Значение гидролиза ГТФ тубулином микротрубочек

Обновлено: 14.05.2024

Отдельную группу белков цитоскелета составляют белки микротрубочек. К ним относятся тубулин, белки, ассоциированные с микротрубочками (МАР 1, МАР 2, МАР 4, тау и др.) и белки - транслокаторы (динеин, кинезин, динамин). Микротрубочки - это белковые трубчатые структуры диаметром около 25 нм и длиной до нескольких десятков микрометров; толщина их стенок - около 6 нм. Они являются обязательным компонентом цитоплазмы эукариотических клеток. Микротрубочки образуют веретено деления (ахроматиновую фигуру) в митозе и в мейозе, аксонему (центральную структуру) подвижных ресничек и жгутиков, стенку центриолей и базальных телец. Микротрубочкам отводится важная, если не ключевая, роль в клеточном морфогенезе и в некоторых видах клеточной подвижности.

Стенки микротрубучек построены из белка тубулина, на долю которого приходится 90% по весу. Тубулин - это глобулярный белок, существующий в виде димера α- и β-субъединиц с молекулярной массой ~55 кДа. Микротрубочка имеет форму полого цилиндра, стенка которого состоит из линейных цепочек тубулиновых димеров, так называемых протофиламентов. В протофиламентах α- субъединица предыдущего димера соединена с β-субъединицей следующего. Димеры в соседних протофиламентах смещены друг относительно друга, образуя спиральные ряды. На попереченом срезе видно 13 димеров тубулина, что соответствует 13 протофиламентам в

стенке микротрубочки (рис. 9). Каждая субъединица содержит около 450 аминокислот и аминокислотные последовательности субъединиц гомологичны друг другу примерно на 40%. Тубулин - ГТФсвязывающий белок, причем β-субъединица содержит лабильно связанную молекулу ГТФ или ГДФ, способную обмениваться с ГТФ в растворе, а α-субъединица - прочно связанную молекулу ГТФ.

Рис. 9. Строение микротрубочки.

Тубулин способен к спонтанной полимеризации in vitro . Такая полимеризация возможна при физиологических температурах и благоприятных ионных условиях (отсутствие ионов Ca 2+ ) и требует наличия двух факторов: высокой концентрации тубулина и присутствия ГТФ. Полимеризация сопровождается гидролизом ГТФ, и тубулин в составе микротрубочки остается связанным с ГДФ, а неорганический фосфат выходит в раствор.

Полимеризация тубулина состоит из двух фаз: нуклеации и элонгации. При нуклеации происходит формирование затравок, а при

элонгации - их удлинение с образованием микротрубочек. Следует отметить, что при полимеризации тубулина субъединицы добавляются только по концам микротрубочек.

Противоположные концы микротрубочек различаются по скоростям роста. Быстрорастущий конец принято называть плюсконцом, а медленнорастущий - минус-концом микротрубочки (см. рис. 9). В клетке ( -)-концы микротрубочек, как правило, ассоциированы с центросомой, а (+)-концы направлены к периферии и нередко доходят до самого края клетки.

Микротрубочки подвержены динамической нестабильности.

При постоянном количестве полимера происходит спонтанный рост или укорочение отдельных микротрубочек вплоть до полного их исчезновения. Из-за запаздывания гидролиза ГТФ по отношению к встраиванию тубулина на конце микротрубочки, находящейся в процессе роста, формируется ГТФ-кэп, состоящий из 9-18 молекул ГТФ-тубулина. ГТФ-кэп стабилизирует конец микротрубочки и способствует ее дальнейшему росту. Если же скорость включения новых гетеродимеров оказывается меньше скорости гидролиза ГТФ или в случае механического разрыва микротрубочки, образуется конец, лишенный ГТФ-кэпа. Такой конец обладает пониженным сродством к новым молекулам тубулина; он начинает разбираться.

Полимеризацию и деполимеризацию микротрубочек индуцируют изменениями температуры, ионных условий или использованием специальных химических агентов. Среди веществ, вызывающих необратимую разборку, широко используются индольные алкалоиды (колхицин, винбластин, винкристин и др.).

БЕЛКИ, АССОЦИИРОВАННЫЕ С МИКРОТРУБОЧКАМИ

Белки, ассоциированные с микротрубочками, делятся на две группы: структурные МАР (microtubule-associated proteins) и белки-

Общим свойством структурных МАР является их перманентная ассоциация с микротрубочками. Еще одним общим свойством этой группы белков является то, что в отличие от белков-транслокаторов при взаимодействии с тубулином все они связываются с С-концевой частью молекулы размером около 4 кДа.

Различают высокомолекулярные МАР 1 и МАР 2, белки тау с молекулярной массой порядка 60-70 кДа и МАР 4 или МАР U с молекулярной массой около 200 кДа.

Так, молекула МАР 1В (представитель группы белков МАР 1) - это стехиометрический комплекс одной тяжелой и двух легких цепей, представляет собой вытянутую палочкообразную молекулу длиной 190 нм, имеющую на одном конце глобулярный домен диаметром 10 нм (по-видимому, участок связывания с микротрубочками); его молекулярная масса составляет 255.5 кДа.

МАР 2 - термостабильный белок. Он сохраняет способность взаимодействовать с микротрубочками и оставаться в их составе в нескольких циклах сборки-разборки после нагревания до 90 о С.

Структурные МАР способны стимулировать инициацию и элонгацию и стабилизировать готовые микротрубочки; сшивать микротрубочки в пучки. В таком сшивании участвуют короткие α-

спиральные гидрофобные последовательности на N-конце МАР и тау, замыкающие молекулы МАР, сидящие на соседних микротрубочках, наподобие застежки «молния». Биологическая роль такого сшивания может состоять в стабилизации структур, образованных микротрубочками в клетке.

На сегодняшний день экспериментальными исследованиями установлено, что помимо регуляции динамики микротрубочек структурные МАР имеют еще две основные функции: клеточный морфогенез и участие во взаимодействии микротрубочек с другими внутриклеточными структурами.

К отличительной особенности белков этой группы относится свойство преобразовывать энергию АТФ в механическое усилие, способное перемещать частицы вдоль микротрубочек или микротрубочки вдоль субстрата. Соответственно транслокаторы являются механохимическими АТФазами, и их АТФазная активность стимулируется микротрубочками. В отличие от структурных МАР, транслокаторы ассоциированы в микротрубочками только в момент АТФ-зависимого перемещения.

Белки-транслокаторы делятся на две группы: кинезиноподобные белки (опосредуют движение от (-)-конца к (+)-концу микротрубочек) и динеинопободные белки (движение от (+)-конца к (-)- концу микротрубочек) (рис. 10).

Кинезин представляет собой тетрамер двух легких (62 кДа) и двух тяжелых (120 кДа) полипептидных цепей. Молекула кинезина

имеет форму стержня диаметром 2-4 нм и длиной 80-100 нм с двумя глобулярными головками на одном конце и веерообразным расширением на другом (рис. 11).

Рис. 10. Белки-транслокаторы.

В середине стержня находится шарнирный участок. N-Концевой фрагмент тяжелой цепи размером около 50 кДа, обладающий механохимической активностью, называется моторным доменом кинезина.

Микротрубочки

Общая характеристика микротрубочек. К обязательным компонентам цитоскелета относятся микротрубочки (рис. 265), нитчатые неветвящиеся структуры, толщиной 25 нм, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины при полимеризации образуют полые трубки (микротрубочки), длина которых может достигать нескольких мкм, а самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев.

Микротрубочки располагаются в цитоплазме интерфазных клеток поодиночке, небольшими рыхлыми пучками, или в виде плотноупакованных образований в составе центриолей, базальных телец в ресничках и жгутиках. При делении клеток большая часть микротрубочек клетки входит в состав веретена деления.

По строению микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм (рис. 266). Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку (рис. 267). Размер мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедниц, из a-тубулина и b- тубулина, которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. Обе субъединицы мономера тубулина связаны с ГТФ, однако на a-субъдинице ГТФ не подвергается гидролизу, в отличие от ГТФ на b-субъединице, где при полимеризации происходит гидролиз ГТФ до ГДФ. При полимеризации молекулы тубулина объединяются таким образом, что с b-субъединицей одного белка ассоциирует a-субъединица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий (+)-конец и медленно растущий (-) конец (рис. 268).

При достаточной концентрации белка полимеризация происходит спонтанно. Но при спонтанной полимеризации тубулинов происходит гидролиз одной молекулы ГТФ, связанной с b-тубулином. Во время наращивания длины микротрубочки связывание тубулинов происходит с большей скоростью на растущем (+)-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствует понижение температуры и наличие ионов Са ++.

Микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться. В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, т.н. МАР-белки (МАР- microtubule accessory proteins). Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина (рис. 269).

Роль цитоплазматических микротрубочек сводится к выполнению двух функций: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки; при растворении микротрубочек клетки, имевшие сложную форму, стремятся приобрести форму шара. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную, систему движения. Микротрубочки цитоплазмы в ассоциации со специфическими ассоциированными моторными белками образуют АТФ-азные комплексы, способные приводить в движение клеточные компоненты.

Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, в отростках меланоцитов, амеб и других изменяющих свою форму клетках (рис. 270). Они могут быть выделены сами или же можно выделить их образующие белки: это те же тубулины со всеми их свойствами.

Центры организации микротрубочек. Рост микротрубочек цитоплазмы происходит полярно: наращивается (+)-конец микротрубочки. Время жизни микротрубочек очень коротка, поэтому постоянно происходит образование новых микротрубочек. Процесс начала полимеризации тубулинов, нуклеация, происходит в четко ограниченных участках клетки, в т.н. центрах организации микротрубочек (ЦОМТ). В зонах ЦОМТ происходит закладка коротких микротрубочек, обращенных своими (-)-концами к ЦОМТ. Считается, что в зонах ЦОМТ (--)-концы заблокированы специальными белками, предотвращающими или ограничивающими деполимеризацию тубулинов. Поэтому при достаточном количестве свободного тубулина будет происходить наращивание длины микротрубочек, отходящих от ЦОМТ. В качестве ЦОМТ в клетках животных участвуют главным образом клеточные центры, содержащие центриоли, о чем будет сказано далее. Кроме того в качестве ЦОМТ может служить ядерная зона, и во время митоза полюса веретена деления.

Одним из назначений микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного скелета, необходимого для поддержания формы клетки. У дисковидных по форме эритроцитов амфибий по периферии клетки лежит жгут циркулярно уложенных микротрубочек; пучки микротрубочек характерны для различных выростов цитоплазмы (аксоподии простейших, аксоны нервных клеток и т.д.).

Роль микротрубочек заключается в образовании каркаса для поддержания клеточного тела, для стабилизации и укрепления клеточных выростов. Кроме того, микротрубочки участвуют в процессах роста клеток. Так, у растений в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму.

Создавая внутриклеточный скелет, микротрубочки являются факторами ориентированного движения внутриклеточных компонентов, задавая своим расположением пространства для направленных потоков разных веществ и для перемещения крупных структур. Так, в случае меланофоров (клетки, содержащие пигмент меланин) рыб при росте клеточных отростков гранулы пигмента передвигаются вдоль пучков микротрубочек.

В аксонах живых нервных клеток можно наблюдать перемещение различных мелких вакуолей и гранул, которые двигаются как от тела клетки к нервному окончанию (антероградный транспорт), так и в противоположном направлении (ретроградный транспорт).

Были выделены белки, ответственные за движение вакуолей. Один из них кинезин, белок с молекулярным весом около 300 тыс.

Существует целое семейство кинезинов. Так, цитозольные кинезины участвуют в транспорте по микротрубочкам везикул, лизосом и других мембраных органелл. Многие из кинезинов связываются специфически со своими грузами. Так некоторые участвуют в переносе только митохондрий, другие - только синаптических пузырьков. Кинезины связываются с мембранами через мембранные белковые комплексы - кинектины. Кинезины веретена деления участвуют в образовании этой структуры и в расхождении хромосом.

За ретроградный транспорт в аксоне отвечает другой белок - цитоплазматический динеин (рис. 275). Он состоит из двух тяжелых цепей - головок, взаимодействующих с микротрубочками, нескольких промежуточных и легких цепей, которые связываются с мембранными вакуолями. Цитоплазматический динеин является моторным белком, переносящим грузы к минус-концу микротрубочек. Динеины также делятся на два класса: цитозольные - участвующие в переносе вакуолей и хромосом, и аксонемные - отвечающие за движение ресничек и жгутиков.

Цитоплазматические динеины и кинезины были обнаружены практически во всех типах клеток животных и растений.

Таким образом, и в цитоплазме движение осуществляется по принципу скользящих нитей, только вдоль микротрубочек перемещаются не нити, а короткие молекулы - движетели, связанные с перемещающимися клеточными компонентами. Сходство с актомиозиновым комплексом этой системы внутриклеточного транспорта заключается в том, что образуется двойной комплекс (микротрубочка + движетель), обладающий высокой АТФ-азной активностью.

Как видно, микротрубочки образуют в клетке радиально расходящиеся поляризованные фибриллы, (+)-концы которых направлены от центра клетки к периферии. Наличие же (+) и (-)-направленных моторные белков (кинезинов и динеинов) создает возможность для переноса в клетке её компонентов как от периферии к центру (эндоцитозные вакуоли, рециклизация вакуолей ЭР и аппарата Гольджи и др), так и от центра к периферии (вакуоли ЭР, лизосомы, секреторные вакуоли и др) (рис. 276). Такая полярность транспорта создается за счет организации системы микротрубочек, возникающих в центрах их организации, в клеточном центре.

Связанные с микротрубочками белки

Микротрубочки представляют собой полые неветвящиеся фибриллы диаметром 25 нм и длиной до нескольких микрометров. В интерфазной клетке одиночные и собранные в рыхлые пучки микротрубочки располагаются по всему объему цитоплазмы. Микротрубочки образуют регулярные структуры в составе клеточного центра, ресничек и жгутиков. В делящихся митозом или мейозом клетках микротрубочки формируют веретено деления.

Подобно микрофиламентам микротрубочки являются линейными полимерами. Они построены из молекул белка тубулина, которые содержат две субъединицы - a и b. Обе субъединицы тубулина имеют одинаковую молекулярную массу 55 кД.

Полимеризация микротрубочек сопровождается гидролизом ГТФ и происходит путем наращивания молекул тубулина на обоих концах затравки. Аналогично микрофиламентам концы микротрубочек полимеризуются с разной скоростью. Полимеризация микротрубочек может происходить в присутствии негидролизуемых аналогов ГТФ, но подавляется кальцием и холодом.

Как и у микрофиламентов, в полимеризации микротрубочек принимают участие вспомогательные белки, которые регулируют различные этапы этого процесса.

Белки, ассоциированные с микротрубочками (БАМ), способны стимулировать полимеризацию тубулина, связываясь с затравками. Образованные БАМ-1 и БАМ-2 боковые выросты микротрубочек часто контактируют с секреторными гранулами, которые могут перемещаться по цитоплазме.

Название Функция
БАМ-1 (350 кД) БАМ-2 (270 кД) стимулируют полимеризацию
t-белки (55-70 кД) сшивают микротрубочки боковыми сторонами
динеин (> 400 кД) кинезин (300 кД) обеспечивают передвижение миротрубочек с затратой энергии АТФ
нексин образует мостики между парами микротрубочек

Подобными же свойствами обладают и t-белки. Механохимический белок динеин обеспечивает колебания ресничек с затратой энергии АТФ, функционируя аналогично миозину у микрофиламентов. Сходный с ним белок кинезин (молекулярный вес 300 кД) участвует в передвижении содержащих медиаторы везикул по аксону нейрона. Процессами сборки и разборки микротрубочек управляют протеинкиназы.

В отличие от микрофиламентов микротрубочки не образуют гель. БАМ и другие тубулин-связанные белки только стабилизируют микротрубочки и сшивают их между собой, а также присоединяют микротрубочки к мембранам и промежуточным филаментам.

Ряд веществ, в том числе колхицин (алкалоид из безвременника осеннего), колцемид и нокодозол, подавляют полимеризацию тубулинов, что приводит к обратимой диссоциации микротрубочек. Свойство колхицина и его аналогов разрушать состоящее из микротрубочек веретено деления используется для получения полиплоидных клеток.

Универсальной структурой, организующей систему микротрубочек в клетках животных, является клеточный центр (центросома). Он локализиется около пластинчатого комплекса у клеточного ядра и состоит из двух центриолей и центросферы.

Центриоль представляет собой полый цилиндр шириной 150 нм и длиной до 500 нм. Стенка центриоли состоит из девяти триплетов микротрубочек. Первая микротрубочка каждого триплета (A-микротрубочка) имеет по окружности 13 молекул тубулина диаметром 5 нм каждая, а примыкающие к ним вплотную B-микрорубочка и C-микротрубочка - по 11 молекул. Триплеты расположены равномерно по периметру центриоли и повернуты на угол 40 O относительно радиуса. От A-микротрубочки отходят две “ручки” - боковые выросты, образованные БАМ. Один из них направлен к микротрубочке C соседнего триплета, а второй - к центру. Триплеты погружены в аморфную муфту, или оправу.

В клеточном центре обе центриоли располагаются строго перпендикулярно друг к другу, образуя диплосому. Центриоли диплосомы не одинаковы. Одна из них, материнская, на дистальном конце имеет выросты - “шпоры”. Проксимальный конец дочерней центриоли, который приближен к поверхности материнской, содержит “втулку” диаметром 25 нм и 9 “спиц”, направленных к микротрубочкам А.

Окружающая диплосому центросфера состоит из радиально отходящих от центриолей микротрубочек. Они не имеют непосредственного контакта с центриолями, но связаны с муфтой или сателлитами. Последние располагаются на триплетах материнской центриоли и состоят из конусовидных ножек и округлых головок. Вокруг диплосомы могут также находиться фокусы схождения микротрубочек - плотные тельца диаметром 20-40 нм, к которым прикреплены одна или несколько микротрубочек.

Клеточный центр отсутствует в клетках высших растений, некоторых грибов и простейших. В делящихся клетках клеточный центр участвует в формировании веретена деления. В неделящихся клетках клеточный центр может превращаться в базальное тельце специализированных органоидов движения - ресничек и жгутиков.

Реснички и жгутики устроены однотипно и представляют собой выросты плазмолеммы диаметром 300 нм. Центральную часть этого выроста занимает состоящая из микротрубочек осевая структура - аксонема, прикрепленная к расположенному в цитоплазме базальному тельцу. Диаметр аксонемы и базального тельца составляет 200 нм. Стенка аксонемы состоит из девяти дублетов микротрубочек, а ее центральную часть занимают еще двесвободные микротрубочки. A-микротрубочкадублета содержит по окружности 13,. а примыкающая к ней B-микротрубочка- 11 молекул тубулина. A-микротрубочка имеет три отростка: две ручки, направленные к B-микротрубочке соседнего дублета, и спицу, которая отходит в радиальном направлении. Спица заканчивается головкой, присоединенной к центральной муфте диаметром около 70 нм, которая окружает две свободные микротрубочки, отстоящие друг от друга на 25 нм. Оси дублетов наклонены под углом 10 O к радиусу аксонемы. В отличие от аксонемы базальное тельце имеет структуру как у центриоли. В месте перехода аксонемы в базальное тельце расположена поперечная пластинка из аморфного вещества.

Волнообразные движения ресничек и жгутиков обеспечиваются белком динеином, который образует ручки дублетов. Динеин обладает АТФ-азной активностью, он образован 12 полипептидами молекулярной массой от 85 до 400 кД. При его взаимодействии с микротрубочками происходит продольное скольжение дублетов друг относительно друга, что приводит к изгибанию реснички.

Цитоскелет. Структура и функции микрофибрилл и микротрубочек

Наименее конденсированы молекулы ДНК в интерфазных хромосомах и именно в этот период наиболее активно протекают процессы транскрипции, осуществляемые с помощью фермента РНК- полимеразы. В отличие от ДНК пространственная структура РНК однонитчатая. Химически РНК отличатся от ДНК не только присутствием рибозы, но и азотистого основания урацила (вместо тимина). Первичная молекула РНК, синтезированная с любого гена носит название первичного транскрипта. Первичный транскрипт представляет собой точную копию гена, также содержащую, как экзоны, так и интроны. Превращение первичного транскрипта в информационную (матричную) РНК происходит в клеточном ядре и называется процессингом. В ходе процессинга удаляются некодирующие последовательности, а кодирующие соединяются, сращиваются между собой, т.е. сплайсируются (to splice -сращивать) в единую молекулу. Во многих случаях возможны альтернативные варианты компоновки кодирующих участков - альтернативный сплайсинг. Очень важно, что один и тот же первичный транскрипт в результате сплайсинга может образовывать множество различных матричных РНК, и, следовательно, один ген может кодировать несколько белков. Показано, что в процессе дифференцировки клеток происходит изменение схемы сплайсинга многих транскриптов РНК, и таким образом один и тот же ген на разных стадиях развития клетки детерминирует синтез различных белков. Обычно в ядре эукариот можно наблюдать ядрышко - плотное тельце, состоящее из нуклеопротеидов - предшественников рибосом. Ядрышко формируется на определенных участках хромосом, т.н. ядрышковых организаторах, где находятся серии генов, кодирующих рибосомную РНК. Прерибосомная РНК мигрирует в цитоплазму, где происходит сборка рибосом. При митозе ядрышко распадается.


Все клетки представляют собой ячейки, заполненные жидким содержимым и ограниченные мембраной подобной стенке мыльного пузыря. Что же обуславливает жесткость клеток, способствует поддержанию их формы и обеспечивает возможность совершать направленные и координированные движения? Эту функцию выполняет цитоскелет - сложная сеть белковых нитей, пронизывающих всю цитоплазму. Однако, цитоскелет это не неподвижный каркас или скелет как можно думать исходя из названия, это одновременно и цитомускулатура - гибкая и сложная система, состоящая из структурных элементов, способных передвигаться друг относительно друга и только некоторые из них являются истинными фиксаторами. Более того, элементы цитоскелета обладают удивительной способностью быстро распадаться на крошечные строительные блоки и вновь собираться в структуры различной формы, что позволяет осуществлять направленные и координированные передвижения как клетки в целом, так и отдельных внутриклеточных органелл. Цитоскелет формируется из микротрубочек и двух типов микрофибрилл: актиновых филаментов и промежуточных филаментов.

В эукариотических клетках белок актин содержится в больших количествах (до 5% и более от общего белка клетки) и представляет собой полипептидные цепочки состоящие из 375 аминокислот (вес 42 000), свернутые в глобулярную (шарообразную) структуру или глобулу. Примерно половина всех молекул актина находится в виде индивидуальных субъединиц, называемых G-актином. Другая половина молекул актина соединена последовательно друг с другом, посредством специальных участков (сайтов) связывания, образуя длинные актиновые филаменты (английское filamentous - нитевидный) или волокна, называемые F-актином. Полимеризация актина не требует энергии (однако идет только в присутствии АТФ) и может быть вызвана в экспериментальных условиях повышением концентрации соли до уровня, близкого к физиологическому; при этом раствор актина, лишь не намного более вязкий, чем вода, быстро "густеет" по мере образования филаментов. Актиновые филаменты представляют собой плотную двойную спираль толщиной 6-8 нм (длина шага около 73 нм).


Располагаясь в виде пучков волокон соединенных поперечными сшивками непосредственно под плазматической мембраной актиновые филаменты образуют однородную трехмерную сеть. Эта сеть или клеточный кортекс, придает механическую прочность поверхностному слою клетки. Наиболее распространенным сшивающим элементом клеточного кортекса является длинная, димерная молекула белка филамина. В клетках содержание этого белка может составлять до 1% от всего клеточного белка (один димер филамина примерно на молекул 50 G-актина. На обоих концах молекулы филамина имеются участки связывания, с помощью которых филамин соединяется с актиновыми филаментами, фиксируя их друг относительно друга. Плазматическая мембрана настолько плотно связана с актиновым кортексом, что обе структуры могут рассматриваться как единый комплекс. Соединение кортекса и плазмалеммы обеспечивается специальными белками, которые расположены как в мембране, так и в непосредственной плизости от нее. Впервые такие белки - спектрин и анкирин были выявлены в эритроцитах.

Структура кортекса может быть различной у разных клеток и даже в разных участках одной и той же клетки. Иногда это плотная трехмерная сеть, в которую не могут проникать органеллы и другие крупные частицы. В других случаях кортекс заметно тоньше и больше похож на двухмерную структуру. Плотная трехмерная сеть актиновых филаментов под некоторыми участками плазматической мембраны может быстро распадаться при действии специальной внутриклеточной системы, которая не только устраняет поперечные сшивки между актиновыми филаментами, но и частично их деполимеризует. В частности, локальная деградация кортекса наблюдается, когда фагоцитирующий лейкоцит вступает в контакт с микроорганизмом. Это позволяет поверхностному слою цитоплазмы окружить и поглотить микробную клетку. На поверхности многих животных клеток небольшие пучки из 20-30 параллельных актиновых филаментов отходят под прямым углом от наружной стороны кортекса и заполняют продолговатые (длина около 1 мкм) и тонкие (ширина около 0,08 мкм) выпячивания клеточной поверхности, называемые микроворсинки. Особенно много микроворсинок на поверхности эпителиальных клеток, выстилающих внутреннюю поверхность тонкого кишечника. Важнейшей функцией этих клеток является всасывание. Благодаря микроворсинкам, количество которых на этих клетках достигает нескольких тысяч, значительно (в 20 раз) увеличивается всасывающая поверхность клетки.

Кроме актина в кортексе присутствует другой основной белок - миозин. Волокна миозина имеют боковые выросты - ножки, обладающие АТФ-азной активностью, благодаря колебательным движениям которых одни актиновые филаменты способны подтягиваться и передвигаться относительно других (подобно тому, как это происходит при мышечном сокращении) и благодаря этому клетка способна двигаться и изменять свою форму. Актиновые филаменты и миозин формируют при делении клетки сократимое кольцо, которое, сокращаясь, тянет за собой плазматическую мембрану разделяя клетку на две части. Принципиально другой механизм движения клеток связан со способностью актиновых волокон непрерывно удлинятся на своем так называемом плюс-конце (за счет постоянно идущей полимеризации). При этом на минус-конце идет постоянная деполимеризация филамента. Хотя общая его длина при этом не меняется, актиновая нить перемещается в направлении минус-плюс, подталкивая плазматическую мембрану, что приводит к образованию выростов на мембране и даже перемещению всей клетки. В отличие от простой сборки актиновых волокон из субъедениц в растворе, этот процесс, получивший название тредмиллинг, требует энергии гидролиза АТФ. В следствие тредмиллинга на поверхности клеток постоянно возникают динамичные выступы - микрошипы, благодаря которым клетки могут мигрировать и изменять свою форму. Например, растущий конец аксона, длинного отростка нервной клетки, выпускает длинные микрошипы - филоподии, длина которых может достигать 50 мкм. Внутри микрошипы содержат рыхлые пучки примерно из 20 актиновых филаментов, ориентированных плюс-концами наружу. Эти выступы клеточной поверхности очень подвижны и могут быстро появляться и исчезать. Предполагают, что они действуют подобно щупальцам, которыми клетка исследует окружающую среду. По-видимому, те микрошипы, которые прочно прикрепляются к какому-либо субстрату, направляют движение клетки в этом направлении. Микрошипы, которым прикрепиться к субстрату не удалось, втягиваются обратно. Некоторые природные вещества, например, цитохалазины, выделяемые различными плесневыми грибками избирательно влияют на процессы полимеризации и деполимеризации актина. Они способны специфически связываться с плюс-концами актиновых волокон и блокировать присоединение к ним новых мономеров актина. Используя эти вещества, ученые доказали, что механизм тредмиллинга играет важную роль в различных типах клеточных движений. В частности оказалось, что цитохолазины подавляют такие формы подвижности клеток позвоночных, как цитокинез, фагоцитоз, образование выростов и шипов. В тоже время эти вещества не влияют на деление клеток в результате сокращения сократимого кольца, в котором участвуют стабильные актиновые филаменты, не подвергающиеся сборке и разборке и на расхождение хромосом в митозе, которое зависит в основном от функции микротрубочек.

Микротрубочки образуются путем полимеризации молекул белка тубулина. Молекула тубулина является гетеродимерной, поскольку состоит из двух различных субъединиц - α- и β- тубулинов. Тубулин присутствует практически во всех эукариотических клетках. Особенно много этого белка в нейронах головного мозга позвоночных до 10-20 % от всего растворимого белка клетки. В ходе сборки молекулы тубулина укладываются, бок о бок по спирали, вокруг центральной области, которая на электронных микрофотографиях кажется пустой, образуя длинные, полые структуры, диаметром 24 нм. На один шаг спирали затрачивается 13 молекул тубулина. Активирует процесс полимеризации тубулина ГТФ, ионы Mg 2+ и физиологическая температура, а деполимеризации - ионы Ca 2+ и охлаждение. Подобно актиновым филаментам, микротрубочки являются полярными структурами, у которых есть плюс-концы, растущие быстро, и минус-концы, растущие медленно.


Рис. 8 Структура микротрубочек

Микротрубочки формируют в цитоплазме систему транспортных волокон. Она зарождается в начале интерфазы из области центриолей, в так называемых центрах организации микротрубочек и растет за счет процессов полимеризации вдоль длинной оси клетки, поддерживая тем самым удлиненную форму клетки в целом. Система цитоплазматических микротрубочек являются своеобразными "рельсами", по которым транспортируются различные пузырьки и органеллы. Благодаря транспортной системе микротрубочек вещества, включенные в пузырьки, быстро переносятся из одной области клетки в другую. Особенно интенсивно эти процессы протекают при так называемом быстром аксонном транспорте, в ходе которого транспортные пузырьки с большой скоростью переносятся от тела клетки к нервному окончанию на десятки сантиметров и обратно. Высокая концентрация тубулина в нервных клетках как раз и обусловлена наличием в этих клетках большого количества микротрубочек, связанных с системой быстрого аксонного транспорта. Кроме, транспортной функции, микротрубочки определяют (фиксируют) местоположение в клетке ЭР и аппарата Гольджи. Система цитоплазматических микротрубочек очень лабильна и видоизменяется в зависимости от состояния клетки. Например, в начале митоза она распадается и перестраивается в микротрубочки митотического веретена, которые соединяются с хромосомами в области центромеры и перемещают их сначала в область экватора делящейся клетки, где они образуют метафазную пластинку, а затем разводят их в дочерние клетки. Движущая сила в первом случае возникает за счет АТФ-зависимой полимеризации молекул тубулина и удлинения микротрубочек, во втором случае, напротив, активируются процессы деполимеризации, укорачивающие микротрубочки. В часто делящихся (недифференцированных) клетках микротрубочки митотического веретена пребывают в состоянии необычайно быстрой сборки и разборки, и это объясняет крайнюю чувствительность веретена к различным препаратам, способным связываться с тубулином. К таким веществам относится колхицин, один из алкалоидов безвременника осеннего, который использовался в лечебных целях еще древними египтянами. Колхицин прочно связывается с молекулами тубулина и препятствует тем самым их полимеризации. В зависимости от используемой концентрации он может задержать деление клетки в митозе или заблокировать процесс расхождения хромосом, что приводит к образованию клеток с диплоидным (двойным) набором хромосом. Действие колхицина обратимо и удаление препарата, во многих случаях, дает возможность веретену образоваться, а митозу завершиться. Вещества, блокирующие рост микротрубочек, называются антимитотическими агентами. Так как нарушение роста микротрубочек митотического веретена особенно пагубно сказывается на быстро делящиеся клетки и, в первую очередь, раковые, ряд антимитотических препаратов, в частности винбластин и винкристин, широко используется в терапии опухолей.

Многие клетки имеют реснички, а некоторые жгутики. Структурной основой ресничек и жгутиков являются цилиндрические пучки из девяти так называемых дублетов микротрубочек расположенных по окружности и одной центральной пары микротрубочек. Дублеты, каждый из которых образован двумя слившиеся микротрубочками, способны за счет энергии гидролиза АТФ перемещаться относительно друг друга, аналогично тому, что происходит в случае актиновых филаментов, только передвигает дублеты друг относительно друга не миозин, а другой белок с АТФ-азной активностью - динеин. Синхронное скольжение дублетов преобразуется в изгиб реснички или жгутика. В организме человека огромное количество ресничек (10 9 /см 2 ), имеют клетки эпителия бронхов и других влажных поверхностей. Каждая такая клетка имеет до нескольких сотен ресничек, длиной 5-15 мкм. Реснички движутся координировано, при этом циклы движения соседних ресничек едва заметно сдвинуты во времени, вследствие чего на поверхности клетки образуются однонаправленные бегущие волны. В бронхах волнообразные движения ресничек, непрерывно, со скоростью 6 мм/мин перемещают из легких к полости носа, а затем наружу слизь с частицами пыли.


Рис. 9 Структура промежуточных филаментов

Белок микротрубочек βIII-тубулин: строение, экспрессия и функции в нормальных и опухолевых клетках

В обзоре литературы представлены данные о белке микротрубочек βIII-тубулине (TUBB3): его структуре, функциях, роли в опухолевой прогрессии, экспрессии в нормальных клетках, а также в опухолях нервной системы и в эпителиальных опухолях разных локализаций. Рассмотрены основные принципы работы системы микротрубочек и связь TUBB3 с родственными белками семейства ß-тубулинов. Проанализированы перспективы использования TUBB3 в клинической практике как прогностического маркера агрессивности течения заболевания и резистентности опухоли к лекарственной терапии. Сформулировано новое представление о молекулярной диагностике локальной распространённости опухолевого процесса на основании сравнительной оценки уровня экспрессии TUBB3 в нормальной и опухолевой ткани каждого больного. В заключение обоснована необходимость изучения экспрессии TUBB3 и других опухолевый маркеров не только в самой опухоли, но и в нормальной ткани органа, визуально не вовлечённой в опухолевый процесс.

Ключевые слова

Раскрытие информации о конфликте интересов:

Авторы заявляют об отсутствии конфликта интересов.

Информация о статье:

Депонировано (дата): 06.05.2020

Все авторы прочитали и одобрили окончательную рукопись статьи.

Информация о рецензировании:

"Антибиотики и Химиотерапия" благодарит анонимного рецензента (рецензентов) за их вклад в рецензирование этой работы.

Комментарий редакции:

В случае возникновения разночтений в тексте или расхождений в форматировании между pdf-версией статьи и её html-версией приоритет отдаётся pdf-версии.

Об авторах

Список литературы

1. Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253-265.

2. David-Pfeuty T., Erickson H.P., Pantaloni D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc Natl Acad Sci USA 1977; 74: 12: 5372-5376.

3. Rezania V., Azarenko O., Jordan M.A. et al. Microtubule assembly of isotypically purified tubulin and its mixtures. Biophys J 2008; 95: 4: 1993-2008.

4. Luduena R.F. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 1998; 178: 207-275.

5. Gadadhar S., Bodakuntla S., Natarajan K. et al. The tubulin code at a glance. J Cell Sci 2017; 130: 8: 1347-1353.

6. Luduena R.F. A hypothesis on the origin and evolution of tubulin. Int Rev Cell Mol Biol 2013; 302: 41-185.

7. Ono S. Ancient linkage groups and frozen accidents. Nature. 1973; 244: 5414: 259-262.

8. Katsetos C.D., Herman M.M., Mörk S.J. Class III beta-tubulin in human development and cancer. Cell Motil Cytoskeleton 2003; 55: 2: 77-96.

10. Jiang Y.Q., Oblinger M.M. Differential regulation of beta III and other tubulin genes during peripheral and central neuron development. J Cell Sci 1992; 103 ( Pt 3): 643-651.

11. Drâberovâ E., Del Valle L., Gordon J. et al. Class III β-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. Neuropathol Exp Neurol 2008; 2008: 341-354.

12. Portyanko A., Kovalev P., Gorgun J., Cherstvoy E. Beta(III)-tubulin at the invasive margin of colorectal cancer: possible link to invasion. Virchows Arch 2009; 454: 5: 541-548.

13. Jouhilahti E.M., Peltonen S., Peltonen J. Class III beta-tubulin is a component of the mitotic spindle in multiple cell types. J Histochem Cytochem 2008; 56: 12: 1113-1119.

14. Guo J., Walss-Bass C., Luduena R.F. The beta isotypes of tubulin in neuronal differentiation. Cytoskeleton (Hoboken) 2010; 67: 7: 431-441.

15. Fanara P. et al. Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J Biol Chem 2007; 282: 32: 23465-23472.

16. Gan P.P., Pasquier E., Kavallaris M. Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res 2007; 67: 19: 9356-9363.

17. Davies K.J., Doroshow J.H. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 1986; 261: 7: 3060-3067.

18. Sheldon K.L., Maldonado E.N., Lemasters J.J. et al. Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS One / ed. Kahle P J 2011; 6: 10: e25539.

19. Rostovsteva, T.K., Gurnev, P.A., Chen, M.Y., Bezrukov S.M. Membrane lipid composition regulates tubulin interaction with mitochondrial voltage-dependent anion channel. Biol Chem 2012; 287: 29589-29598.

20. Cicchillitti L., Penci R., Di Michele M. et al. Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol Cancer Ther 2008; 7: 7: 2070-2079.

21. McCarroll J.A., Gan P.P., Erlich R.B. et al. TUBB3//3III-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res 2015; 75: 2: 415-425.

22. Jordan A., Hadfield J.A., Lawrence N.J. et al. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 1998; 18: 4: 259-296.

23. Karki R., Mariani M., Andreoli M. et al. βIII-Tubulin: biomarker of taxane resistance or drug target? Expert Opin Ther Targets 2013; 17: 4: 461-472.

24. Freedman H., Huzil J.T., Luchko T. et al. Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J Chem Inf Model 2009; 49: 2: 424-436.

25. Andreoli M., Persico M., Kumar A. et al. Identification of the first inhibitor of the GBP1:PIM1 interaction. Implications for the development of a new class of anticancer agents against paclitaxel resistant cancer cells. J Med Chem 2014; 57: 19: 7916-7932.

26. Raspaglio G., Filippetti F., Prislei S. et al. Hypoxia induces class III beta-tubulin gene expression by HIF-1alpha binding to its 3' flanking region. Gene 2008; 409: 1-2: 100-108.

27. Raspaglio G., De Maria I., Filippetti F. et al. HuR regulates beta-tubulin isotype expression in ovarian cancer. Cancer Res 2010; 70: 14: 5891-5900.

28. Mozzetti S., Martinelli E., Raspaglio G. et al. Gli family transcription factors are drivers of patupilone resistance in ovarian cancer. Biochem Pharmacol 2012; 84: 11: 1409-1418.

30. De Gendt K., Denolet E., Willems A. et al. Expression of Tubb3, a beta-tubulin isotype, is regulated by androgens in mouse and rat Sertoli cells. Biol Reprod 2011; 85: 5: 934-945.

31. Mariani M., Zannoni G.F., Sioletic S. et al. Gender influences the class III and V /З-tubulin ability to predict poor outcome in colorectal cancer. Clin Cancer Res 2012; 18: 10: 2964-2975.

32. Terry S., Ploussard G., Allory Y. et al. Increased expression of class III beta-tubulin in castration-resistant human prostate cancer. Br J Cancer 2009; 101: 6: 951-956.

33. Shibazaki M., Maesawa C., Akasaka K. et al. Transcriptional and post-transcriptional regulation of ßIII-tubulin protein expression in relation with cell cycle-dependent regulation of tumor cells Oncol 2012; 40: 3: 695-702.

34. Mariani M., Karki R., Spennato M. et al. Class III /в-tubulin in normal and cancer tissues Gene 2015; 563: 2: 109-114.

35. Tischfield M.A., Baris H.N., Wu C. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 2010; 140: 1: 74-87.

37. Lewis S.A., Cowan N.J. Complex regulation and functional versatility of mammalian alpha- and beta-tubulin isotypes during the differentiation of testis and muscle cells. J Cell Biol 1988; 106: 6: 2023-2033.

38. Peknicova J., Kubatova A., Sulimenko V. et al. Differential subcellular distribution of tubulin epitopes in boar spermatozoa: recognition of class III-tubulin epitope in sperm tail. Biol Reprod 2001; 65: 672-679.

39. Locher H., Frijns J.H., Huisman M.A., de Sousa Lopes S.M. TUBB3: Neuronal Marker or Melanocyte Mimic? Cell Transplant 2014; 23: 11: 1471-1473.

40. Yu H., Fang D., Kumar S.M. et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 2006; 168: 6: 1879-1888.

41. Katsetos C.D., Del Valle L., Geddes J.F. et al. Localization of the neuronal class III beta-tubulin in oligodendrogliomas: comparison with Ki-67 proliferative index and 1p/19q status. J Neuropathol Exp Neurol 2002; 61: 4: 307-320.

42. Katsetos C.D., Del Valle L., Legido A. et al. On the neuronal/neuroblastic nature of medulloblastomas: a tribute to Pio del Rio Hortega and Moises Polak. Acta Neuropathol. 2003; 105: 1: 1-13.

43. Packer R.J., Sutton L.N., Rorke L.B. et al. Prognostic importance of cellular differentiation in medulloblastoma of childhood. J Neurosurg 1984; 61: 2: 296-301.

44. Ikota H., Kinjo S., Yokoo H. et al. Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol 2006; 111: 5: 475-482.

45. Katsetos C.D., Del Valle L., Geddes J.F. et al. Aberrant localization of the neuronal class III beta-tubulin in astrocytomas. Arch Pathol Lab Med 2001; 125: 5: 613-624.

46. Katsetos C.D., Draber P., Kavallaris M. Targeting /βIII-tubulin in glioblastoma multiforme: from cell biology and histopathology to cancer therapeutics. Anticancer Agents Med Chem 2011; 11: 8: 719-728.

47. Jirâsek T., Pisarikova E., Viklicky V. et al. Expression of class III beta-tubulin in malignant epithelial tumours: an immunohistochemical study using TU-20 and TuJ-1 antibodies. Folia Histochem Cytobiol 2007; 45: 1: 41-45.

48. Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 1997; 100: 5: 1282-1293.

50. Ferrandina G., Zannoni G.F., Martinelli E. et al. Class III -Tubulin Overexpression Is a Marker of Poor Clinical Outcome in Advanced Ovarian Cancer Patients. Clin Cancer Res 2006; 12: 9: 2774-2779.

51. Su D., Smith S.M., Preti M. et al. Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel. Cancer 2009; 115: 11: 2453-2463.

52. Umezu T., Shibata K., Kajiyama H. et al. Taxol resistance among the different histological subtypes of ovarian cancer may be associated with the expression of class III beta-tubulin. Int J Gynecol Pathol 2008; 27: 2: 207-212.

53. Aoki D., Oda Y., Hattori S. et al. Overexpression of class III beta-tubulin predicts good response to taxane-based chemotherapy in ovarian clear cell adenocarcinoma. Clin Cancer Res 2009; 15: 4: 1473-1480.

54. Jakobsen J.N., Santoni-Rugiu E., Sorensen J.B. Longitudinal assessment of TUBB3 expression in non-small cell lung cancer patients. Cancer Chemother Pharmacol 2014; 73: 1: 43-51.

55. Jakobsen J.N., Santoni-Rugiu E. S.J.B. Use of TUBßIII for patient stratification and prognosis in lung cancer. Lung Cancer Manag 2015; 4: 2: 97-110.

56. Lebok P., Öztürk M., Heilenkötter U. et al. High levels of class III ß-tubulin expression are associated with aggressive tumor features in breast cancer. Oncol Lett 2016; 11: 3: 1987-1994.

57. Kanojia D., Morshed R.A., Zhang L. et al. III-Tubulin Regulates Breast Cancer Metastases to the Brain. Mol Cancer Ther 2015; 14: 5: 1152-1161.

58. Urano N., Fujiwara Y., Doki Y. et al. Clinical significance of class III beta-tubulin expression and its predictive value for resistance to docetaxel-based chemotherapy in gastric cancer. Int J Oncol 2006; 28: 2: 375-381.

59. Gao J., Lu M., Yu J.W. et al. Thymidine Phosphorylase/ß-tubulin III expressions predict the response in Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel. BMC Cancer. 2011; 11: 1: 177.

60. Jirâsek T., Cipro S., Musilovâ A. et al. Expression of class III beta-tubu-lin in colorectal carcinomas: an immunohistochemical study using TU-20 & TuJ-1 antibody. Indian J Med Res 2009; 129: 1: 89-94.

61. Sun H., Shi L., He X., Zheng S. Expressions of TUBB3 and gamma-synuclein in colorectal adenocarcinoma and their clinical significance. Zhonghua Yi Xue Za Zhi 2015; 95: 1242-1244.

62. Портянко А.С. Ремоделирование цитоскелета в патогенезе и прогрессии аденокарциномы и хронических воспалительных заболеваний толстой кишки: дис.. д-ра. биол. наук: 14.03.02 Минск 2016: 43.

63. Egevad L., Valdman A., Wiklund N.P. et al. Beta-tubulin III expression in prostate cancer Scand J Urol Nephrol 2010; 44: 6: 371-377.

64. Ploussard G., Terry S., Maillé P. et al. Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res 2010; 70: 22: 9253-9264.

65. Hinsch A., Chaker A., Burdelski C. et al. /βIII-tubulin overexpression is linked to aggressive tumor features and genetic instability in urinary bladder cancer. Hum Pathol 2017; 61: 210-220.

66. Quaas A., Rahvar A.H., Burdelski C. et al. /βIII-tubulin overexpression is linked to aggressive tumor features and shortened survival in clear cell renal cell carcinoma World J Urol 2015; 33: 10: 1561-1569.

67. Ferrandina G., Martinelli E., Zannoni G.F. et al. Expression of class III beta tubulin in cervical cancer patients administered preoperative radiochemotherapy: correlation with response to treatment and clinical outcome. Gynecol Oncol 2007; 104: 2: 326-330.

68. Koh Y., Kim T.M., Jeon Y.K. et al. Class III beta-tubulin, but not ERCC1, is a strong predictive and prognostic marker in locally advanced head and neck squamous cell carcinoma. Ann Oncol 2009; 20: 8: 1414-1419.

69. Kaira K., Serizawa M., Koh Y. et al. Expression of Excision Repair Cross-Complementation Group 1, Breast Cancer Susceptibility 1, and ßIII-Tubulin in Thymic Epithelial Tumors. J Thorac Oncol 2011; 6: 3: 606-613.

70. Akasaka K., Maesawa C., Shibazaki M. et al. Loss of class III beta-tubulin induced by histone deacetylation is associated with chemosensitivity to paclitaxel in malignant melanoma cells. J Invest Dermatol 2009; 129: 6: 1516-1526.

72. Ishida M., Kushima R., Okabe H. Aberrant expression of class III beta-tubulin in basal cell carcinoma of the skin. Oncol Rep 2009; 22: 4: 733-737.

73. Powell S., Kaizer A., Koopmeiners J.S. et al. High expression of class IIIß tubulin in small cell lung carcinoma. Oncol Lett 2013; 7: 2: 405-410.

75. Yoon S.O. et al. Class III beta-tubulin shows unique expression patterns in a variety of neoplastic and non-neoplastic lymphoproliferative disorders. Am. J. Surg. Pathol. 2010; 34: 5: 645-655.

76. Okuda K., Sasaki H., Dumontet C. et al. Expression of excision repair cross-complementation group 1 and class III beta-tubulin predict survival after chemotherapy for completely resected non-small cell lung cancer. Lung Cancer 2008; 62: 1: 105-112.

78. Azuma K., Sasada T., Kawahara A. et al. Expression of ERCC1 and class III β-tubulin in non-small cell lung cancer patients treated with carboplatin and paclitaxel. Lung Cancer 2009; 64: 3: 326-333.

79. Ikeda S., Takabe K., Suzuki K. Expression of ERCC1 and class IIIbeta tubulin for predicting effect of carboplatin/paclitaxel in patients with advanced inoperable non-small cell lung cancer. Pathol Int 2009; 59: 12: 863-867.

80. Zhang Q., Zhu X., Zhang L. et al. A prospective study of biomarker-guided chemotherapy in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 2014; 74: 4: 839-846.

81. Chen X., Wu J., Lu H. et al. Measuring ß-tubulin III, Bcl-2, and ERCC1 improves pathological complete remission predictive accuracy in breast cancer. Cancer Sci 2012; 103: 2: 262-268.

82. Leandro-Garcfa L.J., Leskelä S., Landa I. et al. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 2010; 67: 4: 214-223.

83. Ishida M., Kushima R., Okabe H. Aberrant expression of class III beta-tubulin in basal cell carcinoma of the skin. Oncol Rep 2009; 22: 4: 733-737.

84. Orfanidis K., Wäster P., Lundmark K. et al. Evaluation of tubulinß-3 as a novel senescence-associated gene in melanocytic malignant transformation. Pigment Cell Melanoma Res 2017; 30: 2: 243-254.

85. Мамичев И.А., Богуш Т.А., Дудко Е. А. и др. Иммунофлуоресцентный анализ экспрессии бета-III тубулина в опухолевой и окружающей нормальной ткани пациентов с немелкоклеточным раком легкого. Росс биотер журнал. - 2016. - Т. 15. - № 2. - С. 16-18.

Читайте также: