Водород в дыхательных аппаратах. Возможность применения неона в дыхательных аппаратах

Обновлено: 16.05.2024

За рубежом дыхательные аппараты замкнутого цикла называют ребризерами. Ребризер (от англ. Re - приставка, обозначающая повторение какого-либо действия, и англ. Breath - дыхание, вдох) - дыхательный аппарат, в котором углекислый газ, выделяющийся в процессе дыхания, поглощается химическим составом (химпоглотителем), затем смесь обогащается кислородом и подаётся на вдох. Русское название ребризера - изолирующий дыхательный аппарат (ИДА).

Первый такой аппарат был создан и применен британским изобретателем Генри Флюссом в середине XIX века при работе в затопленной шахте (значительно раньше акваланга). Кислородный ребризер замкнутого цикла имеет все основные детали, характерные для ребризера любого типа: дыхательный мешок, коробка с химпоглотителем (ХПИ), дыхательные шланги с клапанной коробкой, байпасный клапан (ручной) или дыхательный автомат, травящий клапан и баллон с редуктором высокого давления.

Принцип работы следующий: кислород из дыхательного мешка поступает через невозвратный клапан в легкие водолаза, оттуда, через другой невозвратный клапан кислород и образовавшийся при дыхании углекислый газ попадает в коробку с ХПИ, где углекислый газ связывается натриевой известью, а оставшийся кислород возвращается в дыхательный мешок. Кислород, заменяющий потребленный водолазом, подается в дыхательный мешок дыхательным автоматом, или байпасом, когда мешок сжимается при вдохе.

При погружении обжим дыхательного мешка компенсируется либо за счет срабатывания дыхательного автомата, либо с помощью ручного байпаса, управляемого самим водолазом. Надо заметить, что, несмотря на название «замкнутый», любой ребризер замкнутого цикла выпускает через травящий клапан пузырьки дыхательного газа во время всплытия. Чтобы избавиться от пузырей, на травящие клапаны устанавливают колпачки из мелкой сетки или поролона. Это простое устройство весьма эффективно и снижает диаметр пузырьков до 0,5 мм. Такие пузырьки полностью растворяются в воде уже через полметра и не демаскируют водолаза на поверхности.

Принципиальная схема аппарата замкнутого цикла приведена на рис. 4.


Рис. 4. Принципиальная схема дыхательного аппарата замкнутого цикла.

Впускной клапан на данной схеме и есть дыхательный автомат, который подаёт кислород в дыхательный мешок. Перепускной вентиль служит для прямого наполнения дыхательного мешка в обход редуктора, когда кислород заканчивается (типа байпаса).

Ограничения, присущие кислородным ребризерам замкнутого цикла, обусловлены в первую очередь тем, что в данных аппаратах применяется чистый кислород, парциальное давление которого и является ограничивающим фактором по глубине погружения. Так, в теплой воде при минимальной физической нагрузке. В военно-морском флоте НАТО такой предел составляет 12 метров, а в ВМФ России - 20 метров.

В России в 1973 г. был создан дыхательный аппарат ИДА-71, которым пользовались военные. Для выработки кислорода в нём использовалось вещество О3. Это аналог пластин ВПВ, которые используются в регенеративных патронах для выработки кислорода на подводных лодках, только здесь оно засыпается в регенеративную коробку в виде гранул (за рубежом это вещество не выпускается). Кислородный баллон малой ёмкости - 1,3 л был необходим только для заполнения дыхательного мешка при погружении. Поскольку это кратковременный режим, а основной режим - плавание на постоянной глубине, то работало в основном вещество О3, которого хватало на 5 - 6 часов плавания (в зависимости от температуры воды). Принципиальная схема дыхательного аппарата ИДА-71 приведена на рис. 5.

К ИДА-71 мог также подключаться дополнительный баллон, ёмкостью 1,3 л, с 40% азотно-кислородной смесью, который крепился на бедре водолаза. Он позволял водолазу работать на глубине до 40 м.


Принципиальная схема аппарата ИДА-71У.

Баллон подключался и отключался автоматически, когда глубина достигала 18 - 20 м. После чего водолаз делал трёхкратную промывку дыхательного мешка и лёгких.

Аппарат имеет две дыхательные коробки - одна с веществом ХПИ, другая с О3. Однако в холодной воде (около 0 градусов) вещество ХПИ и О3 работают плохо (их надо предварительно «раздышать»). Поэтому водолазы часто обе дыхательные коробки заполняли веществом О3. Оно тоже хорошо поглощает углекислый газ и увеличивает время работы аппарата. Внешний вид ИДА-71У, с полумаской и клапанной коробкой приведён на рис. 6.


Рис. 6. Внешний вид дыхательного аппарата ИДА-71У.

Аппарат выпускался с магнитным (стальным) и немагнитным (дюралюминиевым) кислородным баллоном. Немагнитный вариант нужен был инженерным войскам при разминировании участка побережья для высадки десанта.

Дыхательный аппарат ИДА-71 до сих пор является лучшим в мире по продолжительности пла-вания. За рубежом в подобных аппаратах с замкнутым циклом не применяют вещество О3 для выработки кислорода. Оно считается опасным, поскольку при попадании воды, образует щёлочь и может вызвать химический ожёг лёгких. Вместо него используют баллон с кислородом ёмкостью 5 л и дыхательный автомат для его автоматической подачи.


Автор книги перед погружением в снаряжении СЛВИ с дыхательным аппаратом ИДА-71п. (опытный образец №4).

Чтобы водолаз не испытывал затруднения дыхания (вызванное нехваткой объёма воздуха в дыхательном мешке, которая и включает дыхательный автомат) было решено осуществлять постоянную подачу кислорода через калиброванную дюзу со скоростью 1 - 1,5 литра в минуту. Этого хватает при малой физической нагрузке водолаза. Мешок при этом раздут и сопротивление дыханию минимальное. Травящий (предохранительный) клапан мешка постоянно выпускает мелкие пузырьки газа. При увеличении нагрузки периодически срабатывает дыхательный автомат, компенсируя нехватку кислорода. Такие дыхательные аппараты получили название полузамкнутые. На них мы остановимся ниже.

В последние годы в США стали выпускать дыхательные аппараты замкнутого цикла с электронным управлением составом дыхательной смеси. Внешний вид ИДА с электронным управлением представлен на рис. 7.


Рис. 7. Внешний вид ИДА с электронным управлением (США).

Впервые такой аппарат был изобретен Вальтером Старком и назывался Electrolung. Принцип функционирования состоит в том, что нейтральный газ (азот или гелий) подается ручным или автоматическим байпасным клапаном для компенсации обжима дыхательного мешка при погружении, а кислород подается с помощью электромагнитного клапана, управляемого микропроцессором. Микропроцессор опрашивает 3 кислородных датчика, сравнивает их показания и, усредняя два ближайших, выдает сигнал на соленоидный клапан. Показания третьего датчика, отличающиеся от двух других сильнее всего - игнорируются. Обычно соленоидный клапан срабатывает раз в 3—6 секунд в зависимости от потребления водолазом кислорода.

Погружение выглядит примерно так: водолаз вводит в микропроцессор два значения парциального давления кислорода, которые электроника будет поддерживать на разных этапах погружения. Обычно это 0,7 ата для выхода с поверхности на рабочую глубину и 1,3 ата для нахождения на глубине, прохождения декомпрессии и всплытия до 3-х метров. Переключение осуществляется тумблером на консоли ребризера. В процессе погружения водолаз обязан контролировать работу микропроцессора для выявления возможных проблем с электроникой и датчиками.

Конструктивно ребризеры замкнутого цикла с электронным управлением практически не имеют ограничений по глубине и реальная глубина, на которой возможно их использование, обусловлена в основном погрешностью кислородных датчиков и прочностью корпуса микропроцессора. Обычно предельная глубина составляет 150 - 200 метров. Других ограничений электронные ребризёры замкнутого цикла не имеют.

Основным недостатком этих ребризёров, существенно ограничивающим их распространение является высокая цена самого аппарата и расходных материалов. Важно помнить, что обычные компьютеры и декомпрессионные таблицы не подходят для погружений с электронными ребризерами, поскольку парциальное давление кислорода остается неизменным на протяжении практически всего погружения. С ребризерами такого типа должны использоваться либо специальные компьютеры (VR-3, VRX, Shearwater Predator, DiveRite NitekX, HS Explorer) или же погружение должно рассчитываться предварительно с помощью таких программ, как Z-Plan или V-Planer по минимально возможному парциальному давлению кислорода (при этом необходимо очень строго следить, чтобы значение парциального давления не снижалось ниже расчётного, иначе риск получить декомпрессионную болезнь многократно возрастает).

Водородотерапия в Москве

Ингаляции водородом

Водород - это вещество, обладающее множеством интересных свойств, но с точки зрения медицины главная его особенность заключается в том, что он оказывает положительное воздействие на состояние организма. Водород - натуральный антиоксидант, который набирает в современном мире огромную популярность. Водородная вода, водородные ванны, косметика и биодобавки - продукты на основе водорода сейчас представлены в огромной ассортименте.

С точки зрения медицины наиболее действенный и научно-подтверждённым методом являются ингаляции, т.к. в случае «вдыхания» водород (H+) напрямую контактирует со слизистой оболочкой носа и оказывает нежное и комфортное воздействие на неё в процессе применения. H+ естественным образом распространяется прямо по всему телу через нос, точно так же, как и при вдыхании воздуха. Он стимулирует активацию слизистой оболочки носа и повышает эффективность абсорбции.

Результаты различных исследований показывают, что данный эффект оказывает положительное влияние, улучшая эластичность сосудов, регуляцию иммунитета и подавление воспалений.

Водородотерапия - что это и как работает методика?

Ингаляции водородом - Один из самых современных и популярных способов поддержания собственного здоровья и профилактики заболеваний. Суть метода заключается в том, что пациент проводит курс ингаляций молекулярным водородом, вдыхаемый водород вступает в реакцию с активными формами кислорода, осевшими в организме и оказывающими разрушающее воздействие, после чего выводит их естественным путем. Процедура совершенно безболезненна и оказывает расслабляющее воздействие.

Ингаляции водородом.

Ингаляции молекулярным водородом

В последнее время появилось много продуктов, которые фокусируются на эффектах водорода. На рынке есть все виды потребительских продуктов, связанные с водородом, такие как питьевая водородная вода, биодобавки, косметика, смеси для ванн и т.п. Все эти продукты содержат водород, но существуют огромные различия в их эффективности.

Главной отличительной особенностью молекулярного водорода является то, что этот аппарат позволяет доставить водород в нужной состоянии в достаточном количестве, чтобы запустить процесс вывода свободных радикалов. К примеру, час ингаляции атомарным водородом равен сорока двум бутылкам водородной воды.

Что не менее важно, пар молекулярный водород обладает сильной восстанавливающей способностью.

Показания и рекомендации к проведению процедуры:

  • Заболевания дыхательной системы;
  • Реабилитация и восстановление после коронавируса (Ковид-19);
  • Сахарный диабет 2 типа;
  • синдром хронической усталости;
  • Нейропатическая боль и диабетическая нейропатия;
  • острый мышечный спазм;
  • Заболевания сердца и ССУ;
  • Рак легких;
  • Пневмония (воспаление легких);

Противопоказания

Водород - мощнейший антиоксидант, не вызывающий никаких побочных эффектов.

Как проходит процедура?

В клинике Мединтерком вы первым делом получите консультацию врача, после чего можете пройти процедуру ингаляции водородом в максимально комфортной обстановке: кабинет находится в уютной части клиники и оснащен удобными креслами-реклайнерами и телевизором. В кабинете вы сможете с комфортом расслабиться во время сеанса водородотерапии.

Ингаляции водородом

Где пройти процедуру водородотерапии

Мединтерком - это экспертная многопрофильная клиника в центре города Москвы в нескольких минутах ходьбы от метро Тургеневская, Чистые Пруды, Сретенский Бульвар. Главный пульмонолог и руководитель нашей клиники - Тарасенко Иван Юрьевич, врач-пульмонолог, терапевт, кандидат медицинских наук, специалист по антиэйдж, водородотерапии и реабилитации после коронавируса, самостоятельно оказывает консультации пациентов и дает им рекомендации по лечению. Тарасенко И.Ю.- один из первый врачей в России, который начал внедрять водородотерапию в свои лечебные методики по зарубежным стандартам.

Аппарат ИВЛ: принцип работы, клинические показания

При произношении таких словосочетаний как «аппарат ИВЛ», «искусственная вентиляция», большая часть обычных людей рисуют для себя в голове очень большое и шумное устройство, позволяющее поддерживать дыхание человека. На самом деле, на сегодняшний день, габариты и вес таких аппаратов может существенно различаться. Так, например, вес портативного аппарата ИВЛ составляет приблизительно 1,5 кг.

Применение аппарата искусственной вентиляции легких

Рис. 1. Применение аппарата ИВЛ

Многие пациенты испытывают беспокойство по поводу работы аппарата ИВЛ, и это достаточно обосновано в связи с тем, что безопасность и наибольшая эффективность функционирования аппарата достигается благодаря правильному выбору и настройке прибора. Группа пациентов, которая может поддерживать дыхательные функции организма в домашних условиях, как правило, останавливает свой выбор на портативных устройствах и производят их настройку исходя из назначений медицинских специалистов. Необходимость аппарата ИВЛ возникает при остановке дыхания (для респираторной поддержки) или при возникновении одышки.

При выборе аппарата ИВЛ пациентам необходимо обратить внимание на несколько основополагающих моментов, среди которых — возможность насыщения воздуха кислородом, поскольку одна группа приборов производит введение кислорода только под высоким давлением, а другая часть устройств подключается к кислородным концентраторам, однако процесс их настройки несколько более сложный.

В связи с технологическим прогрессом, доступность аппаратов ИВЛ для домашнего применения увеличивается с каждым днем, но перед осуществлением покупки такого рода оборудования необходима консультация врача.

Аппарат ИВЛ: принцип работы

Принцип работы аппарата искусственной вентиляции легких

Рис. 2 Принцип работы аппарата ИВЛ

Аппарат ИВЛ состоит из нескольких основных частей таких как компрессор, электронные схемы, датчики, система клапанов.

Прибор способствует поступлению газовой смеси с необходимой и допустимой концентрацией кислорода в легкие пациента под давлением. В процессе его функционирования должна быть соблюдена цикличность воздуха, переключение инспирации и экспирации должно производиться с соблюдением потока, объема и давления воздуха при определенных временных параметрах. На этапе инспирации производится контролируемая вентиляция, в остальных случаях прибор осуществляет поддержку инстинктивному дыханию пациента.

Подключаться аппарат ИВЛ может двумя способами: инвазивным и неинвазивным. При неинвазивном способе подключения подача воздуха осуществляется по трубке и выводится через маску, при инвазивном же способе подключения воздушная смесь подается по интубационной трубке, введенной в трахеостому или дыхательные пути.

Клинические показания к ИВЛ

В тяжелых случаях, когда состояние больного невозможно детально обследовать или отсутствует необходимое оснащение медицинского учреждения, основными показаниями к искусственной вентиляции являются:

  • остро развившееся нарушение ритма дыхания, патологические ритмы;
  • отсутствие самостоятельного дыхания (апноэ);

Данные пункты являются абсолютными показаниями к ИВЛ. Остро возникшие нарушения дыхательного ритма свидетельствуют о глубоких нарушениях центральной регуляции дыхания. Исключением являются больные с сердечной недостаточностью и диффузным атеросклеротическим поражением головного мозга. В данном случае достаточно часто возникает дыхание типа Чейна — Стокса, которое получается устранить фармакологическими препаратами.

  • учащение дыхания более 40/мин., в случае, не связанном с гипертермией (t тела более 38,5°С) или выраженной не устраненной гиповолемией;

Данное показание является относительным. Значение 40 — условное, однако его принимают за рубеж, при наступлении которого с легкостью может наступить декомпенсация самостоятельного дыхания.

  • клинические проявления нарастающей гипоксемии и/или гиперкапнии.

В случае их сохранения после использования консервативных методов (кислородная терапия, обезболивание, восстановление дыхательных путей).

Данные проявления можно считать одними из самых важных критериев. Благодаря динамическому наблюдению можно выявить и определить степень выраженности основных симптомов, особенное значение, как правило, придают нарушениям сознания и психики, которые являются свидетельством гипоксической энцефалопатии. В отдельных случаях настоящие симптомы регрессируют после восстановления дыхательных путей, обезболивания и кислородных ингаляций. В случае же быстрого нарастания гипоксической клиники, не следует ожидать положительных эффектов от консервативных мероприятий, и необходима ИВЛ.

Классификация высокотехнологичных аппаратов ИВЛ

Современные высокотехнологичные аппараты ИВЛ позволяют осуществлять поддержку дыхания больным по составу, давлению и объему поступающего кислорода. Кроме того, современные устройства могут синхронизировать состояние больного и поступление воздуха: управляющие сигналы направляются в диафрагму по диафрагмальному нерву после чего датчики прибора их фиксируют.

Еще одним важным критерием является наличие во всех современных аппаратах сигнализации, срабатывающей в случае поломки или возникновении неконтролируемых ситуаций.

Классификация приборов производится по следующим группам:

  • возраст пациента,
  • разделяется на пять групп: с 1 по 3 — для детей старше 6 лет и взрослых; 4 группа — дети до 6 лет; 5 группа — новорожденные до 1 года.

Способ действия:

  • внутренний;
  • наружный;
  • с использованием дыхательных электростимуляторов;

Тип привода:

  • электрический;
  • ручной;
  • пневматический;
  • комбинированный.

Предназначение:

  • стационарные;
  • портативные (переносные).

Сфера применения:

  • Специального медицинского назначения.
  • Применяются для поддержания жизни новорожденных, оказания неотложной помощи, проведения бронхоскопии и т. д.
  • Общего медицинского назначения.
  • Необходимы для лечебных учреждений, осуществляющих терапию, анестезию, реанимацию и т. д.

Тип управляющего устройства:

  • микропроцессорные (интеллектуальные);
  • мемикропроцессорные.

Аппараты ИВЛ высокочастотного струйного типа

Высокочастотный аппарат ИВЛ TwinStream Carl Reiner

Рис. 3 Высокочастотный аппарат ИВЛ TwinStream Carl Reiner (Австрия)

Одним из наиболее важных медицинских приборов является высокочастотный струйный аппарат ИВЛ, который позволяет производить обеспечение как высокочастотной струйной вентиляцией (циклическая частота более 50 ), так и нормочастотной, и сочетанной ИВЛ. Благодаря контролю давления, аппарат позволяет предотвратить возможность возникновения легочной баротравмы, а новейшие специальные системы способствуют насыщению поступающего воздуха влагой, что позволяет исключить риск осушения или переохлаждения организма пациента.

На сегодняшний день, наличие аппаратов ИВЛ необходимо как в службах скорой и неотложной помощи, так и в стационарных отделениях.

Дыхательные аппараты закрытого цикла. Ребризеры

Дыхательные аппараты закрытого цикла. Ребризеры

Как следует из названия, такие аппараты работают по принципу использования выдыхаемого газа.

Как мы узнали из первой части статьи о дыхательных аппаратах, в процессе дыхания человеческий организм поглощает из дыхательной смеси порядка 4 % кислорода и выделяет в неё 4 % углекислого газа. Значит для того, чтобы использовать смесь для дыхания повторно, нужно извлечь из неё CO2 и добавить O2.

Для извлечения из дыхательной смеси CO2 в аппаратах ЗЦ используются 2 типа поглотителей. Регенеративные и известковые.

Регенеративные поглотители, кроме непосредственно поглощения CO2, в процессе работы ещё и выделяют кислород.

Это вроде и хорошо, но, как говорится в одном анекдоте, есть нюанс. И не один.

Химическая реакция зависит от внешних условий, и повлиять на количество выделяемого кислорода практически невозможно. И если ДА используется при давлении 1 ата, то в этом нет ничего страшного, а вот при внешнем давлении более единицы от избыточного содержания кислорода в дыхательной смеси могут быть проблемы, о чем я рассказывал в третьей части статьи о ДА.

И ещё в регенеративном веществе используется асбест, как средство от спекания активной массы, поскольку при химической реакции:

4KO2 + 2CO2 → 2K2CO3 + 3O2

Ну и дополнительный бонус для водолазов: при заливании дыхательного контура водой происходит вот такая реакция:

H2O + KO2 = KOH + O2.

И реакция эта протекает весьма бурно, с пузырями, шипением и пенообразованием.

Наверное, никому объяснять не нужно, что будет с лёгкими, попади в них едкая щёлочь?

Есть и ещё несколько неприятных моментов при использовании регенеративного поглотителя.

Именно по этим причинам использование регенерации сокращается. МЧС, например, практически отказался от регенеративных аппаратов. Военные ещё используют, но это больше от отсутствия средств на современные ДА.

Известковые поглотители при работе поглощают CO2 без выделения кислорода. Вот так выглядит реакция поглощения ХП-И (химического поглотителя известкового):

Ca(OH)2 + CO2 → CaCO3 + H2O

Причём поглощающее вещество практически не реагирует с водой. Т. е. при заливании водой дыхательного контура ничего страшного не произойдёт.

Остаются вопросы: добавления кислорода в смесь и (для подводных ДА) - выравнивания давления в дыхательном контуре с внешним.

Самый простейший аппарат, замкнутый кислородный ребризер:

При открытии вентиля баллона (10) кислород через редуктор (11) поступает к лёгочному автомату (7) и ручному байпасу (12).

При вдохе кислород через лёгочный автомат поступает в мешок вдоха (6) и шланг вдоха, через невозвратный клапан (3) в клапанную коробку и через загубник (1) - в легкие дайвера.

При выдохе смесь кислорода с углекислым газом через невозвратный клапан (4) и трубку выдоха поступает в канистру, заполненную поглотителем (5), где очищается от углекислого газа и затем попадает опять в дыхательный мешок (6).

Клапанная коробка имеет специальный клапан (2), который позволяет перекрыть поступление смеси в загубник (и воды в дыхательный контур). Это на случай, если водолазу нужно выключиться из контура (вынуть загубник).


Для контроля за давлением кислорода в баллоне к редуктору подключен манометр (13).

При расходовании кислорода из дыхательного мешка недостаток его восполняется при следующем вдохе с помощью лёгочного автомата или ручного байпаса. При всплытии излишек смеси из дыхательного мешка удаляется в воду через травящий клапан (8).

Так как дыхание происходит практически чистым кислородом, то лимитирующим фактором глубины погружения с кислородным ребризером является парциальное давление кислорода.

По этой схеме работает большинство изолирующих противогазов типа КИП-8.

ASCR (active semi-closed rebreather) - полузамкнутый аппарат с активной подачей газа.

Схема работы аппарата идентична кислородному, с той разницей, что добавляется контур постоянной подачи газа через дюзу (7), и в качестве дыхательной смеси выступает КАС (кислородно-азотная смесь) с содержанием кислорода выше, чем в воздухе.

Через этот контур происходит постоянная подача дыхательной смеси из баллона, а её излишек стравливается через травящий клапан (8). При этом надо понимать, что содержание кислорода в дыхательном контуре будет всегда ниже, чем его содержание в смеси, содержащейся в баллоне.

Безопасная глубина погружения в таком аппарате ~40м.

Также надо отметить, что расчёт декомпрессии при использовании ASCR сложен и неточен, из-за практической невозможности расчёта содержания кислорода в дыхательном контуре.

PSCR (passive semi-closed rebreather) - полузамкнутый аппарат с пассивной подачей газа.

Вот так он выглядит:


И схема его работы:


При выдохе газ из клапанной коробки (1) через шланг выдоха (3) поступает в мешок вдоха, состоящий из 2 частей, внутренней (5) и внешней (6). Во внутренний мешок газ поступает через невозвратный клапан (7).

После начала вдоха клапан (7) закрывается, и газ из внутреннего мешка (5) через стравливающий клапан (10) удаляется в воду, а газ из внешнего мешка (6) через канистру с поглотителем (4), шланг вдоха (2) и клапанную коробку (1) подаётся к лёгким водолаза. Поскольку объем внешнего мешка меньше, чем объем лёгких водолаза, сжимающийся мешок вдоха открывает клапан подачи газа (8). И в конце вдоха в лёгкие подаётся газ из баллона через шланг подачи (9), подключенный к камере промежуточного давления в редукторе.

Такая схема работы ДА позволяет, в отличие от аппаратов с постоянной подачей, более точно контролировать содержание кислорода в дыхательном контуре, хотя оно и будет меньше, чем в смеси из баллона. Причём расчёт декомпрессии при использовании этого типа ДА будет весьма близок к алгоритму для ОЦ.

PSCR ребризеры практически не имеют ограничения по глубине применения (в разумных пределах, конечно) за счёт возможности подключать нужный газ к аппарату через изолированные шланги подачи.



Дыхательный мешок (противолёгкие). Виден стравливающий клапан и штуцер для подключения шланга подачи газа.

Здесь хотелось бы заметить, что на ВСЕ декомпрессионные погружения с аппаратами ЗЦ водолазы берут с собой запас газа для того, чтобы при выходе из строя ребризера водолаз мог всплыть, с соблюдением ВСЕХ декопроцедур из ЛЮБОЙ точки намеченного погружения, используя схему дыхания ОЦ. Называют этот запас «бейлаутом».

Так вот, при использовании PSCR рабочий газ для ребризера одновременно является и бейлаутом. Такие аппараты очень любят пещерные дайверы из-за отсутствия электронных компонентов, высокой механической прочности и простоте перерасчёта декомпрессии при переходе на открытый цикл.

Ну и последний, самый «продвинутый» тип аппаратов: ECCR (electronic closed circle rebreather) - аппарат замкнутого цикла с электронным управлением.

В работе аппарат использует 2 газа: кислород и «дилуент» (разбавитель).

Состав дилуента подбирается таким образом, чтобы он подходил для дыхания на максимальной запланированной глубине погружения. При выдохе газ через невозвратный клапан (4) и шланг выдоха попадает в канистру с поглотителем (5). Проходя через канистру, газ очищается от CO2. На выходе из канистры установлены 3 кислородных датчика, измеряющих парциальное давление кислорода (PPO2) в смеси.

На основании показаний датчиков блок электроники (21), впрыскивая через электромагнитный клапан (22) кислород из баллона (14), доводит PPO2 до значения, заданного водолазом.

Три датчика используются для более точного измерения, поскольку сами датчики не очень надёжны.

Система берёт за основу для расчёта среднее арифметическое от двух наименее различающихся показаний, игнорируя третье. Далее газ, очищенный от CO2 и обогащенный кислородом, попадает в дыхательный мешок, откуда при вдохе - через шланг в клапанную коробку и лёгкие водолаза.

Выравнивание давления происходит с помощью лёгочного автомата (7), подключенного к порту промежуточного давления редуктора баллона с дилуентом (9).

Как видно из схемы работы, стравливание смеси будет происходить только при всплытии, т. е. при погружении на 100 метров и объеме дыхательного мешка в 6 литров, расход дорогого дилуента будет всего лишь ~60 литров!

В то время как водолаз, совершающий такое же погружение, используя открытый цикл дыхания, «снюхает» ТЫСЯЧИ литров газа.

Надо ли писать о том, что ECCR является самым экономным (в плане расхода газа) аппаратом?

Однако сложность конструкции, небольшой срок работы и высокая стоимость кислородных датчиков делают использование аппарата не таким экономически выгодным, как может показаться с первого взгляда.

Есть ещё один тип ребризера MCCR (manual closed circle rebreather) - аппарат замкнутого цикла с электронным управлением.

Это некая упрощённая версия ECCR аппарата.

В нём убрана управляющая электроника, и вместо электромагнитного клапана кислород через калиброванную дюзу постоянно подаётся в контур, но в количестве, недостаточном для жизнедеятельности водолаза.

В результате в процессе работы содержание кислорода в дыхательной смеси медленно снижается, и водолаз должен вручную, с помощью байпасного клапана (17) добавлять кислород в смесь, контролируя его содержание по 1 датчику.

Ну и позволю себе рассказать немного об аппаратах, используемых в нашем ВМФ.

ИДА-59М

Выглядит он примерно так:


Аппарат предназначен для выхода из затонувшей подлодки с глубины до 100 метров в составе ИСП-60 (изолирующее снаряжение подводника).

В штатной комплектации аппарат использует 2 баллона с кислородом и КАГС. Поглотитель - регенеративное вещество О3. Баллон с КАГСом (дилуентом) подключается к дыхательному контуру через редуктор и лёгочный автомат, как в обычном кислороднике, а вот кислород подаётся постоянно через дюзу, как в ASCR.

Впрочем, за счёт изолированного редуктора подача кислорода происходит только до глубины 55-65 метров.

Вообще, ИДА-59М может работать до глубины 170 метров. Для этого к нему подключается гелиевый баллон через арматуру ДГБ-1, обеспечивающую подачу чистого гелия в контур на глубинах более 100 метров.

ИДА-71



Предназначен для легководолазных работ на глубинах до 40 м.

Работает либо в виде замкнутого кислородника (до 20 м), либо глубже 20 м, используя входящий в состав аппарата баллон с КАС 40/60 (40 % кислорода), по той же схеме.

Примечательно, что в составе аппарата не одна, а две канистры с поглотителем: одна - с обычным ХП-И, вторая - с регенерацией.

Ну и чтобы два раза не вставать, расскажу об альтернативных конструкциях ДА, для дыхания под водой.

Как я писал в первой части статьи, человеку для функционирования нужен кислород. Необходим он в объеме порядка 1 литра в минуту. Есть два пути получения кислорода из воды.

1. Извлечение растворённого в воде кислорода. Т. е. некое подобие жабр у рыб.

Так вот, в воде (морской) растворено от 4 до 9 миллиграмм кислорода. Несложно подсчитать, что для получения искомого 1 литра, весящего 1,43 грамма, нам потребуется ПОЛНОСТЬЮ извлечь кислород из 200 литров воды. И сделать это нужно за 1 минуту!

Сразу представляем себе размер насоса и источника его питания.

Теперь - через что прокачивать будем?

На самом деле ФИЗИЧЕСКИ существует силиконовая мембрана, способная «отфильтровывать» кислород из воды. Только площадь такой мембраны, для обеспечения фильтрации литра кислорода будет порядка 100 кв. м.! И это всё идеальные условия.

На самом деле всё гораздо печальнее.

А теперь соотнесите вышеописанное с этим:


С помощью его разработки - кислородного респиратора Triton, вы можете свободно дышать под водой. Это изобретение в области дайверского снаряжения не требует громоздких баллонов, а потому весьма эргономично.
Регулятор включает в себя пластиковый загубник, который вам требуется просто прикусить. Два крыла по бокам маски работают как эффективные жабры морского животного. Их чешуйчатая текстура скрывает маленькие отверстия, через которые вода всасывается внутрь респиратора. Камеры внутри крыльев отделяют кислород и выпускают жидкость обратно - таким образом, позволяя вам комфортно дышать под водой.
Вот некоторые специфические детали работы Triton.
- Он извлекает кислород под водой благодаря фильтру в форме крошечных отверстий, которые меньше, чем молекула воды.
- Благодаря очень миниатюрному, но весьма мощному компрессору, он сжимает кислород и запасает его в резервуаре.
- Микрокомпрессор респиратора питается от микробатареи, которая представляет собой разработку следующего поколения, имеет размер в 30 раз меньше существующих на сегодняшний день батарей - и при этом заряжается в 1000 раз быстрее их.

Если кто-то сомневается, то вот сайт «разработчика».

А вот разработка отечественных (не знаю, как их назвать) - аквабризеров.

Вспомните внешний вид и комплектацию вышеупомянутых регенеративных аппаратов и попробуйте представить их составляющие внутри этого дивайса.

Обратите внимание на адрес компании-разработчика. Это всё, что нужно знать о том, чем занимаются в Сколково. Нанотехнологии.

2. Гидролиз. Т. е. получение кислорода путём разложения воды на кислород и водород.

Реакция выглядит так:

2Н2O + энергия → 2H2+O2.

В реактор подаётся дистиллированная (!) вода и под действием электрического тока на катоде выделяется H2, а на аноде - O2. Теоретически можно представить себе более или менее компактный блок питания для такой установки.

Например, в идеальных условиях для получения 2 литров кислорода потребуется ёмкость 1 аккумулятора формата 18650. Другое дело, что сама установка имеет некий объем и вес. Ну и вода в водоёмах планеты Земля по своему химическому составу весьма далека от дистиллированной.

Вы можете возразить, что можно же использовать и обычную воду, в том числе и солёную морскую?

Да, можно, только чтобы использовать для дыхания кислород, получающийся в процессе её электролиза, придётся предусмотреть систему его очистки от разных примесей. А примеси получаются не очень - хлор, например.

К тому же полностью использовать кислород не получится, вспоминаем о процессе газообмена в лёгких, ага. И тут у нас возникает либо увеличение производительности гидролизной установки, причём большая часть кислорода будет выдыхаться в воду, как при открытом цикле, либо дыхательная петля, как в ребризерах. С поглотителем, дыхательным мешком и прочими атрибутами. И это будет справедливо и для «фильтрационной» установки получения кислорода.

Т. е. все эти сложные схемы заменяют нам всего лишь кислородный баллон. На текущем технологическом уровне баллон выигрывает вчистую.

На самом деле вышеописанные схемы получения кислорода реально используются. Гидролизные установки - на АПЛ, а мембранные - для дообогащения воздуха кислородом. В реалии на мембранной установке можно получать смесь с содержанием кислорода до 60 %.

Оксигенотерапия

Оксигенотерапия (кислородотерапия) представляет собой лечебный и профилактический метод, предполагающий использование кислорода. Кислород жизненно необходим организму - он отвечает за клеточное дыхание. Оксигенотерапия применяется для возмещения дефицита кислорода в тканях человеческого организма, что важно при гипоксии. Кроме того, кислородотерапия полезна и здоровым людям, проживающим в крупных городах с загрязненной атмосферой, так как нехватка кислорода в воздухе, которым они дышат, негативно сказывается на состоянии их здоровья.

Оксигенотерапия

Оксигенотерапия: показания и противопоказания

Оксигенотерапия является проверенным способом, повышающим оксигенацию крови, который начал применяться около двухсот лет назад и, благодаря своей высокой эффективности, продолжает использоваться по сей день. Оксигенотерапия позволяет насытить кислородом не только кровь, но и ткани человеческого организма.

Как любой терапевтический метод, кислородотерапия имеет свои показания и противопоказания.

Проведение оксигенотерапии может быть рекомендовано пациентам со многими заболеваниями. Высокоэффективна подобная процедура для больных с диагнозами «острая или хроническая дыхательная недостаточность» и «обструктивная болезнь легких».

Кроме того, её применение показано пациентам при следующих состояниях:

  • отек легких;
  • сердечная астма;
  • артрит и артроз;
  • муковисцидоз;
  • черепно-мозговая травма;
  • декомпрессионная болезнь;
  • метеоризм, связанный с хирургическими вмешательствами на кишечнике
  • офтальмологические заболевания;
  • приступы удушья, связанные с аллергическими реакциями.

Оксигенотерапия способствует быстрому восстановлению после химиотерапии, интоксикации алкоголем и отравлении угарным газом.

Проведение оксигенотерапии противопоказано пациентам с гиповентиляцией и гиперкапнией - состояниями, развитие которых провоцируется нарушениями легочной функции и сопровождаемыми стремительным возрастанием показателя углекислого газа в крови. Применение данной процедуры в таких ситуациях грозит развитием отека головного мозга, и, следовательно, увеличением вероятности смертельного исхода.

Еще одним противопоказанием к проведению оксигенотерапии является легочное кровотечение.

Оксигенотерапия: методы проведения процедуры

В центре терапии больницы Юсупова оксигенотерапия проводится двумя способами:

  • ингаляционным - при проведении данной процедуры используются кислородные маски, носовые катетеры, специальные трубки, применение которых обеспечивает поступление кислорода в организм человека через дыхательные пути;
  • неингаляционным - с использованием всех остальных путей введения: энтерального, внутривенного, подкожного и пр.

Процедура, как правило, предполагает использование не чистого кислорода (ввиду его токсичности), а газовых смесей с содержанием кислорода до 90%.

Оксигенотерапия при преэклампсии

Преэклампсия является тяжелой формой гестоза, для которой характерны: повышение артериального давления, обнаружение белка в моче, развитие отечности, головные боли, тошнота, рвота, раздражительность, вялость, желтуха, снижение уровня тромбоцитов, нарушение деятельности ЦНС, печени и другие тяжелые симптомы.

Данное состояние представляет собой серьезную угрозу для жизни беременной женщины и плода, так как может сопровождаться серьезными осложнениями: гипертоническим кризом, преждевременной отслойкой плаценты, задержкой развития плода, острой почечной недостаточностью, отеком головного мозга, отеком легких, кровоизлияниями в надпочечники и другие органы, а также развитием эклампсии с высокой вероятностью летального исхода.

Одним из мероприятий, которое применяется для лечения преэклампсии, является оксигенотерапия, позволяющая значительно улучшить состояние пациентки и предотвратить развитие гипоксии у плода. Поэтому преэклампсия является одним из важнейших показаний к проведению кислородотерапии.

Техника оксигенотерапии, алгоритм выполнения процедуры

Техника проведения оксигенотерапии зависит от приспособлений и инструментов, которые используются в ходе процедуры. Однако общий алгоритм действий состоит из следующих мероприятий:

  • предварительной подготовки оборудования и пациента;
  • подачи кислорода;
  • постоянного контроля за состоянием пациента;
  • ухода и наблюдения за больным после проведения процедуры.

Специалисты центра терапии больницы Юсупова гарантируют высокое качество проведения оксигенотерапии, с четким соблюдением алгоритма её выполнения от подготовительного до завершающего этапа, что обеспечивает высокую эффективность и абсолютную безопасность процедуры.

Наиболее распространенный ингаляционный путь введения кислорода - через носовой катетер. Следующими по популярности являются пути введения с использованием кислородной маски и кислородной подушки.

Оксигенотерапия: алгоритм выполнения процедуры через носовой катетер

При проведении оксигенотерапии с использованием носового катетера следует придерживаться следующих четких правил:

  • принятие пациентом удобной позы;
  • проверка врачом исправности оборудования (во избежание утечки кислорода и создания пожароопасной ситуации);
  • введение стерилизованного, смазанного вазелином катетера с условием его визуализации в зеве пациента. Закрепление его наружного конца на виске и щеке больного;
  • пальпация катетера, что позволяет проверить правильность его установки;
  • запуск подачи кислорода;
  • замена катетера (при необходимости), чередование ноздрей;
  • наблюдение за состоянием пациента после окончания процедуры и оказание экстренной помощи в случае его ухудшения.

Оксигенотерапия: алгоритм выполнения процедуры через кислородную маску

Процедура с использованием кислородной маски требует соблюдения следующих правил:

  • присоединение маски к оборудованию, проверка герметичности соединения;
  • подключение прибора;
  • накладывание маски на лицо больного, закрепление её на затылке;
  • проверка степени прилегания маски к коже пациента.

Оксигенотерапия: алгоритм выполнения процедуры через кислородную подушку

Для выполнения кислородотерапии с использованием кислородной подушки существует следующий алгоритм действий:

  • соединение кислородной подушки с баллоном;
  • наполнение подушки кислородом, закрепление на её кране мундштука после наполнения кислородом;
  • расположение мундштука на расстоянии 5 см от ротовой полости больного, открытие крана подушки;
  • повторное наполнение подушки после того, как кислород в ней закончился.

Оксигенотерапия: алгоритм выполнения процедуры в барокамере

Одним из наиболее современных и эффективных способов оксигенотерапии является гипербарическая оксигенация, которая предполагает нахождение пациента в кислородной барокамере.

Для её проведения также существуют несложные правила:

  • удобное расположение пациента в кислородной барокамере;
  • запуск процесса подачи кислорода под повышенным давлением.

Оксигенотерапия: алгоритм выполнения процедуры внутривенно

Самым популярным неингаляционным методом кислородотерапии является внутривенный, требующий соблюдения следующих правил:

  • укладывание пациента на кушетку;
  • внутривенное введение в организм пациента через капельницу физраствора, обогащенного озоном и перекисью водорода.

Применение данного способа чаще всего назначается для лечения и профилактики большинства известных патологий. Он может использоваться даже женщинам в период беременности, так как позволяет предотвратить развитие гипоксии у плода.

Оксигенотерапия

Кислородотерапия в домашних условиях

Для того, чтобы иметь возможность проводить оксигенотерапию в домашних условиях, необходим портативный аппарат оксигенотерапии. Купить концентратор кислорода, кислородную маску или назальные канюли к нему на сегодняшний день не представляет особого труда, это можно сделать и в магазине медицинской техники, и на специализированном сайте в интернете.

Кислородотерапия в домашних условиях имеет ряд преимуществ. По сравнению с кислородными баллонами концентраторы кислорода намного безопаснее. Кроме того, многие продавцы медицинского оборудования предоставляют их в аренду, так как купить кислородные концентраты по карману не всем людям.

Преимущества оксигенотерапии в больнице Юсупова

Оксигенотерапия является эффективным методом насыщения крови кислородом, что необходимо при многих заболеваниях. Одним из достоинств процедуры является отсутствие осложнений после её проведения. Кроме того, оксигенотерапия способствует укреплению иммунитета, нормализации артериального давления, улучшению метаболизма, усилению регенерации ткани, улучшению микроциркуляции тканей и обмена веществ в клетках.

Оксигенотерапия применяется в центре терапии Юсуповской больницы как в лечебных, так и в профилактических целях. Перед проведением процедуры пациенту необходима консультация врача-пульмонолога, который определит, насколько необходима в каждом конкретном случае кислородотерапия, показания и противопоказания к её проведению и подберет наиболее подходящий вид процедуры (ингаляционный, неингаляционный, либо наиболее эффективный - с помощью гипербарической барокамеры). Прием ведут ведущие пульмонологи Москвы - доктор медицинских наук, профессор Александр Вячеславович Аверьянов и кандидат медицинских наук Александр Евгеньевич Шуганов. Записаться на консультацию можно на сайте клиники.

Читайте также: