Заменимые и незаменимые аминокислоты. Использование белков на энергетические нужды

Обновлено: 02.05.2024

По значимости и количеству в организме человека аминокислоты занимают второе место после воды, поэтому не стоит их недооценивать. Чтобы избежать нежелательных последствий, необходимо регулярно пополнять запасы аминокислот в организме и способствовать их выработке, в зависимости от вида.

Виды аминокислот

Все известные на сегодняшний день аминокислоты можно разделить на два основных вида: заменимые и незаменимые. Как вы уже, наверняка, догадались, незаменимые аминокислоты - это те вещества, которые не могут синтезироваться организмом самостоятельно и не заменяются никакими другими веществами. Именно поэтому стоит позаботиться о том, чтобы они регулярно попадали в организм с продуктами питания. Что же касается заменимых аминокислот, то они могут быть получены в результате синтеза других питательных веществ во время протекания внутренних процессов. Поэтому их употребление в чистом виде не обязательно. Однако, и те, и другие аминокислоты имеют одинаково важное значение для организма, поэтому нельзя отдавать предпочтение какому-либо одному из видов.

Заменимые аминокислоты

Как уже было сказано ранее, заменимые аминокислоты синтезируются организмом в процессе метаболизма, извлекаясь в достаточном количестве из других органических веществ. При возникновении необходимости, то есть при истощении запасов аминокислот, организм автоматически переключается в режим создания нужной аминокислоты. К заменимым аминокислотам относятся аргинин, аланин, глютамин, глицин, тирозин, пролин, аспарагин, серин и цистеин. Рассмотрим подробнее некоторые из них и их влияние на наш организм.

Аланин

Данная аминокислота вырабатывается организмом в результате попадания в него мяса, молочных продуктов, рыбы, птицы, яиц и некоторых продуктов растительного происхождения, таких как авокадо. Аланин представляет собой великолепный источник энергии, который обеспечивает организм силой на длительный период. Он способствует ускорению процесса переработки и усвоения глюкозы и выведению токсинов из печени. Помимо этого аланин предотвращает распад мышечных тканей, который протекает особо интенсивно во время физической нагрузки. В некоторых случаях аланин выступает в роли профилактического средства при увеличении предстательной железы.

Аргинин

Такая аминокислота, как аргинин, имеет весьма большое значение для человека и считается одной из важнейших в организме. Она принимает участие в поддержании здоровья суставов, мышц, кожи и печени. Она обладает восстановительными свойствами, поэтому часто способствует регенерации тканей при артрите и других заболеваниях суставов. Аргинин принимает непосредственное участие в процессе укрепления иммунной системы, участвует в синтезе креатина, а также снижает количество жировых отложений, что будет весьма кстати для тех, кто занимается спортом с целью похудения. Несмотря на то, что аргинин вырабатывается организмом, людям с ожогами на коже и тем, кто хочет стремительно набрать мышечную массу рекомендуется дополнительно принимать данную аминокислоту в виде пищевой добавки. Природными источниками аргинина являются молочные продукты, мясо, шоколад, некоторые орехи, овёс и пшеница.

Глютамин

Получить это заменимую аминокислоту можно из многих продуктов, а в особенности из зелени. Однако, стоит учитывать, что глютамин быстро разрушается при термической обработке, поэтому его источники лучше употреблять в сыром виде. Данная аминокислота принимает участие в создании мышц и поддержании их состояния. Она выступает в качестве источника питания для головного мозга, а также представляет собой источник энергии для нервной системы, нормализуя её состояние и снимая напряжение. Кроме этого, глютамин способен выводить из печени токсические вещества, предотвращать нежелательный распад мышечных тканей, укреплять иммунную систему и помогать при артрите и хронической усталости. Одним словом, эта заменимая аминокислота обязательно должна присутствовать в рационе тех, кто беспокоится о своём здоровье.

Незаменимые аминокислоты

Незаменимые, или как их ещё называют, эссенциальные аминокислоты не могут синтезироваться нашим организмом, поэтому практически единственным их источником являются продукты питания, которые мы употребляем ежедневно. В случае нехватки этих аминокислот, организм потребляет их из мышечных тканей, что негативно отражается на состоянии мышц. В число незаменимых аминокислот входят лейцин, изолейцин, лизин, метионин, гистидин, валин, треонин и триптофан.

Лейцин

Эта аминокислота относится к классу ВСАА, так как имеет разветвлённую цепочку и играет весьма важную роль в процессе восстановления мышц, благодаря чему невероятно популярна среди людей, регулярно занимающихся спортом. Лейцин гораздо быстрее других незаменимых аминокислот превращается в глюкозу, благодаря чему способствует остановке в мышечных тканях катаболических процессов, происходящих во время изнурительных тренировок. Помимо этого, лейцин контролирует уровень сахара в крови, увеличивает выработку гормона роста, а также способствует сжиганию жиров, что непременно порадует тех, кто приобщился к спорту с целью похудения. Источниками лейцина являются мясо, орехи, бобовые культуры, рис, цельная пшеница и соевая мука.

Изолейцин

Изолейцин, как и предыдущая аминокислота, является одной из главных аминокислот ВСАА, которые часто используются в профессиональном бодибилдинге. Регулярное употребление изолейцина способствует увеличению выносливости и продуктивности тренировок, ускоряет восстановление и рост мышечной массы, стимулирует пополнение запасов энергии естественным путём, исключая разрушение мышц. Благодаря изолейцину можно в кротчайшие сроки улучшить свои спортивные результаты и добиться желаемых форм. Получить эту незаменимую аминокислоту можно из мяса, рыбы, орехов, яиц, гороха, сои и семян.

Лизин

Данная аминокислота часто добавляется в спортивное питание, так как основная её функция - это укрепление иммунитета, который ослабевает при недостатке питательных веществ и чрезмерных нагрузках на организм. Лизин обладает противовирусным свойством, он регулирует процессы обновления костной ткани, предупреждает развитие простудных заболеваний, а также стимулирует выработку коллагена и мышечного протеина, которые способствуют быстрому восстановлению организма и мышц в частности. Для того, чтобы пополнить запасы лизина, необходимо употреблять красное мясо, рыбу, молоко, яйца, сыр, картофель и дрожжи.

Метионин

В число незаменимых аминокислот, которые необходим нашему организму, входит метионин, обладающий уникальными свойствами. Он принимает участие в переработке и утилизации жиров, поэтому часто помогает во время похудения и пользуется спросом у тех, кто желает избавиться от лишнего веса. Эта аминокислота участвует в процессе образования таурина и цистеина, которые, в свою очередь, выводят из организма токсические вещества, очищая и обновляя его. При помощи метионина осуществляется синтез креатина, повышающего работоспособность и выносливость. Без него невозможен синтез коллагена, отвечающего за эластичность и упругость кожи, а также за здоровье ногтей. Метионин должен стать неотъемлемой частью рациона для людей, страдающих артритом и аллергией. Получить его можно из мяса, рыбы, бобовых культур, лука, чеснока и сои.

Аминокислотный синтез

микробный синтез аминокислот

Аминокислоты — органические биологически важные соединения, в молекуле которых одновременно содержатся карбоксильные (-СООН) и аминные группы (-NH2) , и имеющие боковую цепь, специфичную для каждой аминокислоты. Ключевые элементы аминокислот - углерод (C), водород (H), кислород (O) и азот (N). Прочие элементы находятся в боковой цепи определенных аминокислот.

Как известно, пробиотические микроорганизмы (бактерии) синтезируют различные биологически активные вещества: ранее проведенными исследованиями было установлено, что в микробной биомассе пробиотических культур (бифидобактерий и пропионовокислых бактерий), а также в отработанной культуральной жидкости содержатся антимутагенные вещества , ферменты, витамины группы В , короткоцепочечные жирные кислоты и аминокислоты. Отмечено, например, что пропионовокислые бактерии характеризуются очень хорошо развитой биосинтетической способностью и как представители прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков.

Одной из важнейших функций аминокислот является их участие в синтезе белков, выполняющих каталитические, регуляторные, запасные, структурные, транспортные, защитные и другие функции. Иными словами, пробиотические микроорганизмы играют огромную роль в процессах белкового синтеза и потому являются весьма ценными источиками аминокислот, ферментов и т.п. К слову, природные аминокислоты являются, как правило, оптически активными L - и D ­формами, которые трудно разделить, вот почему микробный синтез является ныне основным и экономически выгодным в промышленности.

ПОЛУЧЕНИЕ АМИНОКИСЛОТ . Существует четыре промышленных метода получения аминокислот: 1) экстракция из гидролизата белка; 2) химический синтез; 3) биотрансформация соединений-предшественников в ферментере или клеточном реакторе; 4) микробная ферментация.

Успех промышленного получения аминокислот объясняется тем, что химический синтез соединений-предшественников относительно дешев. Кроме того, для производства практически всех протеиногенных аминокислот разработаны методы ферментации, и имеются штаммы, позволяющие получать большие количества продукта. Во многих случаях такой подход экономически оправдан. Широко используются штаммы, усовершенствованные методами генетической инженерии. К настоящему времени закончено секвенирование генома Corynebacterium glutamicum. Полученная генетическая информация поможет ускорить создание новых высокопродуктивных штаммов. Во многих случаях уже клонированы целые опероны, ответственные за биосинтез аминокислот. Изучаются возможности управления обменом веществ клетки методами так называемой метаболической инженерии.

Для более детального рассмотрения темы промышленного интеза аминокислот следует перейти по кнопке-ссылке:

Стоит особенно отметить, что пропионовокислые бактерии могут синтезировать все аминокислоты за счет ассимиляции азота (NH4)2SO4. Б ифидобактерии , также отличаются образованием данных органических соедиинений. В частности, бифидобактерии выделяются синтезом триптофана, который является биологическим прекурсором серотонина (из которого затем может синтезироваться мелатонин) и ниацина (витамина PP или B3) — водорастворимого витамина, участвующего во многих окислительно-восстановительных реакциях, образовании ферментов, обмене липидов и углеводов в живых клетках.

Одним из примеров практического использования способности пробиотических бактерий к аминокислотному (белковому) синтезу , является использование их заквасок в пищевой промышленности, что позволяет получать продукты сбалансированные по аминокислотному составу. Например, при использовании бифидо- и пропионовокислых бактерий в производстве сырокопченых колбас , происходит значительное накопление в продуктах свободных аминокислот, а сумма незаменимых аминокислот становится выше на 29%. Преимущественное накопление глицина, глютаминовой кислоты, валина, фенилаланина, тирозина, лейцина, изолейцина отражает специфическое совместное воздействие на белки и пептиды тканевых эндопептидаз и экзопептидаз, а также биосинтез белков пропионовокислыми бактериями.

Нашли свое применение пробиоти ки и в сельском хозяйстве. Использование бактерий в качестве продуцента белкового корма является более эффективным, так как бактерии образуют до 75% белка по массе, в то время как дрожжи - не более 60%. Например, использование штаммов Propionibacterium freudenreichii subsp. shermanii, для приготовления белкового корма не требует расхода воздуха и энергозатрат на его подачу, так как данные штаммы пропионовокислых бактерий являются анаэробами. Штаммы обладают широким спектром антимикробного действия, что исключает развитие посторонней микрофлоры в процессе биосинтеза и поэтому не требуется наличие специального оборудования для соблюдения условий стерильности. Возможность утилизации разнообразных отходов отраслей промышленности, использующих природное сырье, при наращивании биомассы штаммов ПКБ с целью приготовления белкового корма решает также экологические проблемы предприятий.

АМИНОКИСЛОТЫ, СИНТЕЗИРУЕМЫЕ БИФИДОБАКТЕРИЯМИ И ПРОПИОНОВОКИСЛЫМИ БАКТИЕРИЯМИ

Первичная структура — последовательность аминокислотных остатков в полипептидной цепи.

БИФИДОБАКТЕРИИ

также образуют из неорганических азотистых соединений незаменимые аминокислоты, в частности - аланин , валин , аспарагин , синтезируют триптофан .

ПИЩЕВАЯ ЦЕННОСТЬ АМИНОКИСЛОТ

Все эти биосинтезирующие функции бактерий открывают огромные возможности в сфере создания продуктов функционального питания. В современных условиях неблагоприятной экологии и снижения качества питания, с пособность бактерий к синтезу практически важных веществ (аминокислот, различных белковых соединений, витаминов, короткоцепочечных жирных кислот, полисахаридов и т.п.), является одним из перспективных инструментов в решени вопросов профилактики и лечения алиментарных заболеваний.

Известно более 200 природных аминокислот, из них только 20 входят в состав белков. Эти аминокислоты называют протеиногенными — строящими белки. В организме человека наряду с протеиногенными аминокислотами можно найти и другие, которые играют иную роль, например, орнитин, β-аланин, таурин и др. Но в данном разделе мы рассмотрим лишь свойства 20-ти стандартных (протеиногенных заменимых и незаменимых аминокислот), участвующих в биосинтезе белка , а также некоторых других, синтезируемых указанными выше пробиотическими микроорганизмами. Как известно, в виде белков аминокислоты являются вторым (после воды) компонентом мышц, клеток и других тканей человеческого организма. Аминокислоты играют решающую роль в таких процессах, как транспорт нейротрансмиттеров и биосинтезе.

Для тех кто хочет получить общее представление или освежить память об основных понятиях, касающихся аминокислот и синтезе белка из аминокислот, а также о роли аминокислот в питании человека, предлагаем перейти по ссылкам:

КЛАССИФИКАЦИЯ АМИНОКИСЛОТ ПО ЗАМЕНИМЫМ И НЕЗАМЕНИМЫМ

Заменимые аминокислоты - это аминокислоты, поступающие в организм человека с белковой пищей, либо образующиеся в организме из иных аминокислот.

Незаменимые аминокислоты - это аминокислоты, которые не могут быть получены в организме человека с помощью биосинтеза, поэтому должны постоянно поступать в виде пищевых белков. Их отсутствие в организме приводит к явлениям, угрожающим жизни.

Незаменимыми аминокислотами для взрослого здорового человека являются аминокислоты фенилаланин , триптофан , треонин , метионин , лизин , лейцин , изолейцин и валин ; Для детей, дополнительно, гистидин и аргинин .

Классификация аминокислот на заменимые и незаменимые содержит ряд исключений:

  • Заменимый гистидин, синтезирующийся в организме человека, должен поступать с белковой пищей, так как его производство недостаточно для нормального поддержания здоровья;
  • Заменимый аргинин вследствие ряда особенностей его метаболизма, при некоторых физиологических состояниях организма может быть приравнен к незаменимым;
  • Тирозин можно считать заменимой аминокислотой лишь при условии достаточного поступления фенилаланина. У больных фенилкетонурией тирозин становится незаменимой аминокислотой.

Потребность в аминокислотах и белке

потребность в белковой пище

Потребность в незаменимых аминокислотах

Существуют стандарты сбалансированности незаменимых аминокислот (НАК), разработанные с учетом возрастных данных. Для взрослого человека (г/сутки): триптофана - 1, лейцина 4—6, изолейцина 3—4, валина 3—4, треонина 2—3, лизина 3—5, метионина 2—4, фенилаланина 2—4, гистидина 1,5—2.

Таблица 1. Международные рекомендации по суточной потребности детей в аминокислотах*

Незаменимые аминокислоты


Почему незаменимые аминокислоты важны для организма

Функции незаменимых аминокислот

Нутриенты и аминокислоты

Тело человека в среднем на 20% состоит из белков (протеинов), а каждая клетка организма содержит до 50-80% этих соединений. Протеины в свою очередь - результат синтеза, смеси между 20 основными аминокислотами. Их последовательность в ходе соединений разнообразно чередуется в соответствии с набором генов в ДНК, что и обеспечивает отличия функциональности белков: строительных, транспортных, защитных и т.д.

Если упростить все биохимические реакции, распад белка, поступающего с пищей, - это и есть получение организмом условно и полностью незаменимых аминокислот. В то же время организму для продукции эндогенных белков требуются и собственные, и внешние функциональные элементы. Это объясняет высокую потребность в эссенциальных аминокислотах у человека, поскольку незаменимыми их делает неспособность организма продуцировать объем, достаточный для поддержания множества процессов жизнедеятельности.

Если вследствие нарушения одного из перечисленных параметров организм утрачивает возможность «сборки» одного из видов белка, нарушается естественная, нормальная работа множества систем жизнедеятельности. Чтобы понять, насколько серьёзным является такой сбой, можно обратиться к целевому анализу крови: исследуется потребность в основных аминокислотах, включая разбивку по группам, на 13, 32 или 48 вариантов интерпретаций.

  • Протеиногенные: глюкогенные, кетогенные, смешанные;
  • Заменимые - также глюко- и кетогенные, обоих типов;
  • Непротеиногенные (не участвуют в синтезе белка - ингибиторы ферментов, токсины).

Что даёт такой анализ: необходимые данные для объективной оценки метаболизма, обмена всех типов аминокислот, функциональности витаминов. На основе результатов можно составить или скорректировать диету, приём нутриентов, выявить некоторые заболевания, связанные с частично, полностью заменимыми и также незаменимыми аминокислотами.

В каких областях будет полезным: акушерство и гинекология, расстройства эндокринной системы, исследование репродуктивной функции у мужчин и женщин, также в ревматологии, онкологии, кардиологии, диетологии, при заболеваниях почек. Анализ информативен для спортсменов, особенно в период восстановления после травм, для бодибилдеров. Нередко к этому исследованию крови обращаются при коррекции возрастных состояний, ментального здоровья.

Каждое такое соединение имеет узконаправленное действие, но также принимает участие и в комплексных процессах организма: взаимодействуя с другими питательными элементами аминокислоты являются уже универсальными, многозадачными «солдатами». Задачи с участием незаменимых аминокислот довольно масштабны: вряд-ли можно привести пример биохимической реакции, протекающей в организме без их участия.

Вспомним, что все без исключения незаменимые аминокислоты не продуцируются самим организмом, а «добыть» их можно только из пищи или принимая комплексы нутриентов. В разных источниках к этой же группе могут быть добавлены несколько условно незаменимых - тех, что в небольших объёмах всё же продуцируются эндогенно, или же превращаются из заменимых, то есть тех, что производятся в необходимых объемах. Например - Пролин, для синтеза которого необходима заменимая глутаминовая кислота, а само соединение относится к иминной группе, близкой к аминам, но со способностью становиться аминокислотами в результате катаболических реакций.

К незаменимым аминокислотам относится восемь основных соединений: Лейцин и Изолейцин, Валин, Лизин, Метионин, Триптофан, Треонин и Фенилаланин. Нередко к ним добавляют условно заменимые Тирозин и Цистеин, все 10 соединений обеспечивают выполнение важнейших функций в организме.

Вовлеченность природных аминокислот в процессы биосинтеза максимально широка и охватывает все механизмы обеспечения жизнедеятельности: участие этих структурных единиц важно для биосинтеза не только протеинов, но также ферментов, витаминов, некоторых гормонов и т.д. Каждое соединение действует в комплексе с другими биологически значимыми веществами, но также имеет и собственный «почерк» - выраженное направленное действие.

Триптофан - соединение с высокой биодоступностью, усваивается порядка 90% поступающего с пищей объема. Предшествует синтезу серотонина - нейромедиатора, известного как гормон позитива, такое свойство Триптофана активно используется в терапии тревожных расстройств, депрессий, других расстройств ментальной целостности. Из серотонина далее образуется мелатонин, регулятор циклов сна и бодрствования, а также ниацин (никотиновая кислота) - витамин В3, участвующий в большинстве восстановительно-окислительных реакций, необходим в процессах обмена липидов, углеводов.

Фенилаланин - активность проявляет в присутствии витаминов С, В6 и В3, пользу для организма приносит в присутствии железа и меди. Поступая из пищи, в процессе метаболизма образует Тирозин - одно из условно незаменимых соединений, материал для продукции гормонов щитовидной железы. Непосредственно Фенилаланин незаменим в процессах продукции дофамина, норадреналина и адреналина.

Треонин - рекомендуется в качестве отдельной добавки всем, кто придерживается вегетарианской диеты, поскольку основным источником Треонина доказанно считаются именно мясные продукты. Важность: поддержка когнитивных и иммунных функций (Т-лимфоциты), липотропное действие в клетках печени, пищеварительном тракте. Большой объем Треонина требуется в процессе скульптурирования тела, поскольку незаменимым является в первую очередь для соединительной ткани, при повышенной физической активности - в паре с глицином синтезируется в коллаген.

Задачу формирования соединительных тканей, кожи, волос, ногтей, детоксикации и формирования коллагена выполняет Цистеин - вторая из аминокислот являющихся незаменимыми условно. Антиоксидантный функционал срабатывает при реакции с витамином С и селеном. Для синтеза Цистеина необходимы Серин, Метионин и витамин В6.

Метионин и Лизин - гепатопротекторы, наиболее активные из аминокислот являющихся регуляторами уровня холестерина, липидов. Метионин при этом усиливает синтез холина: вещества, защищающего клеточную мембрану от повреждений. Лизин сдерживает уровень накопления в сыворотке крови триглицеридов, а вместе с витамином С снижает риск закупорки артерий.

Лейцин, Изолейцин и Валин - это разные незаменимые аминокислоты, но с похожими эффектами действия в организме. В совместной работе обеспечивают защиту от неоправданных трат серотонина, то есть предупреждают его дефицит и связанные с этим состояния: депрессии, апатии, тревожные расстройства. Кроме того, независимо друг от друга эти соединения выполняют и другие функции:

  • Изолейцин - регуляция уровня сахара, синтез гемоглобина, ускорение заживлений после травм, ран, ожогов, также распространяется и на эстетическую косметологию;
  • Лейцин - важный элемент спортивного питания, регулятор усваиваемости белка и как следствие роста мышечной массы. Блокирует накопление жиров, повышает выносливость: незаменим в спортивном питании;
  • Валин - демонстрирует аналогичные лейцину действия, но также эффективен в лечении состояний различных зависимостей. Это свойство Валина основано на его способности защищать миелиновую оболочку нервных волокон, что также сказывается на лечении неврологических заболеваний. Является материалом для продукции витамина В3, пенициллина, способствует доставке Триптофана через ГЭБ - защитного барьера между ЦНС и кровеносной системой организма.

Рассчитать самостоятельно оптимальную дозировку, состав специальных добавок с аминокислотами или их потребление из пищи практически невозможно. Именно в отношении этих питательных соединений не существует единых норм и показателей, как это разработано для витаминов, минералов и т.д. Например, референсные значения ВОЗ демонстрируют очень широкую «вилку» показателей, указывая только минимальное значение и потребность, в расчете на килограмм веса.

Но в отличие от нутриентов, определяя эффективный объём потребления, необходимо учитывать цель приёма, состояние здоровья, возраст, привычный режим питания, физической активности, медикаменты, любые другие персональные потребности. Немалое значение имеет и взаимодействие самих аминокислот: например, Цистеин может снизить потребность в Метионине, а Тирозин - в Фенилаланине. Производить такие расчёты довольно непросто, поскольку предварительно потребуется провести базовый мониторинг состояния здоровья по анализам крови.

На таких данных и основываются расчёты эффективных персональных дозировок любых биологически значимых веществ. Этот же принцип лежит в основе создания различных комплексов нутриентов, ориентированного на текущие потребности метаболизма - bioniq LIFE и bioniq BALANCE, bioniq IMMUNE и bioniq OMEGA 3

Алгоритм метаболизма


автор: А. Ю. Барановский, д. м. н., профессор, заведующий кафедрой гастроэнтерологии и диетологии Северо-Западного государственного медицинского университета им. И. И. Мечникова, врач высшей категории

Решение организационных вопросов питания у лиц старших возрастов, разработка и назначение индивидуализированных рационов рационального, профилактического и лечебного питания в существенной степени зависит от правильной оценки врачом нутриционного статуса пожилого человека, особенностей состояния обменных процессов. Именно поэтому профессионально грамотный клиницист, участвующий в решении проблем лечебно-профилактического питания у лиц пожилого и старческого возраста, должен быть достаточно хорошо ориентирован в области основ клинической биохимии и физиологии питания стареющего организма.

Белковый обмен

Белки — сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты (органические соединения, содержащие карбоксильные и аминные группы). Их биологическая роль многообразна. Белки выполняют в организме пластические, каталитические, гормональные, транспортные и другие функции, а также обеспечивают специфичность. Значение белкового компонента питания заключается прежде всего в том, что он служит источником аминокислот.

Аминокислоты делятся на эссенциальные и неэссенциальные в зависимости от того, возможно ли их образование в организме из предшественников. К незаменимым аминокислотам относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, триптофан и валин, а также цистеин и тирозин, синтезируемые соответственно из метионина и фенилаланина. Девять заменимых аминокислот (аланин, аргинин, аспарагиновая и глутамовая кислоты, глутамин, глицин, пролин и серин) могут отсутствовать в рационе, так как способны образовываться из других веществ. В организме также существуют аминокислоты, которые продуцируются путем модификации боковых цепей вышеперечисленных (например, компонент коллагена — гидроксипролин — и сократительных белков мышц — 3-метилгистидин).

Большинство аминокислот имеют изомеры (D- и L-формы), из которых только L-формы входят в состав белков человеческого организма. D-формы могут участвовать в метаболизме, превращаясь в L-формы, однако утилизируются гораздо менее эффективно.

Взаимоотношение аминокислот

По химическому строению аминокислоты делятся на двухосновные, двухкислотные и нейтральные с алифатическими и ароматическими боковыми цепями, что имеет большое значение для их транспорта, поскольку каждый класс аминокислот обладает специфическими переносчиками. Аминокислоты с аналогичным строением обычно вступают в сложные, часто конкурентные взаимоотношения.

Так, ароматические аминокислоты (фенилаланин, тирозин и триптофан) близкородственны между собой. Хотя фенилаланин является незаменимой, а тирозин — синтезируемой из него заменимой аминокислотой, наличие тирозина в рационе как будто бы «сберегает» фенилаланин. Если фенилаланина недостаточно или его метаболизм нарушен (например, при дефиците витамина С) — тирозин становится незаменимой аминокислотой. Подобные взаимоотношения характерны и для серосодержащих аминокислот: незаменимой — метионина — и образующегося из него цистеина.

Триптофан в ходе превращений, для которых необходим витамин В 6 (пиридоксин), включается в структуру НАД и НАДФ, то есть дублирует роль ниацина. Приблизительно половина обычной потребности в ниацине удовлетворяется за счет триптофана: 1 мг ниацина пищи эквивалентен 60 мг триптофана. Поэтому состояние пеллагры может развиваться не только при недостатке витамина РР в рационе, но и при нехватке триптофана или нарушении его обмена, в том числе вследствие дефицита пиридоксина.

Аминокислоты также делятся на глюкогенные и кетогенные, в зависимости от того, могут ли они при определенных условиях становиться предшественниками глюкозы или кетоновых тел (см. табл. 1).

Таблица 1. Классификация аминокислот

Виды Эссенциальные аминокислоты Неэссенциальные аминокислоты
Алифатические Валин (Г), лейцин (К), изолейцин (Г, К) Глицин (Г), аланин (Г)
Двухосновные Лизин (К), гистидин (Г, К)* Аргинин (Г)*
Ароматические Фенилаланин (Г, К), триптофан (Г, К) Тирозин (Г, К)**
Оксиаминокислоты Треонин (Г, К) Серин (Г)
Серосодержащие Метионин (Г, К) Цистеин (Г)**
Дикарбоновые и их амиды Глутамовая кислота (Г), глутамин (Г), аспарагиновая кислота (Г), аспарагин (Г)
Иминокислоты Пролин (Г)

Обозначения: Г — глюкогенные, К — кетогенные аминокислоты; * — гистидин незаменим у детей до года; ** — условно-незаменимые аминокислоты (могут синтезироваться из фенилаланина и метионина).

Необходимые азотсодержащие соединения

Поступление азотсодержащих веществ с пищей происходит в основном за счет белка и в менее значимых количествах — свободных аминокислот и других соединений. В животной пище основное количество азота содержится в виде белка. В продуктах растительного происхождения большая часть азота представлена небелковыми соединениями, также в них содержится множество аминокислот, которые не встречаются в организме человека и зачастую не могут метаболизироваться им.

Синтез пуриновых оснований

Человек не нуждается в поступлении с пищей нуклеиновых кислот. Пуриновые и пиримидиновые основания синтезируются в печени из аминокислот, а избыток этих оснований, поступивших с пищей, выводится в виде мочевой кислоты.

В синтезе пиримидиновых колец принимает участие витамин B 12 , для образования пуриновых структур необходима фолиевая кислота. Именно поэтому дефицит этих нутриентов отражается прежде всего на органе с высоким уровнем пролиферации, где идет наиболее интенсивный синтез нуклеиновых кислот, — на кроветворной ткани.

Прием белка

Обычный (но не оптимальный) ежедневный прием белка у среднестатистического человека составляет приблизительно 100 г. К ним присоединяется примерно 70 г белка, секретируемого в полость желудочно-кишечного тракта. Из этого количества абсорбируется около 160 г. Самим организмом в сутки синтезируется в среднем 240-250 г белка. Такая разница между поступлением и эндогенным преобразованием свидетельствует об активности процессов обратного восстановления исходного сложного химического соединения из «осколков», образовавшихся при его метаболизме (ресинтеза белков из аминокислот, а аминокислот из аммиака и «углеродных скелетов» аминокислот).

Азотное равновесие

Для здорового человека характерно состояние азотного равновесия, когда потери белка (с мочой, калом, эпидермисом и т. п.) соответствуют его количеству, поступившему с пищей. При преобладании катаболических процессов возникает отрицательный азотный баланс, который характерен для низкого потребления азотсодержащих веществ (низкобелковых рационов, голодания, нарушения абсорбции белка) и многих патологических процессов, вызывающих интенсификацию распада (опухолей, ожоговой болезни и т. п.). При доминировании синтетических процессов количество вводимого азота преобладает над его выведением, и возникает положительный азотный баланс, характерный для детей, беременных женщин и реконвалесцентов после тяжелых заболеваний.

После прохождения энтерального барьера белки поступают в кровь в виде свободных аминокислот. Следует отметить, что клетки слизистой оболочки желудочно-кишечного тракта могут метаболизировать некоторые аминокислоты (в том числе глутамовую кислоту и аспарагиновую кислоту в аланин). Способность энтероцитов видоизменять эти аминокислоты, возможно, позволяет избежать токсического эффекта при их избыточном введении.

Аминокислоты, как поступившие в кровь при переваривании белка, так и синтезированные в клетках, в крови образуют постоянно обновляющийся свободный пул аминокислот, который составляет около 100 г.

Путь белка

75 % аминокислот, находящихся в системной циркуляции, представлены аминокислотами с ветвящимися цепями (лейцином, изолейцином и валином). Из мышечной ткани в кровоток выделяются аланин, который является основным предшественником синтеза глюкозы, и глутамин. Многие свободные аминокислоты подвергаются трансформации в печени. Часть свободного пула инкорпорируется в белки организма и при их катаболизме вновь поступает в кровоток. Другие непосредственно подвергаются катаболическим реакциям. Некоторые свободные аминокислоты используются для синтеза новых азотсодержащих соединений (пурина, креатинина, адреналина) и в дальнейшем деградируют, не возвращаясь в свободный пул, в специфичные продукты распада.

Роль печени

Постоянство содержания различных аминокислот в крови обеспечивает печень. Она утилизирует примерно ⅓ всех аминокислот, поступающих в организм, что позволяет предотвратить скачки в их концентрации в зависимости от питания.

Первостепенная роль печени в азотном и других видах обмена обеспечивается ее анатомическим расположением — продукты переваривания попадают по воротной вене непосредственно в этот орган. Кроме того, печень непосредственно связана с экскреторной системой — билиарным трактом, что позволяет выводить некоторые соединения в составе желчи. Гепатоциты — единственные клетки, обладающие полным набором ферментов, участвующих в аминокислотном обмене. Здесь выполняются все основные процессы азотного метаболизма: распад аминокислот для выработки энергии и обеспечения глюконеогенеза, образование заменимых аминокислот и нуклеиновых кислот, обезвреживание аммиака и других конечных продуктов. Печень является основным местом деградации большинства незаменимых аминокислот (за исключением аминокислот с ветвящимися цепями).

Инсулиновый ответ

Синтез азотсодержащих соединений (белка и нуклеиновых кислот) в печени весьма чувствителен к поступлению их предшественников из пищи. После каждого приема пищи наступает период повышенного внутрипеченочного синтеза белков, в том числе альбумина. Аналогичное усиление синтетических процессов происходит и в мышцах. Эти реакции связаны прежде всего с действием инсулина, который секретируется в ответ на введение аминокислот и/или глюкозы.

Некоторые аминокислоты (аргинин и аминокислоты с ветвящимися цепями) усиливают продукцию инсулина в большей степени, чем остальные. Другие (аспарагин, глицин, серин, цистеин) стимулируют секрецию глюкагона, который усиливает утилизацию аминокислот печенью и воздействует на ферменты глюконеогенеза и аминокислотного катаболизма. Благодаря этим механизмам происходит снижение уровня аминокислот в крови после поступления их с пищей. Действие инсулина наиболее выражено для аминокислот, содержащихся в кровотоке в свободном виде (аминокислот с ветвящимися цепями), и малозначимо для тех, которые транспортируются в связанном виде (триптофана). Обратное инсулину влияние на белковый метаболизм оказывают глюкокортикостероиды.

Аминокислоты на «экспорт»

Печень обладает повышенной скоростью синтеза и распада белков по сравнению с другими тканями организма (кроме поджелудочной железы). Это позволяет ей синтезировать «на экспорт», а также быстро обеспечивать лабильный резерв аминокислот в период недостаточного питания за счет распада собственных белков.

Особенность внутрипеченочного белкового синтеза заключается в том, что он усиливается под действием гормонов, которые в других тканях производят катаболический эффект. Так, при голодании белки мышц, для обеспечения организма энергией, подвергаются распаду, а в печени одновременно усиливается синтез белков, являющихся ферментами глюконеогенеза и мочевинообразования.

Избыток белка и голодание

Прием пищи, содержащей избыток белка, приводит к интенсификации синтеза в печени и в мышцах, образованию избыточных количеств альбумина и деградации излишка аминокислот до предшественников глюкозы и липидов. Глюкоза и триглицериды утилизируются как горючее или депонируются, а альбумин становится временным хранилищем аминокислот и средством их транспортировки в периферические ткани.

При голодании уровень альбумина прогрессивно снижается, а при последующей нормализации поступления белка медленно восстанавливается. Поэтому хотя альбумин и является показателем белковой недостаточности, он низкочувствителен и не реагирует оперативно на изменения в питании.

7 из 10 эссенциальных аминокислот деградируют в печени — либо образуя мочевину, либо впоследствии используясь в глюконеогенезе. Мочевина преимущественно выделяется с мочой, но часть ее поступает в просвет кишечника, где подвергается уреазному воздействию микрофлоры. Аминокислоты с ветвящимися цепями катаболизируются в основном в почках, мышцах и головном мозге.

Роль мышц

Мышцы синтезируют ежедневно 75 г белка. У среднего человека они содержат 40 % от всего белка организма. Хотя белковый метаболизм происходит здесь несколько медленнее, чем в других тканях, мышечный белок представляет собой самый большой эндогенный аминокислотный резерв, который при голодании может использоваться для глюконеогенеза.

Мышцы являются основной мишенью воздействия инсулина: здесь под его влиянием усиливается поступление аминокислот, увеличивается синтез мышечного белка и снижается распад.

В процессе превращений в мышцах образуются аланин и глутамин, их условно можно считать транспортными формами азота. Аланин непосредственно из мышц попадает в печень, а глутамин вначале поступает в кишечник, где частично превращается в аланин. Поскольку в печени из аланина происходит синтез глюкозы, частично обеспечивающий мышцу энергией, получающийся круго- оборот получил название глюкозо- аланинового цикла.

К азотсодержащим веществам мышц также относятся высокоэнергетичный креатин-фосфат и продукт его деградации креатинин. Экскреция креатинина обычно рассматривается как мера мышечной массы. Однако это соединение может поступать в организм с высокобелковой пищей и влиять на результаты исследования содержания его в моче. Продукт распада миофибриллярных белков — 3-метилгистидин — экскретируется с мочой в течение короткого времени и является достаточно точным показателем скорости распада в мышцах — при мышечном истощении скорость его выхода пропорционально снижается.

Механизм голодания

В отсутствие пищи синтез альбумина и мышечного белка замедляется, но продолжается деградация аминокислот. Поэтому на начальном этапе голодания мышцы теряют аминокислоты, которые идут на энергетические нужды. В дальнейшем организм адаптируется к отсутствию новых поступлений аминокислот (снижается потребность в зависящем от белка глюконеогенезе за счет использования энергетического потенциала кетоновых тел) и потеря белка мускулатуры уменьшается.

Хотите больше информации по вопросам диетологии?
Приобретите информационно-практический журнал «Практическая диетология» в электронном или печатном формате! 6 , который является кофактором ферментов трансаминирования, обеспечивающих синтез заменимых и первый этап катаболизма всех аминокислот. Поэтому повышенный уровень потребления белка требует адекватного повышения количества пиридоксина.

Современные рекомендации по обеспечению пожилых людей и стариков основными питательными веществами, в первую очередь белками, свидетельствуют о целесообразном некотором снижении суточного количества белковых продуктов в пищевом рационе до 0,75-0,8 г/кг веса. Это связано с тем, что интенсивность основных физиологических функций с каждым десятилетием жизни человека после 50 лет снижается почти на 10 % (Rogers J., Jensen G., 2004), потребность белка уменьшается за счет инволюции синтетических и пластических процессов и ферментообразования, продукции гормонов, ряда биологически активных веществ, обеспечения мышечной деятельности и т. д.

Рекомендуемые нормы потребления для белка с учетом приведенных выше показателей составляют 55-62 г/сут (для мужчины весом 77 кг в возрасте 60-70 лет) и 45-52 г/сут (для женщины весом 65 кг в возрасте 60-70 лет) по выводам IV Американского национального исследования по оценке здоровья и питания (2006).

Вместе с тем установлено, что при сохранении физической активности пожилых людей (профессиональной физической нагрузки, занятий физкультурой, работы на дачном участке и т. п.) для поддержания азотного равновесия организма требуется повышение белкового обеспечения пожилого человека в количестве 1-1,25 г/кг в день. Эта же квота пищевого белка полностью обеспечит потребности пожилого человека, находящегося в состоянии стресса, болезни или ранения (Lowenthal D. T., 1990).

Рис. 1. Влияние пищевых веществ на развитие болезней избыточного питания (по А. А. Покровскому)


Дефицит белка = старение

Важно отметить, что организм пожилого человека очень чувствителен как к дефициту экзогенно поступающих белков, так и к их избытку. В условиях белкового дефицита прогрессирующе развиваются процессы дистрофии и атрофии клеточных структур, в первую очередь мышечной ткани, слизистых оболочек (желудочно-кишечного тракта, дыхательной системы и др.), паренхиматозных органов (поджелудочной железы, печени, эндокринных желез и др.), структур иммунной системы. Белковый дефицит питания активизирует процессы старения организма.

Механизмы патологического действия на организм пожилого и старого человека пищевой белковой перегрузки связаны в первую очередь с белковой «агрессией» печени и связанной с этим несостоятельностью ферментных систем, неполной деполимеризацией всех фракций белка, накоплением в крови токсических продуктов незавершенных окислительно-восстановительных реакций и т. д.

Белковая перегрузка

Интоксикационный процесс метаболического генеза при избыточном белковом питании пожилых и старых людей многократно усиливается по причине развития процессов гнилостной кишечной диспепсии в условиях относительной ферментной недостаточности желудка, поджелудочной железы, тонкой кишки и развития синдромов мальдигестии и мальабсорбции, а также кишечного дисбиоза (Барановский А. Ю., Кондрашина Э. А., 2008).

Белковая пищевая перегрузка в рамках интоксикационного синдрома способствует перевозбуждению центральной нервной системы, иногда — состояниям, близким к неврозам. При этом наблюдается повышенный расход витаминов в организме с формированием витаминной недостаточности.

При длительном высокобелковом питании вначале наблюдается компенсаторное усиление, а затем угнетение секреторной функции желудка и поджелудочной железы, повышается риск развития таких заболеваний, как подагра, мочекаменная болезнь.

В следующем выпуске журнала «Практическая диетология» мы продолжим рассказ о геронтологических особенностях основных видов обмена веществ пациентов пожилого и старческого возраста — углеводном и жировом обмене.

Белки

You are currently viewing Белки

Выпускник медицинского факультета УЛГУ. Интересы: современные медицинские технологии, открытия в области медицины, перспективы развития медицины в России и за рубежом.

  • Запись опубликована: 28.09.2020
  • Reading time: 6 минут чтения

Белки - одни из основных питательных веществ - это важнейшие строительные блоки всех живых организмов. Иногда используется другое название белков - протеины (от греческого слова protos - «первый, самый важный»).

Состав белков

Белки содержат: углерод, кислород, водород, азот и серу. Помимо упомянутых элементов, некоторые белки могут также содержать: фосфор, железо, цинк, медь, марганец и йод.

Некоторые белки растворяются в воде, некоторые - в водных растворах кислот, оснований и солей, и ни один из них не растворяется в органических растворителях (кроме спирта).

При более высоких температурах белок сворачивается, т.е. происходит денатурация. В нормальных условиях этот необратимый процесс изменения структуры белковой молекулы можно наблюдать, например, путем варки яйца. Денатурация также может быть вызвана сильными кислотами и основаниями, солями тяжелых металлов или спиртом.

Основные строительные блоки белков - аминокислоты, объединяющиеся друг с другом с образованием многомолекулярных химических соединений со сложной структурой и высокой молекулярной массой. Поэтому белки различаются по структуре и свойствам в зависимости от количества аминокислот и их взаимного положения в молекуле. Комбинации двух или более молекул аминокислот называются пептидами (две молекулы аминокислот образуют дипептиды, три - трипептиды и т. д.).

Состав белков

Состав белков

Мы знаем 20 аминокислот, 8 из которых считаются незаменимыми для человеческого организма. Это так называемые экзогенные аминокислоты, которые должны поступать в организм с пищей. Их называют незаменимыми, потому что их нельзя заменить другими. К незаменимым аминокислотам относятся: лизин, метионин, треонин, лейцин, изолейцин, валин, триптофан и фенилаланин, а также гистидин, который вырабатывается организмом, но в недостаточных количествах.

Вторая группа аминокислот - полуэкзогенные аминокислоты, которые могут образовываться в организме из экзогенных аминокислот. Например тирозин синтезируется в печени из фенилаланина, а цистеин образуется из метионина.

Третья группа включает эндогенные аминокислоты (они не являются незаменимыми),их организм может синтезировать сам. Это: глицин, аланин, аргинин, аспарагиновая кислота, глутаминовая кислота, пролин, гидроксипролин и серин.

Классификация белков

Белки классифицируются по:

  • химической структуре;
  • биологической функции;
  • месту возникновения.

По своему химическому строению белки делятся на простые и сложные. П ростые белки состоят только из аминокислот, в то время как сложные белки, помимо аминокислот, также содержат небелковые соединения, так называемые простетические группы (остаток фосфорной кислоты, нуклеиновые кислоты, гем, атом тяжелых металлов, углеводы, липиды). К ним относятся фосфопротеины, нуклеопротеины, хромопротеины, металлопротеины, гликопротеины и липопротеины.

Классификация белков

Классификация белков

Из-за различных функций отдельных белков их можно разделить на:

  • структурные белки - коллаген, эластин, кератин, гликопротеины;
  • ферментные белки - ферменты;
  • защитные белки - иммуноглобулины, фибриноген, интерферон;
  • транспортные белки - гемоглобин, альбумин плазмы, липопротеин, трансферрин;
  • белки, участвующие в сокращении - актин, миозин;
  • гормоны - инсулин, глюкагон, паратиреоидный гормон, кальцитонин;
  • белки клеточной мембраны.

По месту нахождения в пище белки можно разделить на:

  • животные белки, полученные из мяса, мясного ассорти, птицы, рыбы, молока, сыра, яиц;
  • растительные белки, полученные из зерновых продуктов, семян бобовых, картофеля, овощей и фруктов.

Источники белков в продуктах

Источники белков в продуктах

Пищевая ценность белков животного и растительного происхождения

В зависимости от пищевой ценности различают:

  • полноценные белки;
  • частично дефектные белки;
  • дефектные белки.

Полноценные белки

Полноценные белки включают те, которые содержат все необходимые (экзогенные) аминокислоты в пропорциях, обеспечивающих их максимальное использование для синтеза белков собственного тела для роста молодых организмов и поддержания баланса азота у взрослых.

Это белки животного происхождения , такие как:

Частично дефектные белки

Частично дефектные белки - это те, которые могут даже содержать все незаменимые аминокислоты, но некоторые из них находятся в недостаточном количестве, и поэтому их достаточно для поддержания жизни, но не для роста организма. Например, зерновые белки со слишком низким содержанием лизина.

Дефектные белки

Большинство растительных белков менее питательны, поскольку содержат меньше лизина, триптофана, метионина и валина. Дефектные белки растительного происхождения, содержат очень мало незаменимых аминокислот или вообще не содержат хотя бы одну незаменимую аминокислоту, не полностью используются для синтеза белков организма и не обеспечивают оптимальный рост молодых организмов или поддержание азотистого баланса у взрослых, часто даже не достаточного для поддержания жизни (например, желатин).

Только белок соевых бобов и других бобовых, а также орехов имеет относительно высокую пищевую ценность, но они не могут заменить 100% полезного животного белка, например, молочного белка. Однако степень биологической ценности растительных белков очень разнообразна. Биологическая ценность диетического белка измеряется содержанием в нем экзогенной аминокислоты, которое является самым низким; содержание этой аминокислоты определяет правильный синтез белка в организме.

Белки животного и растительного происхождения

При правильном питании взрослого человека половину необходимого количества белка должны составлять животные белки, а другая половина - белок, полученный из растительной пищи. В питании детей и подростков, а также беременных и кормящих женщин белки животного происхождения должны составлять 2/3 необходимого количества белка во всем дневном рационе.

Комбинируя продукты растительного и животного происхождения в одном приеме пищи, вы получаете ценные по аминокислотному составу продукты. Белки цельного молока прекрасно дополняют, например, неполные белки из зерновых продуктов, бедных лизином, треонином и триптофаном. Например, хлопья с молоком или молочный суп с лапшой, манная крупа в молоке.

В молочных продуктах (например, твороге и сычужных сырах) содержание серных аминокислот (метионина и цистеина) несколько ниже. Гораздо сложнее получить высокую биологическую ценность протеина (т.е.возможность использовать его для синтеза протеина тела) в веганской или вегетарианской диете, где необходимо правильно комбинировать растительные продукты.

Белок в молочных продуктах

Белок в молочных продуктах

Белок в вегетарианской диете

Знание аминокислотного состава отдельных белков позволяет разрабатывать комбинации белков чисто растительного происхождения или растительных продуктов с небольшими добавками животного белка (яйца, молоко), питательная ценность которых становится высокой.

Правильная комбинация, по крайней мере, двух типов растительного белка в пище может дополнить недостающие или недостаточные аминокислоты в одном белке теми же аминокислотами, которые в больших количествах содержатся в других белках, например, бобовые содержат много лизина, но мало метионина. а в злаках не хватает лизина и триптофана. Его дополняют почти все овощи, богатые лизином и триптофаном.

Составляя состав дневного рациона, не забывайте максимально пополнять белки (максимум с интервалом 4-6 часов). Во время более длительных перерывов между приемами пищи недостающие аминокислоты не восполняются, а часть белка расходуется на энергетические цели.

Переваривание белков в организме человека

Переваривание белков в организме человека начинается в желудке. Кислая среда вызывает денатурацию белка и набухание коллагена, эластина и кератина. В желудочном соке есть фермент пепсин, который разрывает пептидную связь в середине полипептидной цепи, разделяя ее на более короткие участки.

Переваренная пища в виде мелко измельченной мякоти попадает в двенадцатиперстную кишку, где находится панкреатический сок, содержащий ферменты трипсин, химотрипсин и эластазу, которые гидролизуют пептидные связи между аминокислотами. Сок поджелудочной железы также содержит карбоксипептидазы экзопептидазы, которые действуют на конце пептидной цепи и выделяют концевые аминокислоты.

Переваривание белков заканчивается в тонком кишечнике, где под действием аминопептидаз и дипептидаз происходит окончательный процесс расщепления пептидной цепи. Всасывание конечных продуктов переваривания белков (аминокислот) происходит в тонком кишечнике.

Переваривание белков в организме человека

Переваривание белков в организме человека

Из клеток тонкой кишки аминокислоты попадают в кровь воротной вены, а оттуда в печень путем пассивной диффузии. Затем аминокислоты переносятся через кровь во все ткани и используются для синтеза белков организма. Непереваренные и / или неабсорбированные белки выводятся с фекалиями.

Роль белков в организме человека

Белки в организме играют очень важную и незаменимую роль.

  • Они используются для построения новых и восстановления изношенных клеток и тканей (без их участия рост, развитие организма, обновление тканей, устойчивость к заболеваниям, заживление ран невозможны).
  • Являются основным компонентом крови, лимфы и молока.
  • Являются частью иммунных тел, ферментов, катализирующих биохимические изменения, и жидкостей организма.
  • Участвуют в регулировании артериального давления и поддержании кислотно-щелочного баланса.
  • Действуют как переносчики некоторых витаминов и минералов.
  • Сжигаясь, они снабжают организм энергией (1 г белка = 4 ккал).

Потребность человека в белке

Потребности организма в белке зависят от возраста, пола, физиологического состояния и массы тела.

Молодые растущие организмы имеют более высокий уровень синтеза белка, что связано с построением новых структур. Согласно рекомендациям диетологов, взрослый (> 19 лет) должен потреблять около 0,8 г белка на 1 кг массы тела в день, поступающего из различных источников (т.е. смешанных белков - животных и растений). Более высокое потребление белка рекомендуется женщинам во время беременности (1,1 г / кг массы тела в сутки) и в период лактации (1,3 г / кг массы тела в сутки), а также детям и подросткам. В случае детей наибольшее количество белка должно содержаться в пище детей младшего возраста (младше 1 года).

В случае разнообразной диеты, содержащей мясо и другие источники животного белка, соблюдение минимальных требований к незаменимым аминокислотам не должно быть трудным. Минимальное количество порций пищи в пищевой пирамиде обеспечивает не менее 60 г белка: например, 1 стакан молока дает 8 г белка; одна порция фасоли (1 стакан) - около 2 г белка, одна порция овощей (1 стакан сырых или 1 стакан вареных) - 2 г белка.

Белок в пищевой пирамиде

Белок в пищевой пирамиде

Важность белка для здоровья человека: дефицит белка

Дефицит белка вызывает квашиоркор (угнетение роста и созревания, гипоальбуминемия, апатия, анорексия, изменения кожи, напоминающие пеллагру, жировая инфильтрация печени).

Дефицит белков особенно опасен для детей (они вызывают задержку роста и умственного развития, похудание) и беременных женщин (белок необходим для правильного роста и развития плода, для выработки большего количества крови для матери и ребенка).

Недополучение белков в утробе матери и у младенцев тормозит физическое и умственное развитие и повышает восприимчивость к инфекционным заболеваниям. Во время грудного вскармливания белок составляет основу увеличения производства молока.

В случае дефицита белка в пище подавляются или нарушаются многие обменные процессы, анемия, иммуносупрессия, атрофия мышечной ткани, дегенеративные изменения органов, общая слабость, апатия и потеря работоспособности.

Дефицит белка может быть следствием не только его недостатка или недостаточного поступления в пищу, но также его неправильного усвоения и усвоения (например, при заболеваниях печени и почек, хронической диарее).

Избыток белка

Избыток белка также не рекомендуется, потому что азот, неиспользованный для создания белков организма, должен выводиться из организма. Аммиак образуется в печени из иона амина (содержащего азот) и диоксида углерода, который, в свою очередь, превращается в мочевину и выводится почками.

Таким образом, избыток потребленного белка по отношению к потребностям организма увеличивает количество выделяемых азотных соединений и, таким образом, создает дополнительную нагрузку на почки и печень. Избыток белка у младенцев может вызвать диарею, симптомы ацидоза, обезвоживание, гипераммонемию и лихорадку.

Кроме того, чрезмерное потребление белка обычно связано с увеличением потребления мяса, мясного ассорти и сыра с высоким содержанием жира. Такая диета с высоким содержанием белка может превратиться в диету с высоким содержанием жиров, что может привести к развитию ожирения и дислипидемии (липидных нарушений), за которыми следует атеросклероз и гипертония.

Дислипидемия

Дислипидемия

Более того, при большом количестве белка в пище может нарушиться метаболизм одной из аминокислот - метионина, особенно при недостаточном поступлении витаминов группы В (особенно витамина В 6). Это приводит к увеличению выработки гомоцистеина, одного из основных факторов риска атеросклероза.

Продолжительное употребление высокобелковой диеты приводит к увеличению выведения кальция с мочой. Если к тому же высокобелковая диета не сопровождается увеличением поступления кальция и витамина D с продуктами, увеличивается риск остеопороза.

Чрезмерное потребление белка может привести к развитию камней в почках и подагре, поэтому рекомендуется употреблять нужное количество белка и использовать диету с высоким содержанием белка только при заболеваниях (например, кахексии, хронических заболеваниях печени).

Однако следует помнить, что человек не может накапливать запасы белка и поэтому должен потреблять их в рационе каждый день на необходимом уровне.

Читайте также: