Регуляция вдоха дыхательного акта. Влияние дыхательного аппарата

Обновлено: 03.05.2024

Регуляция дыхания осуществляется путем рефлекторных реакций, возникающих в результате возбуждения специфических рецепторов, заложенных в легочной ткани, сосудистых рефлексогенных зонах и других участках. Центральный аппарат регуляции дыхания представляют образования спинного мозга, продолговатого мозга и вышележащих отделов нервной системы. Основная функция управления дыханием осуществлянется дыхательными нейронами ствола головного мозга, которые передают ритмические сигналы в спинной мозг к мотонейронам дыхательных мышц.

Дыхательный нервный центр - это совокупность нейронов центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде. Основная (рабочая) часть дыхательного нервного центра расположена в продолговатом мозгу. В ней различают два отдела: инспираторный (центр вдоха) и экспираторный (центр выдоха). Дорсальная группа дыхательных нейронов продолговатого мозга состоит преимущественно из инспираторных нейронов. Они частично дают поток нисходящих путей, вступающих в контакт с мотонейронами диафрагмального нерва. Вентральная группа дыхательных нейронов посылает преимущественно нисходящие волокна к мотонейронам межреберных мышц. В передней части варолиева моста обнаружена область, названная пневмотаксическим центром. Этот центр имеет отношение к работе как экспи-, так и инспираторного его отделов. Важной частью дыхательного нервного центра является группа нейронов шейного отдела спинного мозхга (III-IV шейные сегменты), где расположены ядра диафрагмальных нервов.

К моменту рождения ребенка дыхательный центр способен давать ритмическую смену фаз дыхательного цикла, но эта реакция очень несовершенна. Дело заключается в том, что к рождению дыхательный центр еще не сформирован, его формирование заканчивается к 5-6 годам жизни. Это подтверждается тем, что именно к этому периоду жизни детей дыхание у них становится ритмичным и равномерным. У новорожденных же оно неустойчиво как по частоте, так и глубине и ритму. У них дыхание диафрагмальное и практически мало отличается во время сна и бодроствования (частота от 30 до 100 в минуту). У детей 1 года количество дыхательных движений днем в пределах 50-60, а ночью - 35-40 в минуту, неустойчивое и диафрагмальное. В возрасте 2-4 лет - частота становится в пределах 25-35 и носит преимущественно диафрагмальный тип. У 4-6 - летних детей частота дыхания 20-25, смешанное - грудное и диафрагмальное. К 7 -14 годам достигает уровня 19-20 в минуту, оно является в это время смешанным. Таким образом, окончательное формирование нервного центра практически относится к этому возрастному периоду.

Как же происходит возбуждение дыхательного центра? Один из важнейших путей его возбуждения - это автоматия. Единой точки зрения на природу автоматии нет, но имеются данные о том, что в нервных клетках дыхательного центра возможно возникновение вторичной деполяризации (по принципу диастолической деполяризации в сердечной мышце), которая, достигая критического уровня, и дает новый импульс. Однако одним из основных путей возбуждения дыхательного нервного центра является его раздражение углекислотой. На прошлой лекции мы отметили, что углекислоты много остается в крови, оттекающей от легких. Она и выполняет функцию основого раздражителя нервных клеток продолговатого мозга. Это опосредуется через специальные образования - хеморецепторы, расположенные непосредственно в структурах продолговатого мозга («центральные хеморецепторы»). Они очень чувствительны к напряжению углекислого газа и кислотно-щелочному состоянию омывающей их межклеточной мозговой жидкости.

Углекислота может легко диффундировать из кровеносных сосудов головного мозга в спинномозговую жидкость и стимулировать хеморецепторы продолговатого мозга. Это еще один путь возбуждения дыхательного центра.

Наконец, его возбуждение может осуществляться и рефлекторно. Все рефлексы, обеспечивающие регуляцию дыхания мы условно подразделяем на: собственные и сопряженные.

Рецепторы растяжения легких находятся, преимущественно в гладких мышцах воздухоносных путей (трахее, бронхах). Таких рецепторов в каждом легком около 1000 и связаны они с дыхательным центром крупными миелинизированными афферентными волокнами блуждающего нерва с высокой скоростью проведения. Непосредственным раздражителем этого типа механорецепторов является внутреннее напряжение в тканях стенок воздухоносных путей. При растяжении легких во время вдоха частота этих импульсов возрастает. Раздувание легких вызывает рефлекторное торможение вдоха и переход к выдоху. При перерезке блуждающих нервов эти реакции прекращаются, и дыхание становится замедленным и глубоким. Указанные реакции называют рефлексом Геринга-Брейера. Этот рефлекс воспроизводится у взрослого человека, когда дыхательный объем превосходит 1 л (при физической нагрузке, например). Он имеет большое значение у новорожденных.

Ирритантные рецепторы или быстро адаптирующиеся механорецепторы воздухоносных путей, рецепторы слизистой оболочки трахеи и бронхов. Они реагируют на резкие изменения объема легких, а также при действии на слизистую трахеи и бронхов механических или химических раздражителей (пылевых частиц, слизи, паров едких веществ, табачного дыма и т.п.). В отличие от легочных рецепторов растяжения ирритантные рецепторы обладают быстрой адаптацией. При попадании в дыхательные пути мельчайших инородных тел (пыли, частиц дыма), активация ирритантных рецепторов вызывает у человека кашлевой рефлекс. Его рефлекторная дуга такова - от рецепторов информация через верхнегортанный, языкоглоточный, тройничный нерв идет к соотвествующим структурам мозга, отвечающим за выдох (срочный выдох - кашель). Если изолированно возбуждаются рецепторы носовых дыхательных путей, то это вызывает другой срочный выдох - чихание.

Юкстакапиллярные рецепторы - расположены вблизи капилляров альвеол и дыхательных бронхов. Раздражителем этих рецепторов является повышение давления в малом круге кровообращения, а также увеличение объема интерстициальной жидкости в легких. Это наблюдается при застое крови в малом круге кровообращения, отеке легких, повреждениях легочной ткани (например, при пневмонии). Импульсы от этих рецепторов направляются к дыхательному центру по блуждающему нерву, вызывая появление частого поверхностного дыхания. При заболеваниях вызывает ощущение одышки, затрудненного дыхания. Может быть не только учащенное дыхание (тахипное), но и рефлекторное сужение бронхов.

Еще различают большую группу собственных рефлексов, которые берут свое начало от проприорецепторов дыхательной мускулатуры. Рефлекс от проприорецепторов межреберных мышц осуществляется во время вдоха, когда эти мышцы, сокращаясь, посылают информацию через межреберные нервы к экспираторному отделу дыхательного центра и в результате наступает выдох. Рефлекс от проприорецепторов диафрагмы осуществляется в ответ на ее сокращение во время вдоха, в результате информация поступает по диафрагмальным нервам вначале в спинной, а потом в продолговатый мозг в экспираторный отдел дыхательного центра и наступает выдох.

Таким образом, все собственные рефлексы дыхательной системы осуществляются во время вдоха и заканчиваются выдохом.

Сопряженные рефлексы дыхательной системы - это рефлексы, которые начинаются за ее пределами. К этой группе рефлексов, прежде всего, относится рефлекс на сопряжение деятельности системы кровообращения и дыхания. Такой рефлекторный акт начинается от периферических хеморецепторов сосудистых рефлексогенных зон. Наиболее чувствительные из них находятся в области синокаротидной зоны. Синокаротидный хеморецептивный сопряженный рефлекс - осуществляется при накоплении углекислого газа в крови. Если его напряжение растет, то происходит возбуждение наиболее высоковозбудимых хеморецепторов (а они именно в этой зоне и находятся в синокаротидном тельце), возникающая волна возбуждения идет от них по IX паре черпномозговых нервов и достигает экспираторного отдела дыхательного центра. Возникает выдох, который и усиливает выброс лишней углекислоты в окружающее пространство. Таким образом, система кровообращения (она, кстати, при осуществлении этого рефлекторного акта также работает более интенсивно, возрастает частота сердечных сокращений, скорость кровотока) влияет на деятельность системы дыхания.

Другой разновидностью сопряженных рефлексов дыхательной системы является многочисленная группа экстероцептивных рефлексов. Они берут свое начало от тактильных (вспомните реакцию дыхания на осязание, прикосновение), температурных (тепло - увеличивает, холод - уменьшает дыхательную функцию), болевых (слабые и средней силы раздражители - усиливают, сильные - угнетают дыхание) рецепторов.

Проприорецептивные сопряженные рефлексы дыхательной системы осуществляются вследствие раздражения рецепторов скелетных мышц, суставов, связок. Это наблюдается при выполнении физической нагрузки. Почему это происходит? Если в состоянии покоя человеку необходимо 200-300 мл кислорода в минуту, то при физической нагрузке этот объем должен значительно возрости. В этих условиях увеличивается и МО, артериовенозная разница по кислороду. Увеличение этих показателей сопровождается повышением потребления кислорода. Далее все зависит от объема работы. Если работа длится 2-3 минуты и мощность ее достаточно велика, то потребление кислорода непрерывно растет с самого начала работы и снижается лишь после ее прекращения. Если же продолжительность работы больше, то потребление кислорода, нарастая в первые минуты, поддерживается в дальнейшем на постоянном уровне. Потребление кислорода возрастает тем более, чем тяжелее физическая работа. Наибольшее количество кислорода, которое организм может поглотить за 1 минуту при предельно тяжелой для него работе, называется максимальное потребление кислорода (МПК). Работа, при которой человек достигает своего уровня МПК, должна длиться не более 3 минут. Существует много способов определения МПК. У не занимающихся спортом или физическими упражнениями людей величина МПК не превышает 2,0-2,5 л/мин. У спортсменов она может быть выше более чем в два раза. МПК является показателем аэробной производительности организма. Эта способность человека совершать очень тяжелую физическую работу, обеспечивая свои энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Известно, что даже хорошо тренированный человек может работать при потреблении кислорода на уровне 90-95% от уровня своего МПК не более 10-15 минут. Тот, кто имеет большую аэробную производительность, тот достигает лучших результатов в работе (спорте) при относительно одинаковой технической и тактической подготовленности.

Почему при физической работе возникает увеличение потребления кислорода? В этой реакции можно выделить несколько причин: раскрытие дополнительных капилляров и увеличение крови в них, сдвиг кривой диссоциации гемоглобина вправо и вниз, увеличение температуры в мышцах. Для того, чтобы мышцы могли совершать определенную работу, им нужна энергия, запасы которой в них восстанавливаются при доставке кислорода. Таким образом, существует зависимость между мощностью работы и количеством кислорода, которое требуется для работы. То количество крови, которое требуется для работы, называется кислородным запросом. Кислородный запрос может достигать при тяжелой работе до 15-20 л в минуту и более. Однако максимум потребления кислорода в два-три раза меньше. Можно ли выполнить работу, если минутный кислородный запас превышает МПК? Чтобы правильно ответить на этот вопрос, надо вспомнить, для чего используется кислород при мышечной работе. Он необходим для восстановления богатых энергией химических веществ, обеспечивающих мышечное сокращение. Кислород обычно взаимодействует с глюкозой, и она, окисляясь, освобождает энергию. Но глюкоза может расщепляться и без кислорода, т.е. анаэробным путем, при этом тоже выделяется энергия. Кроме глюкозы, есть и другие вещества, способные расщепляться без кислорода. Следовательно, работа мышц может быть обеспечена и при недостаточном поступлении кислорода в организм. Однако в этом солучае образуется много кислых продуктов и для их ликвидации нужен кислород, ибо они разрушаются путем окисления. То количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называется кислородный долг. Он возникает во время работы и ликвидируется в восстановительном периоде после нее. На его ликвидацию уходит от нескольких минут до полутора часов. Все зависит от длительности и интенсивности работы. Основную роль в образовании кислородного долга составляет молочная кислота. Чтобы продолжить работу при наличии в крови большого ее количества, организм должен иметь мощные буферные системы и его ткани должны быть приспособлены к работе при недостатке кислорода. Такое приспособление тканей служит одним из факторов, обеспечивающих высокую анаэробную производительность.

Все это усложняет регуляцию дыхания при физической работе, так как потребление кислорода в организме возрастает и его недостаток в крови приводит к раздражению хеморецепторов. Сигналы от них идут в дыхательный центр, в результате дыхание учащается. При мышечной работе много образуется углекислоты, которая поступает в кровь и она может действовать на дыхательный центр непосредственно черех центральные хеморецепторы. Если недостаток кислорода в крови приводит преимущественно к учащению дыхания, то избыток углекислоты вызывает его углубление. При физической работе оба эти фактора действуют олновременно, вследствие чего происходит и учащение, и углубление дыхания. Наконец, импульсы идущие от работающих мышц, достигают дыхательного центра и усиливают его работу.

При функционировании дыхательного центра все отделы его функционально взаимосвязаны. Это достигается следующим механизмом. При накоплении углекислоты возбуждается инспираторный отдел дыхательного центра, от него информация идет в пневматоксический отдел центра, потом к экспираторному его отделу. Последний, кроме того, возбуждается за счет целой гаммы рефлекторных актов (с рецепторов легких, диафрагмы, межреберных мышц, дыхательных путей, хеморецепторов сосудов). Вследствие его возбуждения через специальный тормозный ретикулярный нейрон угнетается деятельность центра вдоха и на смену ему приходит выдох. Так как центр вдоха тормозится, то он не посылает далее импульсы в пневматоксический отдел, а от него прекращается поток информации в центр выдоха. К этому моменту накапливается в крови углекислота и снимаются тормозные влияния со стороны экспираторного отдела дыхательного центра. Вследствие такого перераспределения потока информации возбуждается центр вдоха и наступает на смену выдоху вдох. И все вновь повторяется.

Важным элементом в регуляции дыхания является блуждающий нерв. Именно через его волокна идут основные влияния на центр выдоха. Поэтому в случае его повреждения (также как и при повреждении пневматоксического отдела дыхательного центра) дыхание изменяется так, что вдох остается нормальным, а выдох резко затягивается. Такой тип дыхания называют вагус-диспноэ.

Мы уже отмечали выше, что при подъме на высоту происходит увеличение легочной вентиляции, обусловленное стимуляцией хеморецепторов сосудистых зон. Одновременно с этим возрастает частота сердечных сокращений и МО. Эти реакции несколько улучшают кислородный транспорт в организме, но не надолго. Поэтому при длительном пребывании в горах по мере адаптации к хронической гипоксии начальные (срочные) реакции дыхания постепенно уступают место более экономному приспособлению газотранспортной системы организма. Так, у постоянных жителей больших высот реакция дыхания на гипоксию оказывается резко ослабленной (гипоксическая глухота) и легочная вентиляция поддерживается почти на том же уровне, что и у живущих на равнине. Зато при длительном проживании в условиях высокогорья возрастает ЖЕЛ, повышается КЕК, в мышцах становится больше миоглобина, в митохондриях усиливается активность ферментов, обеспечивающих биологическое окисление и гликолиз. У людей, живущих в горах, кроме того, понижена чувствительность тканей организма, в частности, центральной нервной системы, к недостаточному снабжению кислородом.

На высотах боле 12000 м давление воздуха очень мало и в этих условиях даже дыхание чистым кислородом не решает проблемы. Поэтому при полетах на этой высоте необходимы герметические кабины (самолеты, космические корабли).

Человеку иногда приходиться работать и в условиях повышенного давления (водолазные работы). На глубине в крови начинает растворяться азот и при быстром подъеме из глубины он не успевает выделяться из крови, газовые пузырьки вызывают эмболию сосудов. Состояние, возникающее при этом, называется кесонная болезнь. Она сопровождается болями в суставах, головокружением, одышкой, потерей сознания. Поэтому азот в смесях воздуха заменяют нерастворимыми газами (например, гелием).

Человек может произвольно задерживать дыхание не более чем на 1-2 минуты. После предварительной гипервентиляции легких эта задержка дыхания увеличивается до 3-4 минут. Однако затяжное, например, ныряние после гипервентиляции таит в себе серъезную опасность. Быстрое падение оксигенации крови может вызвать внезапную потерю сознания, а в этом состоянии пловец (даже опытный) под влиянием стимула, вызванного ростом парциального напряжения углекислоты в крови, может вдохнуть воду и захлебнуться (утонуть).

Итак, в заключение лекции я должен Вам напомнить, что здоровое дыхание это - через нос, как можно реже, с задерджкой во время вдоха и, особенно, после него. Удлиняя вдох, мы стимулируем работу симпатического отдела вегетативной нервной системы, со всеми вытекающими отсюда последствиями. Удлиняя выдох, мы удерживаем больше и дольше в крови углекислоту. А это оказыавает положительное влияние на тонус кровеносных сосудов (снижает его), со всеми вытекающими отсюда последствиями. Благодаря этому кислород может в такой ситуации пройти в самые отдаленные сосуды микроциркуляции, препятствуя нарушению их функции и развитию многочисленных заболеваний. Правильное дыхание - это профилактика и лечение большой группы заболеваний не только дыхательной системы, но и других органов и тканей! Дышите на здоровье!

Дыхание: как происходит, устройство дыхательной системы

Дыхание: как происходит, устройство дыхательной системы

Без дыхания невозможно нормальное функционирование организма. Клеткам в одинаковой степени важно, как непрерывное поступление кислорода, так и освобождение от продукта обмена веществ - углекислого газа. Дыхание человека обеспечивается отдельной системой органов - дыхательной системой.

Сущность дыхания

Большая часть людей даже не замечают, как они дышат. Это естественный процесс, без которого человеку не выжить. Тем временем, дыхание - это сложная система взаимосвязанных действий и явлений, благодаря которым все органы получают кислород (O2), а углекислый газ (CO2) выводится наружу.

Процесс может регулироваться сознанием или происходить неосознанно. Газообмен происходит циклично: вдох сменяется выдохом, в минуту человек совершает 13-15 дыхательных движений. Средняя продолжительность акта дыхания составляет 5 секунд. Вдыхание воздуха происходит быстрее, чем выдыхание.

Процесс оценивают по трем параметрам:

ритмичность, означает возникновение вдоха и выдоха через примерно одинаковые временные интервалы;

частота, она определяется как количество дыхательных актов в минуту;

глубина, под которой понимается объем вдыхаемого и выдыхаемого воздуха.

Частота дыхания у мужчин составляет 15-20 актов в минуту, у женщин - 17-21. Глубина в спокойном состоянии взрослого человека составляет 0,5 л.

Разговор или прием пищи меняют дыхание - на выдохе или вдохе может происходить его задержка. Когда человек засыпает, то его дыхание также меняется. Фаза медленного сна сопровождается поверхностным и редким дыханием, быстрого - учащением и увеличением его глубины.

Тяжелый физический труд или занятия спортом вызывают повышение потребности клеток в кислороде, поэтому дыхание становится более частым, увеличивается его глубина.

Когда человек смеется, вздыхает, кашляет или поет, то его дыхательный ритм меняется в сравнении с обычным дыханием, которое происходит автоматически.

Человек способен дышать благодаря дыхательной (или по-другому - респираторной) системе.

Как устроена дыхательная система

Респираторная система представляет собой совокупность органов, слаженная работа которых обеспечивает внешнее дыхание человека. Она включает:

Дыхательные пути представлены носовыми ходами, гортанью, трахеей, бронхами, мелкими бронхами и альвеолами. Вместе с воздухом кислород попадает в носовые ходы, проходит по гортани в трахею и бронхи, затем попадает в легкие.

Строение дыхательной системы предусматривает разветвление бронхов внутри каждого легкого. Трахея с бронхами образуют так называемое бронхиальное дерево. Каждый мелкий бронх в конце переходит в альвеолу - легочный пузырек. В них кислород переходит в кровь, а CO2 удаляется из кровяного русла, то есть в альвеолах происходит газообмен.

Основные функции респираторной системы:

осуществление дыхания и газообмена;

механическая и иммунная защита от вредных факторов окружающей среды;

участие в образовании голоса;

обеспечение способности определять и различать запахи;

помощь в поддержке нормальной температуры тела;

увлажнение воздуха, вдыхаемого организмом.

Ткань легких принимает участие в синтезе гормонов, водно-солевом и липидном обменах. В сосудах легких накапливается кровь, которая при необходимости может использоваться организмом для восполнения кровопотери.

Регулирование дыхания

Респирация и газообмен - это саморегулирующаяся деятельность, каждый живой организм самостоятельно поддерживает баланс углекислого газа и кислорода в крови.

Дыхательный ритм регулирует ЦНС с помощью дыхательного центра и системы рецепторов. Центр, отвечающий за жизненно важный процесс, располагается в головном мозге. Он сам имеет два центра, один отвечает за акт вдоха, второй - выдоха. Представляет собой группу нейронов, которые располагаются в заднем отделе головного мозга ЦНС, является продолжением спинного мозга.

В нормальном состоянии от центра вдоха посылаются ритмичные сигналы к мышечным волокнам грудной клетки и диафрагмальной перегородке, запускающие их сжатие. Сигналы формируются из-за того, что клетки центра самопроизвольно образуют нервные импульсы.

В процессе своего движения мышечный корсет вызывает расширение грудной клетки, а воздух попадает в легкие. Далее объем легких увеличивается, что вызывает возбуждение рецепторов, отвечающих за растяжение и присутствующих в легочных стенках.

Рецепторы отправляют информацию в центр, регулирующий выдох, локализованный в мозге. В результате:

активность центра, отвечающего за вдох, подавляется;

импульсы к задействованным мышцам прекращаются;

они переходят в состояние расслабления;

полость грудной клетки сокращается в объеме;

легкие выпускают воздух в окружающую среду.

Какие разновидности дыхания бывают

Исходя из задействованных мышц различают следующие виды дыхания:

грудное - свойственно женщинам, дыхательные движения происходят за счет работы межреберных мышц;

брюшное - свойственно мужчинам, дыхание происходит за счет диафрагмы;

смешанное - характерно для пожилых лиц, в процессе принимает участие грудная клетка и диафрагма.

При заболеваниях механизм дыхания способен изменяться. Например, если поражены органы брюшной полости дыхание становится грудным. При болезнях органов грудной клетки - диафрагмальным.

Также дыхание разделяют на внешнее и внутреннее. Внешнее заключается в поступлении кислорода в легочные альвеолы и газообмен в них, то есть переход молекул кислорода в состав крови и удаление из нее углекислого газа.

тканевое, в процессе которого кислород из крови передается клеткам;

клеточное, когда кислород утилизируется внутри клеток.

Правильное дыхание оказывает прямое влияние на здоровье человека, поэтому важно укреплять дыхательную мускулатуру и регулярно делать физические упражнения, улучшающие легочную вентиляцию.

ЛЕКЦИЯ 12. ДЫХАНИЕ

Общая характеристика процесса дыхания. Дыхание - это совокупность процессов, обеспечивающих обмен газов между организмом и окружающей средой. В результате дыхания происходит потребление организмом кислорода и выделение углекислого газа. Процесс дыхания состоит из трех основных этапов: обмен газов в легких между организмом и средой (внешнее или легочное дыхание); перенос газов кровью (кислорода из легких к тканям и углекислого газа от тканей к легким); газообмен между кровью и тканями (внутреннее или тканевое дыхание).

Механизм вдоха и выдоха. При вдохе происходит расширение груд­ной полости в результате сокращения наружных межреберных мышц и диафрагмы. Так как давление в плевральной полости отрицательное, при расширении грудной полости расширяются и легкие. Давление внутри легких становится ниже атмосферного, и наружный воздух про­ходит в легкие. При усиленном дыхании в акте вдоха участвуют все мышцы, способные поднимать ребра и грудину: большие и малые груд­ные, лестничные, грудинно-ключично-сосцевидные мышцы плечевого пояса. Выдох наступает в результате уменьшения объема грудной по­лости при расслаблении наружных межреберных мышц. При активном выдохе сокращаются и мышцы брюшной стенки (косые, поперечные и прямые), что усиливает поднятие диафрагмы. У человека в состоянии покоя цикл дыхания, состоящий из вдоха и выдоха, повторяется 16-20 раз в минуту.

Объемы легочного воздуха. Человек в состоянии покоя вдыхает и выдыхает около 500 мл воздуха. Этот объем называют дыхательным объемом (ДО). Если после спокойного вдоха сделать усиленный допол­нительный вдох, то в легкие может поступить еще 1500 мл воздуха. Этот объем называют резервным объемом вдоха (РОВД). После спокой­ного выдоха можно при максимальном напряжении дыхательных мышц выдохнуть еще 1500 мл воздуха. Этот объем носит название ре­зервного объема выдоха (РОвыд.). В сумме дыхательный объем, резерв­ный объем вдоха и резервный объем выдоха составляют жизненную емкость легких (ЖЕЛ). Нормальная ЖЕЛ составляет в среднем у жен­щин 2700 мл, а у мужчин 3500 мл.

Даже после максимального выдоха в легких еще остается около 1200 мл воздуха, который носит название остаточного объема (ОО). Объемы легочного воздуха и ЖЕЛ измеряют при помощи спирометра и спирографа.

Вентиляция легких.Вентиляцией легких называют объем воздуха, проходящий через легкие в 1 мин. Иначе его называют минутным объе­мом дыхания (МОД). В покое МОД равен 5-8 л/мин, при мышечной ра­боте он увеличивается и нередко достигает 80-150 л/мин. Человек вды­хает атмосферный воздух, в котором содержится 20,94% кислорода, 79,03% азота и незначительное количество углекислого газа - 0,03%. Выдыхаемый воздух содержит кислород (16,3%), азот (79,7%) и много углекислого газа (4%). Процентное содержание газов в воздухе опреде­ляют при помощи газоанализатора.

Обмен газов в легких. Перенос кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный воздух происходит путем диффузии. Ее движущей силой служат разности (градиенты) пар­циальных давлений (напряжений) кислорода и углекислого газа по обе стороны аэрогематического барьера. Никакого механизма активного транспорта газов здесь не существует. Парциальное давление кислорода в альвеолярном воздухе равно 102 мм рт. ст., а парциальное давление углекислого газа - 40 мм рт. ст. В притекающей к капиллярам легких венозной крови давление кислорода составляет 40, а углекислого газа - 47 мм рт.ст. Поскольку парциальное давление кислорода в альвеолах больше, чем в венозной крови, то он диффундирует из альвеол в капил­ляры. Напротив, напряжение углекислого газа больше в венозной кроки, чем в альвеолярном воздухе, поэтому он диффундирует в альвеолы.

Обмен газов в тканях. В легких венозная кровь превращается в
артериальную. Артериальная кровь направляется к тканям. Газообмен в
тканях происходит по тому же принципу. В артериальной крови напря­жение
кислорода равно 100 мм рт. ст., а углекислого газа - 40 мм рт. ст. В
тканях напряжение кислорода близко к нулю, а напряжение углекислого
газа составляет около 60 мм рт. ст. Вследствие разности давления
углекислый газ из тканей диффундирует в кровь, а кислород - в ткани. Кровь становится венозной и по венам поступает в легкие, где цикл обмена
газов повторяется.

Транспорт газов кровью. Кислород в основном транспортируется к тканям в составе оксигемоглобина. Лишь небольшая часть кислорода (около 2%), переносимого кровью, растворена в плазме. Плазмой крови в физически растворенном состоянии переносится 3-6% углекислого гaза. В эритроцитах примерно 10% углекислого газа соединяется с гемогло­бином и образуется карбгемоглобин. Остальная часть соединяется с водой и превращается в угольную кислоту.

Эта реакция катализируется ферментом карбоангидразой. В тканевых капиллярах угольная кислота реагирует с ионами Na + , K + и превращает­ся в бикарбонаты.

Регуляция дыхания. Дыхание регулируется дыхательным
центром, который находится в продолговатом мозге. Дыхательный центр
состоит из центров вдоха и выдоха. Кроме того, нейроны, связанные с
регуляцией дыхания, находятся в варолиевом мосту. Здесь выделяют
пневмотаксический центр, который участвует в переключении фаз
дыхательного цикла.

Характерная особенность дыхательного центра - автоматия. Автоматия обуславливает ритмичность дыхания. На работу дыхательного цен­тра оказывает влияние кора больших полушарий головного мозга. Человек произвольно регулирует дыхание при разговоре, пении; он может задерживать дыхание.

Особое значение в регуляции дыхания имеют рефлексы от хеморецепторов, чувствительных к изменению напряжения в крови углекисло­го газа и кислорода. Эта сигнализация исходит от центральных (бульбарных) и периферических (артериальных) хеморецепторов. Нервные и гуморальные механизмы регуляции дыхания тесно взаимосвязаны.

Регуляция дыхания

Главная задача регуляции дыхания: обеспечить, чтобы потребление кислорода, поставка его тканям за счет внешнего дыхания были адекватны функциональным потребностям организма.

Самый эффективный способ регуляции дыхания в целом - это регуляция внешнего дыхания.

Интенсивность внешнего дыхания зависит от варьирования его частоты и глубины. При этом изменяется доставка кислорода организму и выведение из него углекислого газа.

В регуляции дыхания можно выделить 4 группы механизмов:

1. Обеспечение организации дыхательного акта (последовательность вдоха и выдоха).

2. Перестройка дыхания в соответствии с потребностями организма - изменение частоты и глубины дыхания.

3. Изменение перфузии легких в соответствии с потребностями организма.

4. Изменение проводимости воздухоносных путей.

1.Механизмы организации дыхательного акта.

Чередование вдоха и выдоха организуется благодаря деятельности дыхательного центра.

Дыхательный центр представляет собой совокупность нейронов, объединенных общей функцией организации и регуляции дыхания, расположенных в разных «этажах» центральной нервной системы.

Выделяют 4 «этажа» ЦНС, в которых располагаются структуры, ответственные за организацию дыхательного акта:

-высшие отделы ЦНС (гипоталамус, лимбическая система, кора больших полушарий).

1ый «этаж» дыхательного центра. Спинной мозг.

Содержит нервные центры, в которые входят мотонейроны, иннервирующие дыхательную мускулатуру. Они не обладают автоматией.

2ой «этаж» дыхательного центра.

Дыхательный центр продолговатого мозга (собственно дыхательный центр) обеспечивает последователь­ную смену вдоха и выдоха.

Состоит из нервных клеток (дыхательных нейронов). Это - парное образование.

В составе дыхательного центра часть нейронов ответственна за вдох и называются инспираторными нейронами, другая часть нейронов ответственна за выдох и называются экспираторными нейронами.

Эти нейроны и формируют непроизвольный генератор ритма дыхания, обеспечивающий автоматию дыхательного центра.

Работа непроизвольного генератора ритма дыхания может быть представлена в следующем виде.

Одна из этих групп инспираторных нейронов способна периодически 14-18 раз в минуту, спонтанно генерировать залп импульсов.

Такая спонтанная электрическая активность и является началом нового дыхательного цикла, инициатором развития процесса вдоха.

Эти изменения электрической активности инспираторных нейронов инициируют возникновение залпа электрической активности одной из групп экспираторными нейронами, что обеспечивает начало развития выдоха.

Это инициирует электрическую активность других групп экспираторных нейронов, что обеспечивает необходимую длительность выдоха.

Сигналы от инспираторных и экспираторных нейронов транслируются на мотонейроны, иннервирующие основную и вспомогательную дыхательную мускулатуру, а так же мышцы глотки и гортани.

Между инспираторными и экспираторными нейронами - реципрокные взаимоотношения, которые обеспечивают чередование процессов вдоха и выдоха.

Собственно дыхательный центр связан проводящими путями с вышерасположенными нервными центрами, ответственными за регуляцию дыхания.

3ий «этаж» дыхательного центра.

В верхней части варолиевого моста расположен пневмотаксический центр. Он способствует переключению вдоха на выдох.

Возбуждение пневмотаксического центра приводит к выключению фазы вдоха, так как нейроны этого центра находятся в реципрокных отношениях с инспираторными нейронами дыхательного центра, и более раннему появлению фазы выдоха.

В нижней трети моста имеется группа нейронов, определяемая как апнейстический центр. Он находится в реципрокных отношениях с пневмотаксическим центром.

В обычных условиях апнейстический центр находится в заторможенном состоянии вследствие влияния пневмотаксического центра.

При возбуждении апнейстический центр, взаимодействуя с инспираторными нейронами - генераторами ритма дыхания, способен вызвать остановку дыхания на вдохе. Кроме того он вызывает удлинение фазы выдоха и, как следствие, углубление дыхания.

Роль периферии в функционировании 2 и 3 этажа дыхательного центра, в организации дыхательного акта.

Импульсация с периферии, прежде всего от легких, способна изменять состояние дыхательного центра, при чем влияние это может замыкаться как непосредственно на собственный дыхательный центр, так и на пневмотаксический центр.

4ый «этаж» дыхательного центра.

Высшие отделы ЦНС.

Он участвует в регуляции дыхания во время простых поведенческих актов:

- при общей защитной реакции организма (боль, физическая работа);

- как высший центр терморегуляции, при гипертермии наблюдается учащение дыхания без изменения его глубины (значительно увеличивается вентиляция Объема Мертвого Пространства, что увеличивает теплоотдачу).

Она участвует в регуляции дыхания при эмоциях (смех и плач - это видоизмененные дыхательные движения).

Кора больших полушарий.

Участвует в регуляции дыхания и принимает участие:

-в выработке условных дыхательных рефлексов. Условные рефлексы позволяют заранее приспособить интенсивность дыхания к предстоящей нагрузке. Происходит опережающее приспособление аппарата дыхания к будущим затратам энергии;

-в приспособлении дыхания к изменяющимся условиям окружающей среды (глотание, пение, речь, ныряние, произвольное апное и гиперпное).

Дыхание - единственная функция внутренних органов, подверженная сознательной регуляции без предварительной тренировки, так как эта висцеральная функция реализуется через соматическую мускулатуру.

Функции дыхательной системы при занятиях физическими упражнениями

В статье рассматривается проблема дыхания во время выполнения физических упражнений, приведены методы контроля дыхания.

Дыхание - это совокупность постоянно протекающих в организме человека физиологических процессов, в результате которых он поглощает из воздуха кислород и выделяет углекислый газ. С помощью кислорода происходит окисление питательных веществ, поступающих в организм, освобождается энергия, необходимая для жизни.

В связи с тем, что дыхание является источником энергии для человеческого тела, а для выполнения физических упражнений необходима энергия, правильное дыхание является одной из самых важных проблем в физической культуре.

Дыхательные пути человека состоят из двух отделов: воздухоносных путей (нос, глотка, гортань, трахея, бронхи, бронхиолы), через которые поступает в организм воздух, и альвеол легких, где происходит обмен газов между воздухом, находящимся в альвеолах, и кровью.

Человек должен дышать через нос. Если он дышит ртом, то у него или насморк, или какое-то другое заболевание. Внутренняя поверхность носа покрыта слизистой оболочкой, которая всегда влажная, теплая и богато снабжена кровеносными сосудами. Ноздри изнутри покрыты волосками. Они предохраняют от попадания в организм крупных частиц пыли и других веществ. Однако волосками задерживается не вся пыль. Часть пылинок и бактерий попадает в извилистые носовые ходы. Там, на их пути, встает новая преграда - липкая слизь, вещества которой убивают бактерии.

И все же часть пыли и других веществ попадает в легкие. Но природа позаботилась об удалении их из организма. Этим занимаются крохотные колеблющиеся реснички, так называемый мерцательный эпителий, которым покрыта почти вся слизистая оболочка дыхательных путей. Если бы мерцательный эпителий перестал ритмически работать и удалять попавшую в легкие пыль, то ее накопилось бы там в течение жизни человека около 5 кг.

Воздух, попадая в легкие, воздействует на сигналы, идущие от легких к дыхательным центрам мозга. А мозгу нужна стабильность в определенном диапазоне сигналов, характеризующих состав, температуру, влажность воздуха. Когда этот диапазон стойко нарушается, происходит сдвиг в работе многих систем организма. Такое не случится, если человек вдыхает воздух через нос. В носовых путях воздух не только очищается, но и согревается, приобретает необходимую влажность. Известно, что человек, не приученный постоянно дышать через нос или имеющий нарушения носового дыхания, подвержен простудным и иным заболеваниям, у него повышенная утомляемость, чрезмерно возбудимая нервная система и другие существенные нарушения.

Высокая температура воздуха и физическая работа учащают дыхание. При выполнении физических упражнений увеличивается потребление кислорода, что связано с увеличением вентиляции легких и достигается за счет более глубокого дыхания или в результате учащения дыхательных движений. Спортсмен с первых шагов тренировки должен научиться правильно дышать. К сожалению, многие не придают значения хорошо и правильно поставленному дыханию. Хотя дыхание - одна из вегетативных функций, но она поддается влиянию нашего сознания, следовательно, дыханием мы можем управлять так, как это полезнее и рациональнее для организма.

При интенсивных физических упражнениях - быстром беге, лыжных гонках, напряженном футбольном или хоккейном матче лучше вдыхать и выдыхать через нос и рот одновременно. А вот при медленном беге, ходьбе и других упражнениях, проделываемых в невысоком темпе, можно вдыхать, не открывая рта. Особенно полезно для совершенствования дыхания плавание, при котором пловцы выдыхают в воду, сопротивление которой благотворно сказывается на развитии легких.

У хорошо тренированных спортсменов аппарат дыхания работает более рационально, чем у нетренированных, дыхание глубже и ритмичнее. Эта более совершенная деятельность дыхания выражается в следующем. Легочная вентиляция увеличивается вследствие углубления дыхания. Частота дыханий уменьшается, что дает экономию в работе дыхательной мускулатуры, становящейся более сильной и выносливой. Подвижность грудной клетки и диафрагмы увеличивается. Более совершенный процесс дыхания благоприятно влияет и на кровообращение.

Однако при очень большом напряжении, например при быстром и длительном беге, может наступить момент, когда правильная деятельность механизма дыхания может нарушаться. При этом нарушается ритм дыхания, усиливается частота и уменьшается глубина дыхания. У человека бледнеет лицо, появляются синюшность кожи и слизистых оболочек, чувство стеснения в груди и удушье, ощущение сильной тяжести в ногах. Это явление носит название "мертвой точки", в основе происхождения которой лежат сложные процессы. В этот момент спортсмен испытывает огромное желание прекратить бег, но усилием воли он должен преодолеть это состояние и продолжать бег; тогда дыхание восстанавливается, слабость проходит, лицо приобретает нормальную окраску, наступает, как говорят, "второе дыхание". У большинства хорошо тренированных спортсменов явление "мертвой точки" не наблюдается.

Дыхание может быть поверхностным или глубоким, частым или редким, правильным или неправильным. Хорошим дыханием является ритмичное глубокое дыхание, сопровождающееся полным расширением грудной клетки.

Ритм дыхания может изменяться по разным причинам: от физического усилия, под влиянием температуры, при заболевании. Физические упражнения безусловно отражаются на ритме дыхания. По частоте дыхания можно судить о влиянии физических упражнений на организм спортсмена.

Воздух, которым дышит человек, должен быть чистым. Загрязнение воздуха ведет к резкому ухудшению мозгового кровообращения. При чистом же воздухе все процессы, протекающие в организме, совершаются нормально, повышается обмен веществ, человек бодр, у него прекрасное настроение. Поэтому полезно для выполнения физических упражнений выходить в парки и скверы, выезжать за город.

В занятиях лечебной физической культурой при заболеваниях органов дыхания применяются общетонизирующие и специальные (в том числе дыхательные) упражнения.

Общетонизирующие упражнения, улучшая функцию всех органов и систем, оказывают активизирующее влияние и на дыхание. Для стимуляции функции дыхательного аппарата используются упражнения умеренной и большой интенсивности. В случаях, когда эта стимуляция не показана, применяются упражнения малой интенсивности. Следует учесть, что выполнение необычных по координации физических упражнений может вызвать нарушение ритмичности дыхания; правильное сочетание ритма движений и дыхания при этом установится лишь после многократных повторений движений. Выполнение упражнений в быстром темпе приводит к увеличению частоты дыхания и легочной вентиляции, сопровождается усиленным вымыванием углекислоты (гипокапнией) и отрицательно влияет на работоспособность.

Специальные упражнения укрепляют дыхательную мускулатуру, увеличивают подвижность грудной клетки и диафрагмы, способствуют растягиванию плевральных спаек, выведению мокроты, уменьшению застойных явлений в легких, совершенствуют механизм дыхания и. координации дыхания и движений. Подбираются упражнения соответственно требованиям, предъявляемым клиническими данными. Например, для растягивания плевродиафрагмальных спаек в нижних отделах грудной' клетки применяются наклоны туловища в здоровую сторону в сочетании с глубоким вдохом; для растягивания спаек в боковых отделах грудной клетки - наклоны туловища в здоровую сторону в сочетании с глубоким выдохом. Толчкообразный выдох и дренажные исходные положения способствуют выведению из дыхательных путей скопившейся мокроты и гноя. При снижении эластичности легочной ткани для улучшения легочной вентиляции применяются упражнения с удлиненным выдохом и способствующие увеличению подвижности грудной клетки и диафрагмы.

При выполнении специальных упражнений во время вдоха под воздействием дыхательных мышц происходит расширение грудной клетки в переднезаднем, фронтальном и вертикальном направлениях. Поскольку вентиляция осуществляется неравномерно, больше всего воздуха поступает в части легкого, прилегающие к наиболее подвижным участкам грудной клетки и диафрагмы, хуже вентилируются верхушки легких и отделы около корня легкого. При выполнении упражнений в исходном положении лежа на спине ухудшается вентиляция в задних отделах легких, а в исходном положении лежа на боку почти исключаются движения нижних ребер.

Учитывая, что неравномерность вентиляции легких особенно проявляется при заболеваниях органов дыхания, специальные дыхательные упражнения следует применять при необходимости улучшить вентиляцию в различных участках легких. Увеличение вентиляции верхушек легких достигается за счет углубленного дыхания без дополнительных движений руками в исходном положении руки на пояс. Улучшение вентиляции задних отделов легких обеспечивается усилением диафрагмального дыхания. Увеличению поступления воздуха в нижние отделы легких способствуют упражнения в диафрагмальном дыхании, сопровождающиеся подъемом головы, разведением плеч, подъемом рук в стороны или вверх, разгибанием туловища. Дыхательные упражнения, увеличивающие вентиляцию легких, незначительно повышают потребление кислорода.

Приведём несколько упражнений из основного комплекса дыхательной гимнастики А. Н. Стрельниковой:

1. «Кошка». Исходное положение - ноги на ширине плеч, полуприседание. Поворачиваться вправо и влево, перенося тяжесть тела поочерёдно на правую и на левую ногу и совершая шумный вдох. Два подхода по 96 раз.

2. «Полуприседы». Упражнения в трёх вариантах. Исходное положение: 1) ноги на ширине плеч; 2) одна нога впереди, вес тела перенесён вперёд, нога сзади касается пола; 3) вес тела на ноге, стоящей сзади, нога впереди касается пола. Совершаются лёгкие приседания и одновременно короткие вдохи, при этом производятся одновременные встречные движения рук.

3. «Обними плечи». Руки перед собой на уровне плеч, согнуты в локтях. Совершаются энергичные броски рук друг к другу, левая обнимает правое плечо, правая - левое. На крайней точке зажима произвести активный вдох. Два подхода по 96 раз.

4. «Насос». Рекомендуется взять в руки палку или газету и имитировать накачивание шины автомобиля: наклоняться, делать активный вдох на крайней точке наклона, не разгибаться до конца. Выполнять следует в быстром темпе, 3-5 подходов по 96 раз.

5. «Большой маятник». Комбинация упражнений «Насос» и «Обними плечи». Совершается наклон, руки тянутся к земле, на нижней точке производится шумный вдох, далее происходит обратный наклон, руки обнимают плечи (см. упражнение «Обними плечи»), также производится активный вдох, при этом выдох происходит произвольно, за ним не стоит следить.

Дыхательная система выполняет жизненно важную функцию - обеспечение клеток организма кислородом и освобождение их от углекислого газа, являющегося конечным продуктом обменных процессов. Кислород более важен для человека, чем пища и вода. Без кислорода человек погибает в течение 5-7 мин, тогда как без пищи он может прожить до 60 дней, а без воды - 7-10 дней. Условно в акте дыхания выделяют три основных процесса: обмен газами между окружающей средой и легкими (внешнее дыхание), обмен газами в легких между альвеолярным воздухом и кровью и обмен газами между кровью и межтканевой жидкостью (тканевое дыхание).

Кроме того, органы дыхания важны для речевой артикуляции, обоняния, выработки некоторых гормонов, водно-солевого обмена и иммунной защиты организма. Органы дыхания объединяются в систему. Принято выделять дыхательные пути, по которым вдыхаемый и выдыхаемый воздух циркулирует по легким, и дыхательные органы - легкие, где происходит газообмен между кровью и воздухом. Полость носа, носоглотка, трахея, бронхи образуют воздухоносные пути. На протяжении жизни многие люди, сознательно или бессознательно, наносят вред своим легким. Трудно переоценить ущерб, наносимый таким образом.

Важно помнить, что дыхательная система снабжает кислородом кровь и выводит газообразные отходы жизнедеятельности. Без кислорода клетки организма не имеют доступа к энергетическим ресурсам и не могут функционировать. При снижении эффективности дыхательной системы, замедляется скорость процессов, протекающих в организме. Основная причина поражения легких - табачный дым. Самыми опасными из 4 000 веществ, входящих в состав табачного дыма, являются никотин и окись углерода. Считается, что никотиновая зависимость превращает курение в устойчивую привычку. Потребление никотина вызывает дополнительную секрецию гормона адреналина, что, в свою очередь, повышает кровяное давление и учащает сердцебиение. Присутствие окиси углерода препятствует транспортировке кислорода, что со временем может вызывать серьезные последствия для здоровья.

Курение наносит ущерб легким, бронхам, кровеносным сосудам, сердцу и другим органам и тканям. Помимо этого, курение увеличивает опасность следующих заболеваний: респираторных инфекций, пневмонии, кровоизлияния головного мозга, артериосклероза, язвы желудка и кишечника, рака полости рта, горла, пищевода, почек, мочевого пузыря и поджелудочной железы. Помимо курения, значительный ущерб дыхательным путям вносят загрязняющие вещества, присутствующие в окружающей атмосфере. Профессор Калифорнийского университета Джулиус Комроу подсчитал, что в дыхательные пути городского жителя, в среднем, за день попадает до 20 триллионов частиц чужеродных веществ.

В дыхательной системе действует несколько механизмов для борьбы с такими частицами. Посторонние частицы удаляются из воздухоносных путей при кашле и чихании. Волоски, покрывающие изнутри ноздри, задерживают раздражающие и загрязняющие вещества, бактерии, вирусы, грибки, частицы выхлопных газов, присутствующие в воздухе. Однако, здесь задерживаются не все частицы. В воздухоносных путях имеются клетки, специально предназначенные для поглощения и уничтожения посторонних частиц. Эти частицы раздражают ткани, вызывая их увеличение и дополнительное выделение слизи. Слизистая оболочка раздражается, набухает и закрывает носовые ходы.

Если при этом в дыхательных путях оказываются болезнетворные бактерии, возможно возникновение таких заболеваний, как бронхит и астма. Поскольку роль кислорода в энергетическом обмене организма столь велика, необходимо заботиться о легких, по возможности сокращая пребывание в загрязненной атмосфере и удовлетворяя потребность организма в правильном питании.

Из всего вышесказанного и осмыслив роль дыхательной системы в нашей жизни можно сделать вывод о ее важности в нашем существовании. От процесса дыхания зависят все процессы жизнедеятельности организма. Болезни дыхательной системы очень опасны и требуют серьезного подхода и по возможности полного выздоровления больного. Запускание таких болезней может привести к тяжелым последствиям вплоть до летального исхода. Систематическая физическая тренировка влияет почти на все органы и системы организма человека, предохраняет от нежелательных перегрузок и заболеваний.

Читайте также: