Полиморфизм ДНК: варианты

Обновлено: 28.09.2022

Тромбофилия (от греч. trhombos – сгусток и philia – склонность) – состояние системы крови, которое проявляется в нарушении гемостаза, склонности к развитию рецидивирующих сосудистых тромбозов (преимущественно венозных) различной локализации и часто возникает в

связи с беременностью, после хирургического вмешательства, травмы или физического пере-

напряжения. Заболевание обусловлено генетической (у 30–50 % с тромботическим состоянием) или приобретенной патологией клеток крови, а также дефектами свертывающей системы крови. При этом тромбофилия еще не тромбоз, но при этом наблюдается готовность организма к тромбообразованию.

Генетическая предрасположенность к тромбофилии может реализоваться через генетические дефекты как свертывающей, так и противосвертывающей (антикоагулянтной и фибринолитической) систем крови, при которых имеется готовность к тромбозу. Тромбозом называют прижизненное образование сгустков крови в просвете сосудов или в полостях сердца.

Еще одной важной проблемой является назначение оральных контрацептивов. Оральная контрацепция является одним из самых надежных способов предотвращения нежелательной беременности, но сопряжена с риском тромбозов. Показано, что сама по себе гормональная контрацепция незначительно повышает риск тромбозов, но при носительстве определенного генотипа опасность резко возрастает. Согласно Национальным медицинским критериям приемлемости методов контрацепции 2012 года и четвертой редакции «Медицинских критериев приемлемости для использования методов контрацепции», разработанных ВОЗ в 2009 году, для предотвращения тромбозов и тромбоэмболических осложнений при приеме оральных контрацептивов рекомендовано выявление тромбогенных мутаций (F2 – протромбиновая мутация, F5 – фактор Лейдена).

Генетический анализ позволяет выявить полиморфизмы генов факторов системы гемостаза, обусловливающих их аномальный синтез или нарушение функциональной активности. Это помогает оценить риски развития сердечно-сосудистой патологии и акушерско-гинекологических осложнений, тромбоэмболии, венозных и артериальных тромбозов. Скрининг генетических особенностей тромбофилий помогает на раннем этапе выявить группу риска и внести соответствующие коррективы в тактику ведения пациентов.

Показания к назначению профиля «генетика тромбофилии»:

  1. случаи наследственной тромбоэмболии в семье;
  2. случаи тромбоза в анамнезе:

единичный до 50 лет;

в любом возрасте при наличии семейного анамнеза;

необычной локализации (портальные, брыжеечные, мозговые вены);

непонятной этиологии после 50 лет;

  1. применение гормональной контрацепции или гормональной заместительной терапии у женщин, которые имеют тромбозы в анамнезе, родственников первой степени родства с диагностированной наследственной тромбофилией или семейный анамнез тромбоэмболических осложнений
  2. осложненный акушерский анамнез;
  3. женщины, планирующие беременность, которые имеют тромбозы в анамнезе, родственников первой степени родства с диагностированной наследственной тромбофилией или семейный анамнез тромбоэмболических осложнений;
  4. ситуации высокого риска:

массивные хирургические вмешательства;

  1. профилактика тромботических осложнений у больных, имеющих злокачественные новообразования.

Полиморфизм гена коагуляционного фактора II(G20210A) (протромбин)

Настоящая мутация наследуется по аутосомно-доминантному типу и в гетерозиготном состоянии встречается у 2,3 % людей в общей популяции. Клинически ее можно заподозрить по постоянно высокому уровню протромбина в плазме крови (у 87% носителей превышает 115%). Риск развития тромбоза у носителей гетерозиготной аномалии повышается в 3 – 5 раз и более значительно при использовании оральных контрацептивов.

Показания к назначению: инфаркт миокарда, гиперпротромбинемия, тромбоэмболические состояния в анамнезе, невынашивание беременности, фетоплацентарная недостаточность, внутриутробная гибель плода и задержка развития плода, отслойка плаценты, перед большими полостными операциями.

Биологический материал для анализа : цельная кровь, стабилизированная ЭДТА

Полиморфизм гена коагуляционного фактора V (акцелератор-глобулин) (Лейден)

Мутация наследуется по аутосомно-доминантному типу. Аллельная частота от 2,9 до 7,8% (в среднем 4,4%). FVL (Лейден) увеличивает риск преимущественно венозного тромбоза у лиц моложе 40 – 45 лет в 3 – 4 раза, особенно на фоне беременности, послеродового периода, длительной иммобилизации, больших хирургических вмешательств и приема оральных контрацептивов.

Показания к назначению: венозный тромбоз, тромбоэмболические заболевания в молодом возрасте, рецидивирующие тромбоэмболии, сердечно-сосудистые заболевания в семейном анамнезе, невынашивание беременности, фетоплацентарная недостаточность, внутриутробная гибель плода и задержка развития плода, отслойка плаценты, перед большими полостными операциями, прием пероральных контрацептивов.

Полиморфизм гена коагуляционного фактора VII(G10976A) (проконвертин)

Вариант 353Gln (10976A) приводит к понижению производительности (экспрессии) гена фактора VII и является защитным фактором в развитии тромбозов и инфаркта миокарда. Распространенность данного варианта в европейских популяциях составляет 10-20%. При исследовании пациентов со стенозом коронарных артерий и инфарктом миокарда обнаружено, что наличие мутации 10976A приводит к понижению уровня фактора VII в крови на 30% и 2-х кратному понижению риска инфаркта миокарда даже при наличии заметного коронарного атеросклероза.

Показания к назначению: оценка риска инфаркта миокарда и фатального исхода при инфаркте миокарда, тромбоэмболические заболевания в анамнезе.

Полиморфизм гена коагуляционного фактора XIII(G103T) (фибриназа)

Фибриназа - энзим, ответственный за конечную стадию в каскаде коагуляции крови человека. Фактор 13A катализирует сшивание мономеров фибрина через образование связей между аминокислотами, приводя к образованию фибрина, обладающего значительной механической силой и резистентностью к протеолитической деградации плазмином. Кроме своей основной функции в свертывании крови, фактор 13 играет роль в стабилизации клеточной поверхности мембран. Распространенность мутантного аллеля Т в европейской популяции около 20%. Считается, что эта мутация ведет к изменению кинетики сшивания фибрина - фибриновые волокна более тонкие и уменьшается их пористость.

Полиморфизм гена коагуляционного фактора I(G455A) (фибриноген)

При повреждении кровеносных сосудов фибриноген переходит в фибрин - основной компонент кровяных сгустков (тромбов). Мутация -455А бета фибриногена (FGB) сопровождается повышенной производительностью (экспрессией) гена, что приводит к повышенному уровню фибриногена в крови (до 130%) и увеличивает вероятность образования тромбов. Распространенность данного варианта в европейских популяциях составляет 5-10%.

Показания к назначению: повышенный уровень фибриногена плазмы, повышенное кровяное давление, повышенная вероятность тромбообразования, инсульт.

Полиморфизм гена ингибитора активатора плазминогена PAI-1(5G/675/4G)

Один из основных компонентов тромболитической плазминоген-плазминовой системы, PAI-1 ингибирует тканевый и урокиназный активаторы плазминогена. Вариант 4G приводит к повышенной экспрессии гена и, следовательно, к повышенному уровню PAI-1 в крови. Следовательно, тромболитическая система заторможена и риск тромбообразования возрастает. Гомозиготный вариант 4G полиморфизма –675 4G/5G является фактором риска развития различных тромбозов и инфаркта миокарда (при носительстве риск повышается в 4.5-раза, у мужчин - в 6 раз), также приводит к повышению риска тромбообразования во время беременности и, как следствие, повышению риска нарушения функции плаценты и невынашивания беременности. Распространенность гомозиготной формы данного варианта в европеоидных популяциях составляет 5-8%.

Показания к назначению: портальный тромбоз и другие тромбоэмболические состояния в анамнезе, инфаркт миокарда, ИБС, повышение концентрации ингибитора активатора плазминогена в крови, мутация ITGB3, ожирение.

Полиморфизм гена тромбоцитарного рецептора (интегрина) ITGA2(C807T)

Данный рецептор, влияет на адгезию тромбоцитов на коллагене и других субстратах, а также участвует в реорганизации межклеточного матрикса. Генетические варианты GPIa могут приводить к изменению кинетики адгезии тромбоцитов. Вариант C807T встречается с частотой 5,7% и является маркером кардиоваскулярных заболеваний и артериальным тромбоэмболиям. Исследование 177 пациентов с инфарктом миокарда (средний возраст 57 лет) и 89 здоровых доноров показало значительную разницу в распределении частот вариантов 807C и 807T между двумя группами. Более высокая частота гомозиготного варианта 807T у пациентов соответствовала почти 3-кратному повышению риска инфаркта

Показания к назначению: cемейный анамнез ранней ИБС, инфаркт миокарда, тромбоэмболические состояния в анамнезе, постангиопластические тромбозы, неонатальная тромбоцитопения, антитромботическая терапия аспирином.

Полиморфизм гена тромбоцитарного рецептора (интегрина) ITGB3(T1565C)

Показания к назначению: Семейный анамнез ранней ИБС, инфаркт миокарда, тромбоэмболические состояния в анамнезе, постангиопластические тромбозы, неонатальная тромбоцитопения, антитромбозная терапия аспирином.

Полиморфизм ДНК: варианты

Огромное количество информации о последовательности ДНК, полученное в результате работы над проектом «Геном человека» от многих сотен индивидуумов во всех странах, предоставило возможность предварительно охарактеризовать типы и частоты полиморфных изменений в последовательности ДНК человека.

В результате начато формирование каталогов разнообразия последовательности ДНК человека. Полиморфизм ДНК может быть классифицирован по тому, как в разных аллелях изменяется последовательность ДНК.

Однонуклеотидный полиморфизм ДНК

Самый простой и наиболее частый вариант полиморфизма — однонуклеотидный полиморфизм (ОНП). SNP обычно имеет только два аллеля, соответствующих двум основаниям, занимающим конкретную позицию в геноме. SNP встречаются часто, в среднем в каждой 1000 пар оснований, что означает около 3 000 000 различий между любыми двумя геномами человека.

Общее число варьирующих локусов среди всех людей значительно больше и оценивается числом более 10 000 000, хотя и эта оценка, вероятно, занижена, поскольку пока еще нет полного каталога всех, особенно редких, вариантов в каждой этнический группе по всему земному шару. В популяциях разных стран уже каталогизировано много миллионов SNP.

Приблизительно 10% наиболее частых SNP отобрано в качестве маркеров для высокоточной карты генома человека, известной как карта гаплотипов (НарМар — haplotype map).

Значение огромного количества полиморфных SNP для здоровья — предмет активного исследования. То, что SNP бывают так часто, не означает, что они должны оказаться нейтральными и не оказывать влияния на здоровье или длительность жизни. Это может значить, что влияние частых SNP скорее слегка изменяет восприимчивость к болезни, чем прямо вызывает тяжелые недуги.

полиморфизм ДНК

Полиморфизм инсерций-делеций ДНК

Следующий класс полиморфизма — результат изменений, вызываемых инсерцией или делецией от 2 до 100 нуклеотидов (инделов). Число инделов измеряется в геноме сотнями тысяч. Приблизительно половина всех инделов называется простыми, поскольку они имеют только два аллеля, т.е. либо присутствие, либо отсутствие включенного или удаленного сегмента; другая половина — мультиаллельная из-за переменного числа сегментов ДНК, повторяющихся тандемно в конкретной позиции. Мультиаллельные инделы подразделяются на микросателлитные и мини-сателлитные полиморфизмы.

Микросателлиты. Микросателлиты — последовательности ДНК, состоящие из блоков длиной в два, три или четыре нуклеотида, например, TGTG. TG, СААСАА. САА или АААТАААТ. АААТ, повторяющихся от одного до нескольких десятков раз. Разные аллели при микросателлитном полиморфизме — результат различающегося числа повторов нуклеотидных блоков, содержащихся в микросателлите, поэтому их часто называют полиморфизмом коротких тандемных повторов или STRP.

Микросателлитный локус часто имеет множество аллелей (числа повторов) в популяции и может быть легко генотипирован определением размера ПЦР-фрагментов, сгенерированных праймерами, фланкирующими микросателлитные повторы. В геноме человека известны десятки тысяч микросателлитных полиморфных локусов.

Мини-сателлиты. Другой класс индел-полиморфизма вызван последовательными инсерциями переменного числа (обычно сотен тысяч) копий последовательности ДНК от 10 до 100 пар оснований, известных как мини-сателлиты. Этот класс полиморфизма имеет множество аллелей, различающихся числом тандемно повторяющихся копий мини-сателлита, так называемое переменное число тандемных повторов (VNTR).

Наиболее информативные маркеры имеют несколько десятков или больше аллелей, так что вероятность для не имеющих родственных отношений людей иметь одинаковые аллели очень мала. Хотя полагают, что большинство инделов, независимо от того, простые, они, STRP или VNTR, не имеют никакого значения для здоровья, некоторые VNTR вовлечены в развитие болезней.

Мини-сателлитные последовательности повторов, обнаруживаемые в большинстве случаев полиморфизма типа VNTR, достаточно сходны друг с другом, что делает возможным обнаружение многих локусов одновременно при использовании одного мини-сателлитного фрагмента как зонда в одном анализе блот-гибридизации по Саузерну.

Только идентичные близнецы показывают неразличимые анализы, поэтому одновременное обнаружение полиморфизма множества мини-сателлитов было одним из первых методов ДНК типирования, использованных для установления идентичности образцов. Обнаружение полиморфизма мини-сателлитов блоттингом по Саузерну в основном заменено типированием микросателлитов с помощью ПЦР. Например, Федеральное бюро расследований в Соединенных Штатах к настоящему времени использует 13 STRP-маркеров для панели типирования ДНК. Два человека (кроме монозиготных близнецов) с настолько малой вероятностью могут иметь идентичные генотипы по всем 13 локусам, что панель позволяет точно определить, происходят ли два образца от одного и того же человека.

Полиморфизм числа копий ДНК

Последняя, совсем недавно открытая форма полиморфизма у человека — полиморфизм числа копий (CNP). CNP представляет собой изменения в числе копий больших сегментов генома, в диапазоне от 200 пар оснований до почти 2 миллионов пар. CNP могут иметь только два аллеля (т.е. присутствие или отсутствие сегмента) или многочисленные аллели из-за присутствия 0,1, 2, или 3 или больше копий сегмента ДНК в тандеме. CNP выявлены только недавно, поскольку удаленный или повторяющийся участок обычно слишком мал, чтобы быть видимым при цитогенетическом исследовании, но слишком велик для обнаружения секвенированием ДНК.

Однако CNP легко обнаруживается при применении новой технологии — сравнительной матричной (чиповой) гибридизации генома. Как и для всего полиморфизма ДНК, влияние различных аллелей CNP на здоровье и восприимчивость к болезням в основном неизвестно, но интенсивно исследуется. CNP составляет основу общей изменчивости, которая окажется понятной, если будут правильно интерпретированы изменения в количестве копий, наблюдаемом у пациентов.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Генетика группы крови и их полиморфизмы

Хотя весь полиморфизм — результат различий в последовательности ДНК, некоторые полиморфные локусы исследованы проверкой изменений в белках, кодируемых этими аллелями, а не изучением различий в ДНК-последовательности самих аллелей. Считают, что любой человек вероятно гетерозиготен по аллелям, определяющим структурно различающиеся полипептиды, приблизительно в 20% всех локусов; при сравнении индивидуумов из разных этнических групп полиморфизм обнаруживают даже в большей доле белков.

Таким образом, в пределах человеческого вида существует поразительная степень биохимической индивидуальности в характеристиках ферментов и других продуктов генов. Кроме того, поскольку продукты многих биохимических путей взаимодействуют, можно правдоподобно предположить, что каждый человек, независимо от состояния его здоровья, имеет уникальные, генетически определяемые биохимические характеристики и, таким образом, уникально отвечает на влияния окружающей среды, диетические и фармакологические факторы.

Это понятие химической индивидуальности, впервые выдвинутое столетие назад замечательным британским врачом Арчибальдом Гарродом, оказалось правильным.

Здесь мы обсудим несколько полиморфизмов, имеющих медицинское значение: группы крови АВО и резус-фактор Rh (важные в определении совместимости для переливаний крови) и МНС (играющий важную роль в пересадке органов и тканей). Исследования изменений в белках, а не в кодирующей их ДНК, дают реальную пользу; в конце концов, именно различные белковые продукты различных полиморфных аллелей часто ответственны за различные фенотипы и, следовательно, определяют, как генетические изменения в локусе влияют на взаимодействие организма и среды.

Группы крови и их полиморфизмы

Первые примеры генетически предопределенных изменений белков были обнаружены в эритроцитах, так называемые антигены групп крови. Известно большое число полиморфизмов в компонентах человеческой крови, особенно в АВО и Rh антигенах эритроцитов. В частности, системы АВО и Rh важны при переливании крови, пересадке тканей и органов и при гемолитической болезни новорожденного.

группы крови

Система АВО групп крови

Человеческая кровь может относиться к одной из четырех групп, в соответствии с наличием на поверхности эритроцитов двух антигенов, А и В, и присутствия в плазме двух соответствующих антител, анти-А и анти-В. Существует четыре основных фенотипа: 0, А, В и АВ. Люди с группой А имеют на эритроцитах антиген А, с группой В имеют антиген В, с группой АВ — как антигены А, так и В, и наконец с группой 0 не имеют ни одного антигена.

Одна из характеристик групп АВО не распространяется на другие системы групп крови — это реципрокные отношения между наличием антигенов на эритроцитах и антител в сыворотке. Когда на эритроцитах отсутствует антиген А, сыворотка содержит анти-А антитела; когда отсутствует антиген В, сыворотка содержит анти-В антитела. Причина реципрокного отношения неизвестна, но полагают, что образование анти-А и анти-В антител — ответ на присутствие А- и В-подобных антигенов в окружающей среде (например, в бактериях).

Группы крови АВО определяются локусом в хромосоме 9. Аллели А, В и 0 в этом локусе — классический пример мультиаллелизма, когда три аллеля, два из которых (А и В) наследуются как кодоминантные, а третий (0) — как рецессивный признак, определяют четыре фенотипа. Антигены А и В определяются действием аллелей А и В на поверхностный гликопротеид эритроцитов, названный антигеном Н.

Специфичность антигенов определяется концевыми углеводами, добавляемыми к субстрату Н. Аллель В кодирует гликозилтрансферазу, преимущественно опознающую сахар D-галактозу и добавляющую его к концу цепочки олигосахаридов, содержащейся в антигене Н, тем самым создавая антиген В. Аллель А кодирует немного отличающуюся форму фермента, распознающую и добавляющую к субстрату вместо D-галактозы N-ацетилгалактозамин, создавая тем самым антиген А. Третий аллель, 0, кодирует мутантную версию трансферазы, не обладающую трансферазной активностью и не влияющую на субстрат Н.

Определены молекулярные различия в гене гликозилтрансферазы, ответственной за аллели А, В и 0. Последовательность из четырех различных нуклеотидов, различающаяся между аллелями А и В, приводит к изменениям аминокислот, изменяющим специфичность гликозилтрансферазы. Аллель 0 имеет однонуклеотидную делецию в кодирующей области гена АВО, вызывающую мутацию сдвига рамки и инактивирующую активность трансферазы у людей с группой 0. Теперь, когда известны ДНК-последовательности, определение групповой принадлежности по системе АВО можно выполнять непосредственно на уровне генотипа, а не фенотипа, особенно когда есть технические трудности в серологическом анализе, что часто случается в судебной практике или при установлении отцовства.


На видео представлена техника определения группы крови стандартными сыворотками: Видео определения группы крови

Первичное медицинское значение системы АВО — в переливании крови и пересадке тканей или органов. В системе групп крови АВО есть совместимые и несовместимые комбинации. Совместимая комбинация — когда эритроциты донора не несут антиген А или В, соответствующий антителу в сыворотке реципиента. Хотя теоретически существуют «универсальные» доноры (группа 0) и «универсальные» реципиенты (группа АВ), пациенту переливают кровь его собственной группы АВО, за исключением экстренных ситуаций.

Постоянное присутствие анти-А и анти-В антител объясняет неудачи многих ранних попыток переливания крови, поскольку эти антитела могут вызывать быстрое уничтожение АВО-несовместимых клеток. При пересадке тканей и органов для успешного приживания необходима совместимость донора и реципиента по группе АВО и HLA (описанной позже).

Система Rh групп крови

По клиническому значению система Rh сравнима с системой АВО из-за своей роли в развитии гемолитической болезни новорожденных и в несовместимости при переливаниях крови. Название Rh происходит от обезьян резусов (Rhesus), использовавшихся в экспериментах, приведших к открытию системы. Проще говоря, популяция разделяется на Rh-положительных индивидуумов, экспрессирующих в эритроцитах антиген Rh D, полипептид, закодированный геном (RHD) в хромосоме 1, и Rh-отрицательных, не экспрессирующих этот антиген. Отрицательный Rh-фенотип обычно вызван гомозиготностью по нефункциональному аллелю гена RHD. Частота Rh-отрицательных индивидуумов сильно изменяется в разных этнических группах. Например, 17% белых и 7% афроамериканцев Rh-отрицательны, тогда как среди японцев — всего 0,5%.

Гемолитическая болезнь новорожденных и группы крови

Главное клиническое значение системы Rh — то, что Rh-отрицательные лица могут легко формировать анти-Rh антитела после встречи с Rh-положительными эритроцитами. Это становится проблемой, когда Rh-отрицательная беременная вынашивает Rh-положительный плод. В норме в течение беременности небольшие количества крови плода пересекают плацентарный барьер и попадают в материнский кровоток. Если мать Rh-отрицательна, а плод Rh-положителен, мать формирует антитела, возвращающиеся к плоду и повреждающие его эритроциты, вызывая гемолитическую болезнь новорожденных с серьезными последствиями.

В свое время считавшаяся наиболее частым генетическим заболеванием у человека, гемолитическая болезнь новорожденных теперь встречается сравнительно редко из-за профилактических мер, ставших в акушерстве установившейся практикой.

Генетический полиморфизм. Геномика персонализированной медицины

Большинство оценок частоты мутаций использует обнаружение патологических мутаций с явным влиянием на фенотип. Тем не менее существует масса непатогенных мутаций, считающихся относительно нейтральными; а некоторые могут даже быть полезными. В ходе эволюции устойчивый приток новых изменений нуклеотидов гарантировал высокую степень генетического разнообразия и индивидуальности.

Это распространяется на все области генетики человека и медицинской генетики. Генетическое разнообразие может проявляться в виде изменений в окраске хромосом, изменения числа копий сегментов ДНК, нуклеотидных замен в ДНК, изменений в белках или же как болезнь.

ДНК последовательности каждого участка хромосомы в высшей степени сходны у большинства людей в мире. Фактически произвольно выбранный сегмент ДНК человека размером около 1000 пар оснований содержит, в среднем, только одну пару, отличающуюся на двух гомологичных хромосомах, унаследованных от родителей (если предположить, что родители не родственники).

Эта почти в 2,5 раза больше, чем оценка доли гетерозиготных нуклеотидов для кодирующих белок областей генома (примерно 1 на 2500 пар оснований). Различие неудивительное, поскольку интуитивно понятно, что регионы, кодирующие белок, находятся под более жестким давлением отбора, и таким образом встречаемость мутаций в таких регионах в эволюции должна быть более низкой.

генетический полиморфизм

Когда вариант встречается настолько часто, что его обнаруживают более чем в 1% хромосом в общей популяции, его называют генетическим полиморфизмом. Аллели с частотами менее чем 1% принято называть редкими вариантами. Хотя много патологических мутаций, приводящих к генетическим болезням — редкие варианты, нет простой корреляции между частотой аллеля и его влиянием на здоровье. Много редких вариантов не имеют патогенных эффектов, тогда как некоторые варианты, достаточно частые, чтобы считаться полиморфизмами, предрасполагают к тяжелым болезням.

Существует много типов полиморфизма. Некоторые полиморфизмы — следствие вариантов, вызванных делециями, дупликациями, утроениями и так далее, сотен миллионов пар оснований ДНК, и не связаны с каким-либо известным патологическим фенотипом; другие изменения аналогичного размера оказываются редкими вариантами, явно вызывающими тяжелые болезни. Полиморфизмами могут оказаться изменения в одном или нескольких основаниях ДНК, расположенных между генами или в интронах, не связанные с функционированием генов и обнаруживаемые только прямым анализом ДНК.

Изменения последовательности нуклеотидов могут располагаться в кодирующей последовательности самого гена и приводить к образованию различных вариантов белков, в свою очередь вызывающих четко очерченные фенотипы. Изменения в регуляторных областях также могут быть важными в определении фенотипа, влияя на транскрипцию или стабильность мРНК.

Полиморфизм — ключевой элемент в исследовании и практическом использовании генетики человека. Способность различать унаследованные формы генов или других сегментов генома обеспечивают инструментальные средства, необходимые для широкого спектра приложений. Как показано в этой и последующих главах, генетические маркеры — мощное научно-исследовательское инструментальное средство картирования генов на конкретном регионе хромосомы при анализе сцепления или аллельной ассоциации.

Они уже широко используются в медицине — от пренатальной диагностики наследственных болезней до обнаружения гетерозиготного носительства, а также в банках крови и тканей для типиро-вания перед переливаниями и пересадками органов (см. далее в этой главе).

Полиморфизм — основа для развивающихся мероприятий по обеспечению основанной на геномике персонализированной медицины, когда медицинские мероприятия индивидуально подбирают на основе анализа полиморфных вариантов, увеличивающих или уменьшающих риск частых болезней взрослого возраста (например, заболевания коронарных сосудов сердца, опухолей и сахарного диабета), возникновения осложнений после хирургических вмешательств или влияющих на эффективность и безопасность конкретного лекарственного препарата. Наконец, анализ полиморфизма стал мощным новым средством в судебных приложениях, например, определении отцовства, определении останков жертв преступления или для сопоставления ДНК подозреваемого и преступника.

Генетические анализы при потерях беременности

Поскольку 80%[1] потерь приходятся на первые три месяца беременности, только этих ситуаций мы коснемся в статье. Причины потери беременности после 12 недель – предмет отдельного обсуждения.


Непросто поверить, но риск спонтанного прерывания беременности на сроке 6-12 недель у здоровой женщины моложе 35 лет составляет не менее 10%[2], и повлиять на причины этих событий можно в меньшинстве случаев.

Итак, женщина понимает: ребенка не будет. Одно из первых желаний в такие моменты – узнать причину. И находятся желающие эту потребность удовлетворить: ошарашенной женщине назначают многочисленные обследования и анализы, и редко обходится без тестов на:

  • «генетические причины потери беременности»
  • «полиморфизмы в генах гемостаза и фолатного цикла»
  • «мутации предрасположенности к невынашиванию беременности»
  • «генетический риск осложнений беременности»

Вариантов названий у этой услуги множество. Суть одна: по материалу матери определяют ее генотип по полиморфизмам нескольких генов.

Когда женщине назначают «генетические анализы» по поводу потери беременности — это в 99% случаев именно анализы на полиморфизмы. Поэтому (с определенным допущением) можно сказать, что анализы на полиморфизмы = генетические анализы, которые назначаются женщинам по поводу потери беременности.

Непросто в двух словах рассказать, что такое полиморфизмы. Полиморфизмы – это незначительные различия в структуре генов, определяющие разнообразие их проявлений. Каждый конкретный полиморфизм «живёт» в определенном гене, немножко изменяя свойства его продукта и, тем самым, проявление какого-то признака.

Полиморфизмы – это то, что делает нас разными. Это генетические оттенки, из-за которых один может за милую душу выпить литр молока, а другой после пары глотков будет искать туалет. Благодаря полиморфизмам у нас столько цветов глаз и волос. Из-за них у кого-то кровь сворачивается чуть быстрее среднего, а у кого-то – чуть медленнее. Удивительно, но весь этот спектр форм, цветов и особенностей задается комбинациями четырех букв-нуклеотидов, составляющих наши гены: A, G, T и C. Одну букву мы получаем от мамы, другую – от папы. Так получается наш собственный генотип: например GG, GA или TC. Результатом анализа на полиморфизмы как раз и будут пары букв.

Например, в гене фактора свертывания крови V (этот ген называется F5) буквой под номером 1691 может быть G, а может – А. Отсюда три варианта генотипов: GG, GA и AA. Вариант GG — удел большинства людей, ему не свойственны какие-то особенности. Около 2-7% людей имеют генотип GА, то есть несут полиморфизм А (так называемую Лейденскую мутацию), из-за чего склонны к повышенной свертываемости крови. Людей с генотипом АА крайне мало.

Грань между понятием «мутация» и «полиморфизм» тонка и неопределенна. Ученые-биологи любое отклонение от «эталона» могут называть мутацией, а врачи-практики обычно считают мутацией только то изменение, которое может приводить к болезни. Поэтому не смущайтесь, что полиморфизм в гене F5 называют Лейденской мутацией.

Какие полиморфизмы обычно обсуждаются в контексте потери беременности?

Назовём героев этой статьи поимённо!

Не пугайтесь того, что эти названия вам ни о чем не говорят, и пока что поверьте: они и врачу вашему в большинстве случаев ничего не скажут.

  • F5: 1691 G>A (Arg506Gln) NB!
  • F2: 20210 G>A NB!
  • F7: 10976 G>A (Arg353Gln)
  • F13: G>T (Val34Leu)
  • FGB: -455 G>A
  • ITGA2: 807 C>T (Phe224Phe)
  • ITGB3: 1565 T>C (Leu33Pro)
  • SERPINE1 (PAI-1): -675 5G>4G
  • MTHFR: 677 C>T (Ala222Val)
  • MTHFR: 1298 A>C (Glu429Ala)
  • MTR: 2756 A>G (Asp919Gly)
  • MTRR: 66 A>G (lle22Met)

NB ! Обратите внимание, что эти два полиморфизма могут играть важную роль в принятии решения о назначении КОК (комбинированных оральных контрацептивов).

Почему врачи назначают анализы на эти полиморфизмы?

Когда ученые узнали о существовании полиморфизмов, они задумались: а нельзя ли использовать это знание для выделения группы людей с предрасположенностью к определенным заболеваниям, и заблаговременно их предупреждать? Известно же: предупредить легче, чем лечить!

Эти времена совпали с подъемом молекулярных технологий, позволивших выполнять тесты на полиморфизмы относительно просто и недорого. Исследователи смекнули, что работы типа «Влияние полиморфизма Х на болезнь Y» генерировать легко и делать это можно практически бесконечно. Поскольку болезней и полиморфизмов много, всегда была возможность подобрать пару «полиморфизм – болезнь», позволявшую даже из безнадежных данных вытащить мало-мальски значимую связь и опубликоваться, кокетливо умолчав об изъянах дизайна исследования. Соедините немного логики и статистики – и получите скромное, но научное достижение.

Вот как рассуждали эти исследователи: уже упоминавшаяся Лейденская мутация связана с повышенной свертываемостью крови. Известно, что формирование и функционирование плаценты сильно зависит от агрегатных свойств крови, а при невынашивании беременности в плацентах нередко находят очаги тромбоза. Логично предположить, что у носительниц Лейденской мутации эти нарушения могут встречаться чаще. Осталось провести исследование и проверить эту гипотезу. Такие исследования были проведены и некоторые показали наличие связи между наличием Лейденской мутации и повышенным риском потери беременности.

Так появилась богатая (на немалую долю отечественная) «литературная база», указывающая на связь между полиморфизмами и предрасположенностью к разным болезням.

Именно на эту «базу» опирались производители реагентов при убеждении врачей в целесообразности назначения тестов на полиморфизмы. Да-да, на определенном этапе потребность в диагностикумах для анализов на полиморфизмы стала так велика, что привлекла производителей реагентов, которые создали коммерческие наборы для выполнения этих тестов. А товар требует продвижения. Как можно расширить рынок таких наборов? Внедрить тесты на полиморфизмы в клиническую практику! И эти анализы из научных лабораторий стали «заползать» в диагностические.

Когда результаты научных исследований переносятся в клиническую практику без должной оценки последствий, страдают кошельки и нервы пациентов.

Так появились лаборатории, предлагающие тесты на полиморфизмы как медицинские диагностические услуги. Так появились врачи, наученные лабораториями и производителями реагентов, что эти тесты нужно назначать в различных случаях, в том числе при невынашивании беременности. Так сформировалась целая мифология про то, какие полиморфизмы надо выявлять и как их «лечить».

Но достаточно мифов. Дальше — только факты:

причины потери беременности

1. Полиморфизмы не являются значимой причиной ранней потери беременности

Около 70% беременностей, прервавшихся в первом триместре, не могли развиваться из-за генетических аномалий ЭМБРИОНА (не матери. )[3]. Не путайте с генетическими полиморфизмами!

Полиморфизмы – это генетические особенности мамы, а приводящие к выкидышу нарушения структуры и количества хромосом – это грубые аномалии эмбриона. Возникновение таких эмбрионов – часть жизни, так же, как и их ранняя отбраковка.

Оставшиеся 30% ранних потерь беременности тоже не имеют отношения к полиморфизмам, а обусловлены антифосфолипидным синдромом, неправильным функционированием шейки матки, инфекциями и другими причинами, к которым генетические полиморфизмы матери не относятся.

2. Какие-то полиморфизмы есть у всех людей

В отличие от мутаций, вызывающих редкие генетические болезни, которые встречаются у одного из десятков тысяч людей, какие-то полиморфизмы есть у всех. Каждый день мимо вас проходят люди с такими же GG, GA и TC, как у вас. Возможно, у них есть дети, но может быть и нет. Есть вероятность, что они сталкивались с потерей беременности, а может быть их это несчастье обошло стороной. В любом случае: от вас они отличаются тем, что не тратили деньги на анализ полиморфизмов.

3. Полиморфизмы не определяют признак полностью (или на большую часть)

Вернемся к несчастным больным генетическими заболеваниями: их редкий генетический дефект практически на 100% определяет их беду. То, что генетики называют «факторами среды» (поведение, питание, физическая активность) вносит очень маленький вклад в их несчастье. С полиморфизмами наоборот: их вклад очень мал.

Например, вероятность развития венозного тромбоза хоть в некоторой степени и зависит от наличия, например, уже знакомой нам Лейденской мутации, но на львиную долю определяется весом, статусом курения, возрастом, наличием беременности, принимаемыми препаратами и другими факторами.

4. Полиморфизм – не болезнь

Какими бы жуткими словами не сопровождались комбинации из букв A, G, T и C в заключении генетического анализа, они НЕ говорят о том, что у женщины будет, например, «невынашивание беременности».

Пример из жизни:

Когда на бланке результата «Нарушение развития плода – незаращение нервной трубки» написано рядом с «MTRR c.66A>G G/G» любой человек поймёт такую запись как причинно-следственную связь. А это не так. Наличие полиморфизмов говорит лишь о том, что вы принадлежите к людям, у которых по данным некоторых(!) научных(. ) исследований эти патологии возникают чаще, чем у людей без ваших полиморфизмов. И тут мы переходим к следующему факту…

5. Влияние полиморфизмов «видно» только на больших группах людей

Даже будучи специалистом, я не пойму ваш генотип по генам свертывания крови, увидев вашу коагулограмму (анализ на свертываемость крови). А всё потому, что эти различия не «видны» на индивидуальном уровне. У человека с «плохими» полиморфизмами свертывание может быть «лучше», чем у «генетически идеального». Лишь среднее значение этого показателя, измеренное в большой группе людей с «плохим» генотипом, будет отличаться от такового у группы с «хорошим».

Немного математики: Иногда в заключении анализа рядом с жуткими «диагнозами» можно увидеть цифры. Например, «Выявленный полиморфизм в 3,5…5,5 раз увеличивает риск венозной тромбоэмболии». Эти цифры – совершенно честные[4] для Лейденской мутации. Этот полиморфизм – один из двух достойных хоть какого-то внимания полиморфизмов системы свертывания крови. Второй – так называемый «полиморфизм протромбина», c.20210G>A в гене фактора свертывания крови II (F2).

Но вернемся к цифрам. Увеличение в 3,5…5,5 раз – это существенно? Конечно существенно! Если мне завтра в три с половиной раза увеличат зарплату, это будет ой как существенно…

А если посмотреть не относительный, а абсолютный риск? Когда у вас есть Лейденская мутация, ваш ежегодный риск получить венозную тромбоэмболию равен 0,05…0,2%. Иными словами:

Наличие Лейденской мутации означает,

что с вероятностью 99,95…99,80% у вас

НЕ будет венозной тромбоэмболии (ВТЭ) в течение следующего года

Абсолютный риск ВТЭ настолько мал, что даже увеличение в разы не делает его существенным для жизни отдельного конкретного человека. Беременность в совокупности с Лейденской мутацией повышает риск ВТЭ, но шанс на то, что тромбоза НЕ будет, всё равно не опускается ниже 95%.

И теперь пара слов о лечении:

1. «Вылечить» полиморфизмы нельзя.

Это часть генотипа, и он останется неизменным до конца жизни. Поэтому тактика «сдать на полиморфизмы – полечить – сдать контрольный анализ» абсурдна по своей сути.

2. Ни один из полиморфизмов не является прямым поводом для назначения лечения.

Справедливости ради, стоит отметить, что при невынашивании беременности антикоагулянтная терапия может потребоваться, и она дает неплохие результаты. Но для назначения антикоагулянтов должен быть установлен диагноз «антифосфолипидный синдром» (который может сочетаться или не сочетаться с полиморфизмами в генах системы свертывания).

3. Курантил, актовегин, тромбоасс, пиявки не нужны.

Они не имеют доказанной эффективности в улучшении исходов беременности у женщин с полиморфизмами в системе свертывания.

Тестирование женщин даже с неоднократной потерей беременности на наследственные тромбофилии[5] и полиморфизмы фолатного цикла[6] не входит в рекомендации ведущих медицинских организаций, занимающихся этой проблемой. Но в большинстве отечественных «методичек» и рекомендаций по невынашиванию беременности эти исследования входят.

И чтобы не оставлять неопределенности:

Анализы на генетические полиморфизмы женщинам, столкнувшимся с потерей беременности один или несколько раз, делать не нужно

[4] Scott M. Stevens et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis (2016) 41:154–164

Читайте также: