Строение и функции щелевых контактов

Обновлено: 15.05.2024

выполняют определенные функции. К ним относятся запирающие, заякоревающие и коммуникационные соединения (рис. 146).

Запирающее или плотное соединение характерно для однослойных эпителиев. Представляет собой зону, в которой внешние слои двух плазматических мембран максимально сближены, два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 так что видна трехслойность мембраны в этом контакте. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран (рис. 147а, 148).

Точки соприкосновения мембран представляют собой ряды глобул. Это белки окклудин и клаудин, специальные интегральные белки плазматической мембраны, встроенные рядами. Такие ряды глобул или полоски могут пересекаться и образовывать как бы решетку или сеть. Плотный контакт особенно характерен для железистых и кишечных эпителиев. В кишечном эпителии плотный контакт образует сплошную зону слияния плазматических мембран, опоясывающую клетку в апикальной (верхней, смотрящей в просвет кишечника) части (рис. 148). Таким образом, каждая клетка пласта как бы обведена лентой этого контакта. Такие структуры получили название замыкающих пластинок. В данном случае роль замыкающих плотных контактов заключается не только в механическом соединении клеток друг с другом, но и обеспечении плохой проницаемости для макромолекул и ионов, и тем самым они перегораживают межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней среды (просвет кишечника).

Таким образом, плотные контакты являются барьерами не только для макромолекул, но и непроницаемы для жидкостей и ионов.

Замыкающий, или плотный, контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима).

Заякоривающие или сцепляющие соединения соединяют не только плазматические мембраны соседних клеток, но и связаны с фибриллярными элементами цитоскелета (рис. 149). Для этих контактов характерным является наличие двух типов белков. Первый из них - это трансмембранные линкерные (связующие) белки, которые участвуют как в собственно межклеточном соединении так и в соединении плазмолеммы с компонентами внеклеточного матрикса (базальная мембрана эпителиев, внеклеточные структурные белки соединительной ткани).

Второй тип - внутриклеточные белки, соединяющие мембранные элементы такого контакта и цитоплазматические фибриллы цитоскелета.

К заякоревающим контактам относятся межклеточные сцепляющие точечные контакты, сцепляющие ленты, фокальные контакты или бляшки сцепления - все эти контакты связываются внутри клеток с актиновыми микрофиламентами.

Другая группа заякоревающих межклеточных соединений - десмосомы и полудесмосомы - связываются с промежуточными филаментами цитоскелета.

Межклеточные точечные сцепляющие контакты обнаружены у многих неэпителиальных тканей, но более отчетливо описана структура специальных (адгезивных) лент в однослойных эпителиях (рис. 150). Это структура опоясывает весь периметр эпителиальной клетки, подобно тому как это происходит в случае плотного соединения. Лента лежит ниже плотного соединения (см. рис. 146). В этом месте плазматические мембраны не сближены, а даже несколько раздвинуты на расстояние 25-30 нм, и между ними видна зона повышенной плотности. Это ничто иное как места взаимодействия трансмембранных гликопротеидов, которые специфически сцепляются друг с другом и обеспечивают механическое соединение мембран двух соседних клеток. Эти линкерные белки относятся к Е-кадгеринам - белкам, обеспечивающим специфическое узнавание клетками однородных мембран. Разрушение этого слоя гликопротеидов приводит к обособлению отдельных клеток и разрушению эпителиального пласта.

Функциональное значение такого ленточного соединения заключается на только в механическом сцеплении клеток друг с другом: при сокращении актиновых филаментов в ленте может изменяться форма клетки.

Фокальные контакты или бляшки сцепления встречаются у многих клеток и хорошо изучены у фибробластов. Они построены по общему плану со сцепляющими лентами, но выражены в виде небольших участков - бляшек на плазмолемме. В этом случае трансмембранные линкерные белки-интегрины специфически связываются с белками внеклеточного матрикса (например с фибронектином) (рис. 151). Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов. Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и создании механизма, позволяющего клеткам перемещаться.

Десмосомы, структуры в виде бляшек или кнопок соединяют клетки друг с другом (рис. 152, 153а). В межклеточном пространстве виден плотный слой, представленный взаимодействующими интегральными мембранными кадгеринами - десмоглеинами, которые сцепляют клетки друг с другом. С цитоплазматической стороны к плазмолемме прилежит слой белка-десмоплакина, с которым связаны промежуточные филаменты цитоскелета. Десмосомы встречаются чаще всего в эпителиях, в этом случае промежуточные филаменты содержат кератины. В сердечной мышце клетки, кардиомиоциты, содержат десминовые фибриллы в составе десмосом. В эндотелии сосудов в состав десмосом входят виментиновые промежуточные филаменты.

Полудесмосомы - по строению сходны с десмосомами и представляют собой соединение клеток с межклеточными структурами. В эпителиях десмосомы взаимодействуют с белками т.н. базальной мембраны.

Функциональная роль десмосом и полудесмосом сугубо механическая - они сцепляют клетки друг с другом и с подлежащим внеклеточным матриксом. Это позволяет эпителиям, клеткам сердечной мышцы выполнять огромную механическую нагрузку, оставаясь связанными в единую структуру.

В отличие от плотного контакта все типы сцепляющих контактов проницаемы для водных растворов и не играют никакой роли в ограничении диффузии.

Щелевые контакты считаются коммуникационными соединениями клеток и участвуют в прямой передаче химических веществ из клетки в клетку, что играет большую физиологическую роль не только при функционировании специализированных клеток, но и обеспечивает межклеточные взаимодействия при развитии организма, при дифференцировке его клеток. При этом типе контактов характерно сближение плазматических мембран двух соседних клеток на расстояние 2-3 нм (рис. 147б, 153б).

Через щелевые контакты могут транспортироваться вещества с молекулярным весом не более 1-1,5 тыс. и размером не более 1,5 нм (у насекомых через щелевой контакт могут проходить вещества с молекулярным весом до 2 тыс.). К ним относятся разные ионы, аминокислоты, нуклеотиды, сахара, витамины, стероиды, гормоны, цАМФ, но ни белки, ни нуклеиновые кислоты через щелевые контакты не проходят.

Способность щелевых контактов быстро передавать химические вещества используется для передачи электрического импульса (волны возбуждения) от клетки к клетке без участия нервного медиатора. Все мышечные клетки миокарда сердца связаны с помощью щелевых контактов (кроме того, клетки там связаны и адгезивными контактами) (рис. 147б).

Таким же способом обеспечивается совместное сокращение гладкомышечных клеток в стенке матки.

Щелевые контакты служат также целям метаболической кооперации между клетками, обмениваясь различными молекулами, гормонами, цАМФ или метаболитами.

Синаптические контакты (синапсы) характерны для нервной ткани и встречается как между двумя нейронами, так и между нейроном и рецептором или эффектором (например, нервно-мышечное окончание). Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому (рис. 155).

Синапсы образуются на отростках нервных клеток - это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют грушевидных расширений, бляшек на конце отростка нервной клетки. Терминальное расширение отростка одной из нервных клеток контактирует и образовывает синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами или клетками-рецепторами. Из этого следует, что синапс - это структура, образующаяся между участками двух клеток (так же как и десмосома). Мембраны этих клеток разделены межклеточным пространством - синаптической щелью шириной около 20-30 нм.

Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой, воспринимающей импульс, - постсинаптической. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей, синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран из-за скопления около нее со стороны цитоплазмы множества тонких фибрилл.

Плазмодесмы встречаются у растений и представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки (рис. 156, 157). У некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому здесь нет полного разграничения, отделения тела одной клетки от другой, что скорее представляет собой синцитий. Внутрь плазмодесм могут проникать трубчатые элементы цистерн эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка (см. ниже). У разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

С помощью плазмодесм обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 дальтон.

Щелевые контакты


Щелевое соединение, щелевой контакт (англ. gap junction ) — способ соединения клеток в организме с помощью белковых каналов (коннексонов). Через щелевые контакты могут непосредственно передаваться от клетки к клетке электрические сигналы (потенциалы действия), а также малые молекулы (с молекулярной массой примерно до 1.000 Д). Этим щелевые контакты отличаются от плазмодесм, через которые могут транспортироваться макромолекулы и даже органоиды.

Структурную основу щелевого соединения составляют коннексоны — каналы, образуемые шестью белками-коннексинами. В нервной системе щелевое соединение между нейронами встречается в так называемых электрических синапсах. Отдельные коннексоны обычно сосредоточены на ограниченных по площади участках мембран — нексусах, или бляшках (англ. plaque) диаметром 0,5-1 мкм. В области нексуса мембраны соседних клеток сближены, расстояние между ними составляет 2-4 нм.

Содержание

Белки щелевых контактов

У позвоночных основу щелевых контактов составляют коннексины — первое из описанных семейств белков щелевых контактов. В геноме человека идентифицирован 21 ген щелевых контактов, в геноме мыши — 20 генов.

У беспозвоночных имеется другое семейство белков щелевых контактов, сходных с коннексинами по структуре и функциям. но негомологичных им (имеющих несходную первичную структуру) — иннексины. В геноме Caenorhabditis elegans найдено 25 генов иннексинов, в геноме Drosophila melanogaster — 8.

Позднее выяснилось, что у позвоночных, кроме коннексинов, имеются также белки, гомологичные иннексинам. Эти белки, открытые группой российских ученых, [1] получили название паннексины. В геноме человека и мыши к настоящему времени идентифицированы 3 гена паннексинов [2] .

У кишечнополостных и иглокожих есть щелевые контакты, но нет генов ни одного из вышеназванных семейств. Это означает, что существуют ещё не открытые семейства белков щелевых контактов [3]

Местонахождения в организме и функции щелевых контактов

Основная функция щелевых контактов - электрическое соединение двух клеток, а также перенос небольших молекул между ними. В различных тканях оно существует с разными задачами. В нервной системе щелевые контакты - один из способов передачи возбуждения между нейронами, электрический синапс. В сердце щелевые контакты соединяют кардиомиоциты для обеспечения синхронности сокращения всех клеток одного отдела. Щелевые контакты встречаются практически во всех тканях. Одним из исключений является поперечно-полосатая мускулатура, где клеткам не требуется электрическая связь, поскольку они там слиты в симпласт (однако щелевые контакты встречаются в сосудах, питающих мышцы). Также щелевые контакты не обнаруживаются у эритроцитов и зрелых сперамтозоидов. [4] Щелевые контакты даже соединяют клетки фолликула с ооцитом (формально, клетки разных организмов), а разрушение этой связи является одним из сигналов для ооцита при овуляции. [5] Очень значительную роль в функционировании организма играют так называемые полуканалы - "половинки" щелевых контактов, открытые в межклеточное пространство. Например, они участвуют в создании кальциевой волны в эндотелии, выпуская АТФ наружу из клетки, что способствует поддержанию кровяного давления в сосуде. [6]
Изменения щелевых контактов-одна из причин эффекта "свидетеля" при облучении.

Межклеточные контакты

Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом - сигнальных веществ), передаваемых через межклеточное вещество.

Строение межклеточных соединений

В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителий, мышечная ткань и пр.) между мембранами контактирующих клеток формируются связи - межклеточные контакты. Каждый тип межклеточных контактов формируется за счет специфических белков, подавляющее большинство которых — трансмембранные белки. Специальные адапторные белки могут соединять белки межклеточных контактов с цитоскелетом, а специальные "скелетные" белки - соединять отдельные молекулы этих белков в сложную надмолекулярную структуру. Во многих случаях межклеточные соединения разрушаются при удалении из среды ионов Ca 2+ .

Функции межклеточных соединений

Межклеточные соединения возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта веществ и передачи сигналов (межклеточное взаимодействие), а также для механического скрепления клеток друг с другом.

Через щелевые контакты могут передаваться электрические сигналы. Клетки органов и тканей вырабатывают ряд химических веществ, действующих на другие клетки (в том числе через межклеточные контакты) и вызывающих изменения в работе цитоскелета, в интенсивности обмена веществ и процессе синтеза клеткой белков.

Типы межклеточных соединений

Плазмодесмы

Микроскопические цитоплазматические мостики, соединяющие соседние клетки растений. Основная статья: Плазмодесмы

Простое межклеточное соединение

При простом межклеточном соединении оболочки клеток сближены на расстояние 15 - 20 нм. Это соединение занимает наиболее обширные участки соприкасающихся клеток. Посредством простых соединений осуществляется слабая механическая связь, не препятствующая транспорту веществ в межклеточных пространствах. Разновидностью простого соединения является контакт типа «замок», когда билипидные мембраны соседних клеток вместе с участком цитоплазмы вдавливаются друг в друга, чем достигается большая поверхность соприкосновения и более прочная механическая связь.

Плотное соединение (запирающая зона)

В плотном соединении клеточные мембраны максимально сближены, здесь фактически происходит их слияние. Роль плотного соединения заключается в механическом сцеплении клеток и препятствии транспорту веществ по межклеточным пространствам. Эта область непроницаема для макромолекул и ионов, она ограждает межклеточные щели от внешней среды. Плотные соединения обычно образуются между эпителиальными клетками в тех органах (желудке, кишечнике и пр.), где эпителий ограничивает содержимое этих органов (желудочный сок, кишечный сок). В этих участках плотные контакты охватывают по периметру каждую клетку, межмембранные пространства отсутствуют, а соседние клеточные оболочки слиты в одну. Если же плотное сцепление происходит на ограниченном участке, то образуется пятно слипания (десмосома).Частными случаями плотного соединения являются зоны замыкания и слипания.

Зона замыкания

В зоне замыкания две соседние мембраны сливаются своими наружными слоями, эта зона непроницаема для макромолекул и ионов.

Зона слипания (промежуточный контакт)

В зоне слипания мембраны разделены щелью в 10-20 нм, заполненной плотным веществом (белковой природы).

Десмосома (пятно сцепления, липкое соединение)

Десмосома представляет собой небольшую площадку, иногда слоистого вида, диаметром до 0,5 мкм. Их функциональная роль заключается главным образом в механической связи между клетками. Существуют 3 типа десмосом - точечные, опоясывающие и полудесмосомы. Десмосомой называется образованное клетками соединение, прочно склеивающее клетки. Если они образуются между клетками и внеклеточным матриксом, то они называются полудесмосомами. Количество десмосом на одной клетке может достигать 2000. Такие контакты встречаются между клетками, которые могут подвергаться трению и другим механическим воздействиям (эпителиальные клетки, клетки сердечной мышцы). Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют остов цитоплазмы, обладающий большой прочностью на разрыв. Таким образом, через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть по всей ткани. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток они кератиновые, а в клетках сердечной мышцы - десминовые.

Нексус (щелевой контакт)

Нексус представляет собой ограниченный участок контакта двух клеточных мембран диаметром 0,5 - 3 мкм с расстоянием между мембранами 2-3 нм. Обе эти мембраны пронизаны белковыми молекулами коннексонами, содержащими гидрофильные каналы. Через эти каналы осуществляется обмен ионами и микромолекулами соседних клеток. Поэтому нексусы называют также проводящими соединениями. Их функциональная роль заключается в переносе ионов и мелких молекул от клетки к клетке, минуя межклеточное пространство. Этот тип соединения встречается во всех группах тканей.

Синапс (синаптическое соединение)

Синапсы являются особыми формами межклеточных соединений. Они характерны для нервной ткани и встречаются между нейронами (межнейронные синапсы) или между нейроном и клеткой-мишенью (нервно-мышечные синапсы и пр.). Синапсы - участки контакта двух клеток, специализированных для односторонней передачи возбуждения или торможения от одной клетки к другой. Их функция - именно передача нервного импульса с нейрона на другую нервную клетку или клетку-мишень.

Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом — сигнальных веществ), передаваемых через межклеточное вещество.

Строение межклеточных соединений В тех тканях, в которых клетки или их отростки плотно прилегают друг к другу (эпителий, мышечная ткань и пр.) между мембранами контактирующих клеток формируются связи - межклеточные контакты. Каждый тип межклеточных контактов формируется за счет специфических белков, подавляющее большинство которых — трансмембранные белки. Специальные адапторные белки могут соединять белки межклеточных контактов с цитоскелетом, а специальные «скелетные» белки — соединять отдельные молекулы этих белков в сложную надмолекулярную структуру. Во многих случаях межклеточные соединения разрушаются при удалении из среды ионов Ca2+.


Функции межклеточных соединений

Типы межклеточных соединений

Простое межклеточное соединение

Плотное соединение (запирающая зона)

Плотные контакты (англ. tight junctions) — запирающие межклеточные контакты, присущие клеткам позвоночных животных, в составе которых мембраны соседних клеток максимально сближены и «сшиты» специализированными белками клаудинами и окклюдинами (англ.). Распространены в эпителиальных тканях, где составляют наиболее апикальную часть (лат. zonula occludens) комплекса контактов между клетками, в который входят адгезионные контакты и десмосомы. Плотные контакты построены из нескольких лент, опоясывающих клетку, которые, пересекаясь между собой, образуют сетевидную связь. С цитоплазматической стороны ассоциированы с актиновыми филаментами.

Эпителиальные ткани выполняют барьерную и транспортную функции, для этого они должны быть способны пропускать одни вещества и задерживать другие. Такую выборочную проницаемость успешно обеспечивают клеточные мембраны, однако между клетками остаются промежутки, через которые может проходить так называемый парацеллюлярный (параклеточный) транспорт (англ. Paracellular transport). Роль плотных контактов заключается в том, чтобы ограничивать и регулировать параклеточную диффузию: они предотвращают протекание тканевой жидкости через эпителий, но при необходимости могут быть проницаемыми для ионов, небольших гидрофильных молекул и даже макромолекул. Также плотные контакты выполняют так называемую функцию «ограждения», они предотвращают диффузию компонентов мембраны в её внешнем слое, благодаря чему поддерживается разница в составе апикальной и базолатеральной мембран. Плотные контакты задействованы в сигнальных путях, регулирующих пролиферацию, поляризацию и дифференциацию эпителиальных клеток.

Плотные контакты состоят из тонких лент, пересекающихся между собой, которые полностью опоясывают клетку и контактируют с аналогичными лентами на соседних клетках. На электронных микрофотографиях заметно, что в участках плотных контактов мембраны соприкасаются одна с другой или даже сливаются. Комбинация метода замораживания-скалывания с электронной микроскопией с высоким разрешением позволила установить, что плёнки плотных контактов построены из белковых частиц диаметром 3-4 нм, которые выступают с обеих поверхностей мембраны. Также в пользу того, что в образовании плотных контактов ключевую роль играют белки, свидетельствует деление клеток под действием протеолитического фермента трипсина.

Всего в состав тесных контактов входит около 40 различных белков, как мембранных, так и цитоплазматических. Последние необходимы для прикрепления актиновых филаментов, регуляции и сигнализирования.

Мембранные белки плотных контактов можно разделить на две группы: те, которые пересекают мембрану 4 раза, и те, которые пересекают её только раз. Первая группа значительно распространена, в неё входят белки клаудины, окклюдины и трицеллюлин. Они имеют общие черты строения, в частности в них имеются четыре α-спиральных трасмембранных домена, N- и С-концы обращены к цитозолю, а домены, выступающие в межклеточное пространство, участвуют в гомо- или гетерофильных взаимодействиях с подобными белками на соседней клетке.

Основными белками плотных контактов являются клаудины (лат. claudo). Их роль была продемонстрирована на примере мышей с отсутствующим геном клаудин-1, — в эпидермисе таких животных не формируются плотные контакты и они погибают в течение дня после рождения из-за обезвоживания вследствие интенсивного испарения[1]. Клаудины также участвуют в формировании селективных каналов для транспорта ионов. В геноме человека есть гены по крайней мере 24 различных клаудинов, экспрессия которых происходит тканеспецифически.

Второе место по распространенности в плотных контактах занимают белки окклюдины (от лат. occludo — закрывать), они регулируют транспорт маленьких гидрофильных молекул и прохождение нейтрофилов через эпителий. Наибольшие концентрации третьего белка — трицеллюлина, наблюдаются в местах контакта трех клеток.

К белкам плотных контактов, пересекающим мембрану один раз, относятся JAM-A,-B,-C и-D (англ. junctional adhesion molecules) и родственные им CAR (англ. coxsackievirus and adenovirus receptor), CLMP (англ. CAR-like membrane protein) и ESAM (англ. endothelial-cell selective adhesion molecule), имеющие по два иммуноглобулинных домена, а также белки CRB3 (англ. Crumbs homologue 3) и Bves

Цитоплазматическая пластинка плотных контактов необходима для их присоединения к актиновым филаментам, регуляции сцепления клеток и параклеточного транспорта, а также для передачи сигналов от поверхности внутрь клетки. В её состав входят адаптерные, каркасные и цитоскелетные белки, а также элементы сигнальных путей (киназы, фосфатазы). Наиболее изучен белок цитоплазматической пластинки — ZO-1, он имеет несколько доменов белок-белкового взаимодействия, каждый из которых обеспечивает контакт с другими компонентами, в том числе три PDZ-домена (англ. PSD95-DlgA-ZO-1) — с клаудинами и другими адаптерными белками — ZO-2 и ZO-3, GUK-домен (англ. guanylate kinase homology) — с окклюдинами, а SH3-домен — с сигнальными белками.

С цитоплазматической стороной плотных контактов также ассоциированы комплексы белков PAR3/PAR6 и Pals1/PATJ, необходимые для установления полярности клеток и эпителиального морфогенеза.

Функции Первые исследования функций плотных контактов привели к представлению, что это статические непроницаемые структуры, необходимые для того, чтобы ограничить диффузию веществ между клетками. Впоследствии было выяснено, что они избирательно проницаемы, к тому же их пропускная способность отличается в различных тканях и может регулироваться. Также установлена ещё одна функция плотных контактов: роль в поддержании полярности клеток путем ограничения диффузии липидов и белков во внешнем слое плазматической мембраны. В первом десятилетии 21 века также накоплены данные, свидетельствующие об участии этих структур в сигнальных путях, в частности, регулирующих пролиферацию и полярность.

Регулирование парацеллюлярного транспорта

Непроницаемость плотных контактов в большинстве водорастворимых соединений может быть продемонстрирована в опыте по введению гидроксида лантана (электронно плотный коллоидный раствор) в кровеносные сосуды поджелудочной железы. Через несколько минут после инъекции ацинарные клетки фиксируются, и из них готовятся препараты для микроскопии. В таком случае можно наблюдать, что гидроксид лантана диффундирует из крови в пространство между латеральными поверхностями клеток, но не может проникнуть через плотные контакты в их верхней части. Другие опыты показали, что плотные контакты также непроницаемы для солей. Например при выращивании почек собаки MDCK (англ. Madin-Darby canine kidney) в среде с очень низкой концентрацией кальция, они формируют монослой, однако не сочетаются между собой плотными контактами. Через такой монослой могут свободно двигаться соли и жидкости. Если культуре добавить кальция, то за час формируются плотные контакты, и слой становится непроницаемым для жидкостей.

Однако не во всех тканях плотные контакты полностью непроницаемы, существуют так называемые неплотные эпителии (англ. leaky epithelia). Например, эпителий тонкого кишечника пропускает в 1000 раз больше ионов Na +, чем эпителий канальцев почек. Ионы проникают через параклеточные поры диаметром 4 Å, селективные по заряду и размеру частиц, которые формируются белками клаудинами. Поскольку эпителии различных органов эксрессируют различные наборы клаудинов, то отличается и их проницаемость для ионов. Например, специфический клаудин, присутствуюий только в почках, позволяет проходить ионам магния в процессе реабсорбции.

Межклеточное пространство эпителия может быть проницаемым и для больших частиц, например, при повторении упомянутого опыта с гидроксидом лантана на ткани эпителия тонкого кишечника кролика можно наблюдать прохождение коллоидных частиц между клетками. Крупные молекулы транспортируются через специальные пути утечки (англ. leak pathway) диаметром более 60 Å. Это важно, например, для процессов всасывания аминокислот и моносахаридов, концентрация которых в тонком кишечнике возрастает после еды достаточно для их пассивного транспорта.

Поддержание различия между апикальной и базолатеральной мембранами

Если в среду, контактирующую с апикальной частью монослоя MDCK-клеток, добавить липосомы, содержащие флуоресцентно меченые гликопротеины, некоторые из них спонтанно сливаются с клеточными мембранами. После этого флуоресценцию можно обнаружить в апикальной, но не в базолатеральной части клеток при условии целостности плотных контактов. Если же их разрушить, удалив из среды кальций, флуоресцентные белки диффундируют и равномерно распределяются по всей поверхности клетки.

Цитозольный слой мембраны имеет одинаковый липидный состав, как в апикальном, так и в базолатеральном участках, эти липиды могут свободно диффундировать. С другой стороны, липиды внеклеточного слоя двух частей клетки существенно различаются, и обмену между ними препятствуют плотные контакты. Например, все гликолипиды, как и белки заякоренные гликозилфосфатидилинозитолом, в мембранах MDCK клеток расположены исключительно в внеклеточном слое апикальной части, а фосфатидилхолин — почти исключительно в базолатеральной части.

Болезни, связанные с плотными контактами

С нарушением формирования тесных контактов связаны некоторые наследственные расстройства человека, например мутации в генах клаудина-16 и клаудина-19, которые приводят к гипомагниемии, вследствие чрезмерной потери магния с мочой. Мутации в гене клаудина-13 и трицеллюлина вызывают наследственную глухоту. Дисрегуляция некоторых белков плотных контактов связана с онкологическими заболеваниями, например экспрессия ZO-1 и ZO-2 снижается во многих типах рака. Компоненты тесных контактов также могут быть мишенями для онкогенных вирусов.

Некоторые вирусы используют мембранные белки плотных контактов для проникновения в клетку, в частности клаудин-1 является корецептором для вируса гепатита C. Другие вирусы присоединяются к белкам плотных контактов, чтобы разрушить барьер, отделяющий их от настоящих рецепторов на базолатеральной слое эпителиальных клеток, или неэпителиальных клетках.

Плотные контакты могут быть мишенью и для бактериальных патогенов, например Clostridium perfringens — возбудитель газовой гангрены, выделяет энтеротоксин (англ.), действующий на внеклеточные домены мембранных клаудинов и окклюдинов, и вызывает протечки эпителия. Helicobacter pylori — возбудитель гастрита — вводит в клетки белок CagA, взаимодействующий с комплексом ZO-1-JAM-A, считается, что это помогает бактерии преодолеть защитный барьер желудочного эпителия.

Адгезионные контакты

Адгезионные контакты (англ. adherens junctions, AJ) — якорные межклеточные контакты, ассоциированные с микрофиламентами, обеспечивающие целостность и механическую прочность ткани, в частности противостояние растяжению, придающие клеткам возможность координированно использовать актиновый цитоскелет. Адгезионные контакты относятся к гомофильным, то есть соединяют клетки одинакового типа. В их формировании принимают участие белки кадгерины и катенины.

Морфологически адгезионные контакты являются относительно простыми, в отличие от десмосом, плотных и щелевых контактов, они не имеют высокоспециализированных ультраструктур, кроме скопления актиновых филаментов. От других типов соединений клеток они отличаются относительной гибкостью и изменчивостью.

Чаще всего адгезионные контакты встречаются в эпителиальных тканях, здесь они образуют вокруг каждой клетки поясок, который называют зоной прилипания (англ. zonula adherens). Такие зоны в эпителии позвоночных животных преимущественно размещаются базальнее участка плотных контактов (англ. zonula occludens) и апикальнее десмосом (англ. macula adherens).

В зоне адгезионных контактов мембраны соседних клеток удалены друг от друга на расстояние 10-20 нм. В состав адгезионных контактов входят три основных элемента:

Схематическое изображение процесса формирования трубки из слоя эпителиальных клеток Одной из основных функций адгезионных контактов является физическое соединение клеток в единую ткань, их ослабление часто приводит к диссоциации клеток. Такого эффекта можно достичь, обработав ткань или монослойную культуру хелатирующим агентами, такими как ЭДТА, связывающими ионы кальция, вследствие чего взаимодействие между кадгеринами нарушается. Однако, хелатирующих агентов обычно недостаточно для полного разделения клеток, поскольку между ними существуют другие — кальций независимые — контакты.

Адгезионные контакты обеспечивают образование широкой межклеточной сети из пучков сократительных актиновых филаментов, расположенных параллельно мембранам клеток и соединенных между собой с помощью белков катенинов и кадгеринов. Такая организация позволяет не только противостоять механическому напряжению, но и согласовывать поведение клеток во время процессов морфогенеза. Например, координированное сокращение колец актиновых филаментов соседних клеток является необходимым для формирования трубок из слоя эпителия, в частности во время закладки нервной трубки. Одним из примеров является Shroom3-зависимое сокращение зоны прилипания, при этом актин-связывающий белок Shroom3 привлекает к участку адгезионные контакты Rho-киназы и активирует миозин-II, в результате чего и происходит сокращение.

Адгезионные контакты также задействованы в межклеточной передаче сигналов, об этом свидетельствует локализация в зрелых контактах рецепторной тирозинфосфатазы μ и белка RACK1, который взаимодействует с ней. При снижении экспрессии α-катенина наблюдается значительное увеличение темпов пролиферации эпителиальных клеток, было показано, что за этот эффект отвечает сигнальный путь инсулин / MAPK.

Проводящие контакты(щелевые,химические). Плазмодесмы

Плотные контакты характерны для однослойных эпителиев, при этом плазмалеммы клеток максимально сближены и в электронный микроскоп видно, что внешние слои двух плазмолемм как бы формируют единый общий слойтакже скапливаются отдельные феломенты, которые располагаются параллельно поверхности плазмалеммы.Эта структура характерна для железистых и кишечных эпителиев.Механическое соединение клеток друг с другом «герметичное». Диффузия молекул в липидном слое.

Проводящие контакты - щелевые и химические синапсы. Через щелевые контакты молекулы переходят из одной клетки в другую, а в химическом синапсе нет таких переходов, но контактирующие мембраны очень сближены. Щелевые контакты относят к коммуникационным соединениям. Это структуры, которые участвуют в прямой передаче химических веществ из клетки в клетку. Характерным для этих контактов является сближение плазматических мембран двух соседних клеток на расстояние 2 - 3 нм. Щелевой контакт имеет размер от 0,5 до 5 мкм. Состоит из субъединиц диаметром 7 - 8 нм, которые расположены вокруг канала диаметром около двух нанометров. Вокруг этого канала располагается шесть субъединиц, которые имеют белковую природу и представлены белком коннектином. Молекулярная масса - около 30000. Вся структура из шести субъединиц называется коннексон. Объединяясь друг с другом образуют цилиндр с отверстием в центра Удивительно симметричны.

Эти структуры играют роль межклеточных каналов, по которым ионы и низкомолекулярные вещества диффундируют. Функциональная роль коннексонов несколько более расширена. Это обеспечение межклеточного обмена неорганическими ионами и молекулами органических веществ. Целостность и функционирование щелевых контактов зависят от катионов, в первую очередь кальция, от внутри клетки.Такое свойство проводящих контактов очень важно для целостной и слаженной работы тканей, поскольку повреждение одной клеток не передается на другие.Разновидностью проводящих контактов у растений являются плазмодесмы. Растительная отличается от животной наличием жесткой клеточной стенки. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов 20 - 40 нм и по центральной оси канала из одной клетки в другую тянется трубчатая структура, которая называется десмотубула. В обеих взаимодействующих структурах она контактирует с ЭПР. Пространство между наружной поверхностью и мембраной плазмодесмы заполнено цитозолем. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседних клеток. Плазмодесмы проходят через клеточную стенку растительных клеток, соединяя гиалоплазму соседних клеток. Синцитий - объединение клеток с помощью ЭПР. Свободный транспорт ограничивается частицами менее 800. Образуются плазмодесмы во время деления клетки, когда строится первичная оболочка.

С помощью них обеспечивается межклеточная циркуляция растворов, в которой содержатся всякие вещества. Также плазмодесмы выполняют и негативную роль - заражение вирусом.

Синаптический контакт - этот тип контактов характерен для нервной системы Концы дендритов заканчиваются рецепторами, которые узнают и обеспечивают проникновение любого типа сигнала в тело клетки. А по аксону возбуждение передается в другие клетки. На нервных клетках, которые контактируют друг с другом, образуются синапсы. Конец аксона имеет небольшое расширение, в котором скапливаются везикулы со специальным медиатом - химическим веществом. При прохождении возбуждения мембрана пресиматическая конца аксона приходит в возбужденное состояние, что обеспечивает выброс медиатора в пресинаптическую щель. Ацетилхолин диффундирует и достигает рецепторов другой мембраны, которая называется постсинаптическая. Она характеризуется наличием специальных гликопротеиновых рецепторов, которые взаимодействуют с молекулами и передают возбуждение далее.

Читайте также: