется вести здоровый образ жизни и регулярно посещать невролога для профилактических осмотров. Заподозрив признаки заболевания ЦНС, следует немедленно обратиться к врачу. Чем раньше будет выявлено заболевание, тем больше шансов замедлить прогрессирование дегенеративных процессов в головном мозге.

Диагностика и лечение дегенеративных заболеваний будет зависеть от вида патологии. Определив клиническую картину болезни, врач назначит исследования для уточнения состояния пациента. Они могут включать лабораторные анализы, УЗИ, МРТ, КТ, и психологические тесты для определения состояния когнитивных навыков.

В Юсуповской больнице города Москвы работает клиника неврологии, в которой оказывают помощь высококвалифицированные неврологи, доктора наук. Врачи Юсуповской больницы имеют большой опыт лечения дегенеративных заболеваний ЦНС и используют в своей работе новейшие методики терапии и реабилитации, что позволяет браться за самые сложные случаи.

Обратиться за помощью, записаться на прием и получить консультацию специалистов можно по телефону.

Дегенерация и регенерация нервной ткани.

Нейроглия ЦНС, шванновские клетки и глиальные клетки - сателлиты периферической нервной системы, в отличие от нервных клеток, обладают значительными пролиферативными способностями. Это обнаруживается при выявлении некоторых опухолей, например, глиом нервной системы, после ампутационных нервных рубцов, производных глии в культурах ткани (Н.Г. Хлопин, 1947). Нейроглия играет важную роль в процессах регенерации периферических и, по-видимому, центральных нервных волокон. Нейроны, как правило, не обладают способностью к размножению. При повреждении тела нервной клетки она обычно погибает и фагоцитируется микроглиальными элементами. Фагоциты (от лат. Fagos - пожирать) - клетки микроглии, которые обладают способностью поглощать погибшие части нейронов. Если повреждается (в результате перетяжки, травмы и пр.) аксон нервной клетки, то в теле соответствующего нейрона наступает ряд характерных изменений. Во-первых, наблюдается хроматолиз, т.е. разрушение и растворение субстанции Ниссля, представляющей собой шероховатую эндоплазматическую сеть со скоплением рибосом в теле нейрона. Одновременно вследствие потери воды размеры тела нервной клетки и её ядра могут уменьшаться, цитоплазма вакуолизируется, ядро занимает краевое положение и меняет форму. Число нейрофибрилл в клетке уменьшается, они делаются тоньше и плохо различимыми. Центральный и периферический отрезки перерезанного аксона, его мякотная и безмякотная оболочки претерпевают распад; на некотором расстоянии от места поврежедения миелин растворяется. Вся эта картина получила название “первичной реакции Ниссля”, или ретроградной клеточной дегенерации, а для центрального и периферического отрезка аксона - травматической дегенерации. Особенно сложно протекают изменения в периферическом отрезке перерезанного аксона или, если речь идёт о нерве, в периферическом отрезке нерва. Эти изменения называются вторичной, или валлеровской, дегенерацией нервных волокон. Во время валлеровской дегенерации периферические отрезки аксонов, потерявшие связь с телом нервной клетки, являющейся их трофическим центром, распадаются и полностью дегенерируют. Миелиновая оболочка распадается; миелин собирается в капли, в которых иногда ещё можно проследить обломки периферических аксонов. Шванновские клетки, трофически независимые от тела нервной клетки, начинают активно пролиферировать, образуя своеобразные глиальные тяжи, которые способствуют регенерации (отрастанию) центрального отрезка перерезанного аксона. Шванновские клетки образуют синцитиальные вытянутые ленты, которые получили название «бюнгеровых тяжей». Они растут по направлению к центральным отрезкам. В безмякотных нервах процессы вторичной дегенерации протекают сходным образом. Фрагменты распавшихся нервных волокон также растворяются шванновскими клетками и поглощаются фагоцитами. Регенерация обычно начинается на центральных концах отрезанных аксонов, которые образуют утолщения - колбы роста, наподобие тех, которые наблюдаются у нейробластов. Однако электронная оптика показала, что регенерация может происходить и значительно выше новообразованных колб роста путём преобразования коллатералей, отходящих от аксона. В регенерирующихся шванновских элементах наблюдается повышенная активность ряда ферментов, в том числе и окислительных.

Регенеративные процессы в ЦНС во многих отношениях остаются ещё не изученными, хотя частичное или полное функциональное восстановление при травмах центральной нервной системы в ряде случаев имеет место. В ЦНС к регенерации отрезанных отростков способны клетки Гольджи 1-го типа с длинными аксонами. Клетки Гольджи 2-го типа с короткими отростками, по-видимому, не способны к восстановлению утраченных отростков. Однако и в случае регенерации последняя носит абортивный характер, так как полному восстановлению перерезанных аксонов мешает сложный соединительнотканноглиальный рубец, возникающий на месте травмы или перерезки. В последнее время в опытах на млекопитающих, задерживая рост глиальной части рубца подкожным введением животному пиромена, удавалось наблюдать регенерацию некоторых перерезанных нервных пучков спинного и головного мозга.

Особый интерес представляет проблема образования раковых опухолей в нервной системе. Этот процесс представляет собой патологические изменения, происходящие в клетках нервной ткани, приводящие к непрерывному их делению. Никаких других своих функций такая клетка не выполняет, только делится. Причём скорость деления раковых клеток быстрая. Вновь образованные клетки заполняют собой все нервные пути, ткани и органы, препятствуя их нормальному функционированию, и сами продолжают процесс деления. Что служит толчком к началу процесса непрерывного деления нервных клеток, пока точно не известно, как и то, что может остановить этот уже начавшийся процесс. Имя того человека, кто даст ответы на эти вопросы и решит проблему борьбы с раковыми клетками, будет золотыми буквами записано в истории человечества и на доске почёта в каждом медицинском учреждении, работающим в этом направлении. Может это будет Ваше имя? Будем надеяться!

Читайте также: