Потенциал действия. Временной ход потенциала действия. Реполяризация.

Обновлено: 04.05.2024

Потенциалом действия (ПД)называют быстрое колебание мем­бранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых других клеток. В его основе лежат изменения ионной прони­цаемости мембраны. Амплитуда ПД мало зависит от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения.Воз­никнув в месте раздражения, ПД распространяется вдоль нервного или мышечного волокна, не изменяя своей амплитуды.

В естественных условиях ПД генерируются в нервных волокнах при раздражении рецепторов или возбуждении нервных клеток. Распростра­нение ПД по нервным волокнам обеспечивает передачу информации в нервной системе.Достигнув нервных окончаний, ПД вызывают секрецию химических веществ (медиаторов), обеспечивающих передачу сигнала на мышечные или нервные клетки. В мышечных клетках ПД инициируют цепь процессов, вызывающих сократительный акт. Ионы, проникающие в цитоплазму во время генерации ПД, оказывают регулирующее влияние на метаболизм клетки и, в частности, на процессы синтеза белков, состав­ляющих ионные каналы и ионные насосы.

В ПД выделяют следующие фазы (рис. 3): ■ деполяризации; ■ реполяризации.


Установлено, что во время восходящей фазы (фазы деполяризации) происходит не просто исчезновение потенциала покоя (как это первоначально предполагали), а возникает разность потенциалов обратного знака: внутреннее содержимое клетки становится заряженным положительно по отношению к наружной среде, иными словами, происходит реверсия мембранного потенциала.Во время нисходящей фазы (фазы реполяризации) мембранный потенциал возвращается к своему исходному значению. Если рассмотреть пример записи ПД в скелетном мышечном волокне лягушки (см. рис. 3), то видно, что в момент достижения пика мембранный потенциал составляет +30 - +40 мВ. Длительность пика ПД у различных нервных и мышечных волокон варьирует от 0,5 до 3 мс, причем фаза реполяризации продолжительнее фазы деполяризации.

Изменения мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами.Различают два вида следовых потенциалов - следовую деполяризацию и следовую гиперполяризацию.

Ионный механизм возникновения ПД.Как отмечалось, в состоянии покоя проницаемость мембраны для калия превышает ее проницаемость для натрия. Вследствие этого поток К + из цитоплазмы во внешний раствор превышает противоположно направленный поток Na + . Поэтому наружная сторона мембраны в покое имеет положительный потенциал по отношению к внутренней.

При действии на клетку раздражителя проницаемость мембраны для Na + резко повышается и становится примерно в 20 раз больше проницаемости для K + . Поэтому поток Na + из внешнего раствора в цитоплазму начинает превышать направленный наружу калиевый ток. Это приводит к изменению знака (реверсии) мембранного потенциала: внутренняя сторона мембраны в месте возбуждения становится заряженной положительно по отношению к ее наружной поверхности. Указанное изменение мембранного потенциала соответствует восходящей фазе ПД (фазе деполяризации).

Повышение проницаемости мембраны для Na + продолжается лишь очень короткое время. Вслед за этим проницаемость мембраны для Na + вновь понижается, а для K + возрастает. Процесс, ведущий к понижению ранее увеличенной натриевой проницаемости мембраны, назван натриевой инактивацией.В результате инактивации поток Na + внутрь цитоплазмы резко ослабляется. Увеличение же калиевой проницаемости вызывает усиление потока K + из цитоплазмы во внешний раствор. В итоге этих двух процессов и происходит реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к наружной стороне мембраны. Этому изменению потенциала соответствует нисходящая фаза ПД (фаза реполяризации). Опыты на гигантских нервных волокнах кальмара позволили получить подтверждение правильности натриевой теории возникновения ПД.

ПД возникает при деполяризации поверхностной мембраны.Небольшие величины деполяризации приводят к открыванию части натриевых каналов и незначительному проникновению ионов Na внутрь клетки. Эти реакции являются подпороговыми и вызывают лишь местные изменения на мембране (локальный ответ).При увеличении силы раздражения, когда достигнут порог возбудимости, изменения мембранного потенциала достигают критического уровня деполяризации (КУД). Например, величина потенциала покоя равна -70 мВ, КУД = -50 мВ. Чтобы вызвать возбуждение, надо деполяризовать мембрану до -50 мВ, т.е. на -20 мВ снизить ее исходный потенциал покоя. Только при достижении КУД наблюдается резкое изменение мембранного потенциала, которое регистрируется в виде ПД. Таким образом, основное условие возникновения потенциала действия - это снижение мембранного потенциала до критического уровня депо­ляризации.

В основе рассмотренных изменений ионной проницаемости мембра­ны при генерации ПД лежат процессы открывания и закрывания специали­зированных ионных каналов в мембране, обладающих двумя важнейшими свойствами:

■ избирательностью (селективностью) по отношению к определен­ным ионам;

■ электровозбудимостью, т.е. способностью открываться и закры­ваться в ответ на изменения мембранного потенциала.

Так же как ионные насосы, ионные каналы образованы макромолекулами белков, пронизывающими липидный бислой мембраны.

Активный и пассивный ионный транспорт.В процессе восста­новления после ПД работа калий-натриевого насоса обеспечивает «откач­ку» излишних ионов натрия наружу и «накачивание» потерянных ионов калия внутрь, благодаря чему нарушенное при возбуждении неравенство концентраций Na + и K + по обе стороны мембраны восстанавливается. На работу этого механизма тратится около 70 % необходимой клетке энергии.

Таким образом, в живой клетке существует две системы движения ионов через мембрану.

Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии (пассивный ионный транспорт). Он ответствен за возникновение потенциала покоя и ПД и ведет в конечном итоге к вы­равниванию концентрации ионов по обе стороны клеточной мембраны.

Второй осуществляется против концентрационного градиента. Он состоит в «выкачивании» ионов натрия из цитоплазмы и «нагнетании» ио­нов калия внутрь клетки. Этот тип ионного транспорта возможен лишь при условии затраты энергии обмена веществ. Его называют активным ион­ным транспортом.Он ответствен за поддержание постоянства разности концентраций ионов между цитоплазмой и омывающей клетку жидкостью. Активный транспорт - результат работы натриевого насоса, благодаря ко­торому восстанавливается исходная разность ионных концентраций, на­рушающаяся при каждой вспышке возбуждения.

Проведение возбуждения

Нервный импульс (потенциал действия) обладает способностью рас­пространяться вдоль по нервным и мышечным волокнам.

В нервном волокне потенциал действия является очень сильным раздражителем для соседних участков волокна. Амплитуда потенциала действия обычно в 5 - 6 раз превышает пороговую величину деполяризации. Это обеспечивает высокую скорость и надежность проведения.

Между зоной возбуждения (имеющей на поверхности волокна отрицательный заряд и на внутренней стороне мембраны - положительный) и соседним невозбужденным участком мембраны нервного волокна (с обратным соотношением зарядов) возникают электрические токи - так называемые местные токи.В результате развивается деполяризация соседнего участка, увеличение его ионной проницаемости и появление потенциала действия. В исходной же зоне возбуждения восстанавливается потенциал покоя. Затем возбуждением охватывается следующий участок мембраны и т.д. Таким образом, с помощью местных токов происходит распространение возбуждения на соседние участки нервного волокна, т.е. проведение нервного импульса.По мере проведения амплитуда потенциала действия не уменьшается,т.е. возбуждение не затухает даже при большой длине нерва.

В процессе эволюции с переходом от безмякотных нервных волокон к мякотным (покрытым миелиновой оболочкой) произошло существенное повышение скорости проведения нервного импульса. Для безмякотных волокон характерно непрерывное проведение возбуждения, которое охватывает последовательно каждый соседний участок нерва. Мякотные же нервы почти полностью покрыты изолирующей миелиновой оболочкой. Ионные токи в них могут проходить только в оголенных участках мембраны -перехватах Ранвье, лишенных этой оболочки. При проведении нервного импульса потенциал действия перескакивает от одного перехвата к другому и может охватывать даже несколько перехватов. Такое проведение поучило название сальтоторного (лат. сальто - прыжок). При этом повышается не только скорость, но и экономичность проведения. Возбуждение захватывает не всю поверхность мембраны волокна, а лишь небольшую ее часть. Следовательно, меньше энергии тратится на активный транспорт ионов через мембрану при возбуждении и в процессе восстановления.

Скорость проведения в разных волокнах различна. Более толстые нервные волокна проводят возбуждение с большей скоростью: у них расстояния между перехватами Ранвье больше и длиннее скачки. Наибольшую скорость проведения имеют двигательные и проприоцептивные афферентные нервные волокна - до 100 м/с. В тонких симпатических нерв ных волокнах (особенно в немиелинизированных волокнах) скорость проведения мала - порядка 0,5 - 15 м/с.

Во время развития потенциала действия мембрана полностью теряет возбудимость. Это состояние называют полной невозбудимостью, или абсолютной рефрактерностью.За ним следует относительная рефрактерность, когда потенциал действия может возникать лишь при очень сильном раздражении. Постепенно возбудимость восстанавливается до исходного уровня.

Законы проведения возбуждения в нервах:

1. Проведение импульсов возможно лишь при условии анатомической и физиологической целостности волокна.

2. Двустороннее проведение: при раздражении нервного волокна возбуждение распространяется по нему и в центробежном, и в центростремительном направлениях.

3. Изолированное проведение: в периферическом нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходя с одного волокна на другое и оказывая действие только на те клетки, с которыми контактируют окончания данного нервного волокна.

13. Дайте определение гомеостаза.

14. Назовите основные пути регуляции различных функций у высокоорганизо­ванных животных и человека.

15. Кем и когда было открыто «животное электричество»?

16. Какие ткани относятся к возбудимым? Почему они так называются?

17. Назовите основные функциональные характеристики возбудимых тканей.

18. Что называют порогом возбудимости?

19. От каких факторов зависит величина порога?

20. Что такое лабильность? Кем было выдвинуто понятие лабильности, какие свойства возбудимых тканей оно характеризует?

21. Что называют мембранным потенциалом (потенциалом покоя)?

22. Чем обусловлено наличие электрических потенциалов в живых клетках?

23. В каких случаях говорят о деполяризации (или гиперполяризации) клеточ­ной мембраны?

24. Какую роль в формировании потенциала покоя играет калий-натриевый на­сос мембраны?

25. Что называют потенциалом действия? Какова его роль в нервной системе?

Фазы потенциала действия

Из рис. 18 видно, что потенциал действия возникает только тогда, когда мембранный потенциал уменьшается до определенной величины. Это значение мембранного потенциала носит название критического уровня деполяризации. Возбудимость клетки (способность возбуждаться) зависит от того, на сколько необходимо сместить мембранный потенциал клетки, чтобы в ней возник потенциал действия, то есть от разницы значений исходного

Рис. 18. Потенциал действия

Экспериментальная схема, что и на рис 15А. Внутриклеточный отводящий микроэлектрод регистрирует мембранный потенциал покоя -70 мВ. Другой внутриклеточный микроэлектрод служит для раздражения, постепенно нарастающими по силе толчками тока (показаны внизу). При слабых толчках раздражающего тока (тонкие линии) регистрируются небольшие деполяризационные электротонические потенциалы. Если амплитуда электротонического потенциала достигает определенной величины (порогового потенциала), а значение мембранного потенциала - критического уровня деполяризации, то в клетке возникает быстрое колебание мембранного потенциала (потенциал действия- толстая линия). Подробнее в тексте. Вертикальными двухсторонними стрелками показаны исходные значения порогового потенциала и его изменения во время следовой деполяризации и гиперполяризации.

мембранного потенциала и критического уровня деполяризации. Эта разница называется пороговым потенциалом. В нашем примере (рис. 18) мембранный потенциал покоя равен -70 мВ, а критический уровень деполяризации -50 мВ. Для того, чтобы в этих условиях возник потенциал действия, необходимо сместить мембранный потенциал на 20 мВ, то есть пороговый потенциал равен 20 мВ. Понятно, что увеличение асболютного значения исходного мембранного потенциала покоя приведет к увеличению порогового потенциала. При этом возбудимость клетки будет меньше, и необходима большая сила раздражителя для достижения критического уровня деполяризации и возникновения потенциала действия. Уменьшение мембранного потенциала покоя по модулю, наоборот, ведет к уменьшению порогового потенциала и увеличению возбудимости. Следовательно, чем больше мембранный потенциал, тем больше пороговый потенциал и тем меньше возбудимость клетки. Мы уже говорили, что в конце потенциала действия наблюдаются медленные колебания мембранного потенциала (следовые деполяризационные и гиперполяризационные потенциалы). В течение этих потенциалов пороговый потенциал сначала уменьшается (возбудимость увеличивается), а затем возрастает (возбудимость снижается) (рис. 18).

Мембранный потенциал и потенциал действия и его фазы. Различие между фазами возбуждения

Мембранный потенциал (МП) - разность потенциалов между наружной и внутренней стороной мембраны в состоянии физиологического покоя.

Причины возникновения МП:

1. неодинаковое распределение ионов по обе стороны мембраны: внутри - больше К+, снаружи - его мало, но больше Nа+ и Cl. такое распределение ионов называется ионной ассиметрией.

2. избирательная проницаемость мембраны для ионов. В состоянии покоя мембрана неодинакова проницаема.

За счет этих факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта в результате разности концентрации ионов.

Ионы К выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны. Сl - пассивно переходит во внутрь клетки, что приводит к повышению положительного заряда на наружной поверхности мембраны. Nа накапливается на наружной поверхности мембраны и увеличивает «+» заряд. Органические соединения остаются внутри клетки.

В результате такого движения наружная поверхность мембраны «+» заряжена, а внутренняя «-». Внутренняя поверхность может быть «-» заряжена, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние называется поляризацией.

Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов, т.е. пока не наступит электрохимическое равновесие.

Момент равновесия зависит от двух сил:

2. Сила электрохимического взаимодействия.

Значение электрохимического равновесия:

3. поддержание ионной асимметрии

4. поддержание величины мембранного потенциала на постоянном уровне.

Возникновение МП при участи двух сил называют концентрационно-электрохимическим.

Для поддержания ионной симметрии электрохимического равновесия в клетке имеется Nа-К насос. В клеточной мембране имеется система переносчиков, каждый из которых связывает 3Na, которые находятся снаружи, а с внутренней стороны переносчик связывает 2К и переносит внутрь клетки. При этом расходуется 1 молекула АТФ.

Работа Nа-К насоса обеспечивает:

1. высокую концентрацию К внутри клетки, т.е. постоянную величину потенциала покоя

2. низкую концентрацию Nа внутри клетки, т.е. сохраняется нормальная осмомолярность, объем клетки, создает базу для генерации ПД.

3. стабильный концентрационный градиент Nа, способствуя транспорту аминокислот и сахаров.

МП в норме : для гладких мышц -30 - (-70) мВ, для нерва -50 - (-70) мВ, для миокарда -60 - (-90) мВ.

Потенциал действия (ПД) - сдвиг потенциала покоя, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой мембраны.


При действии порогового и сверхпорогового раздражителей изменяется проницаемость клеточной мембраны для ионов. Для Nа увеличивается в 450 раз и градиент нарастает быстро. Для К увеличивается в 10-15 раз и градиент развивается медленно. В результате движение Nа происходит внутрь клетки, К двигается из клетки, что приводит к перезарядке клеточной мембраны.

Фазы:

0. Локальный ответ (местная деполяризация), предшествующий развитию ПД.

1. Фаза деполяризации. Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2 мсек.

2. Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазы 3-5 мсек.

3. Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длится 15-30 мсек.

4. Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу, МП на некоторое время становится выше исходного уровня ПП. Ее длительность 250-300 мсек.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня деполяризации, чем она выше, тем ниже КУД и наоборот.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ), сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет реполяризацию.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос, выносящий вошедшие в клетку во время ПД ионы натрия.

Соотношение фаз потенциала действия и возбудимости.

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением.

В фазу реполяризации ПД, когда открываются все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности.

В фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или относительной рефрактерности.

Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление аккомодации также связано с изменением проводимости ионных каналов. Если деполяризующий ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

Потенциал действия нервной клетки

Потенциал действия (ПД) — быстрое колебание МП — само­распространяющийся процесс, связанный с изменениями ионной проводимости мембраны, вызванными функционированием ион­ных каналов. ПД распространяется без затухания, то есть практи­чески без уменьшения амплитуды.

Проведение ПД по мембране можно сравнить с поджиганием пороховой дорожки: вспыхнувший порох немедленно воспламеняет впереди лежащие частицы, и пла­мя движется вперёд до конца дорожки.

Временной ход потенциала действия

Продолжительность потенциала действия не­рвной клетки измеряется единицами миллисекунд (мс).

Потенциалы действия, заре­гистрированные двумя электродами, один из которых находится внутри клетки, а другой — в окружающем растворе, представлены на рис. 5-3 и 5-7.

Рис. 5-3. Изменения мембранного потенциала и потенциал действия. Вертикальная стрелка в нижней части рисунка — момент появления раздражающего стимула, на отметке -80 мВ — исходный уровень МП.

Между моментом нанесения раздражения и первым проявлени­ем ПД имеется задержка — латентный период. Латентный период соответствует времени, когда ПД движется по мембране нервной клетки от места раздражения до отводящего электрода. Под дей­ствием раздражающего стимула происходит нарастающая деполя­ризация мембраны — локальный ответ. При достижении крити­ческого уровня деполяризации, который в среднем составляет —55 мВ, начинается фаза деполяризации. В эту фазу уровень МП падает до нуля и даже приобретает положительное значение (овершут), а затем возвращается к исходному уровню (фазареполяризации). Фазы деполяризации, овершута и реполяризации образуют спайк (пик) ПД. Длительность спайка составляет 1—2 мс. После спайка наблю­дается замедление скорости спада потенциала — (раза следовой де­поляризации. После достижения исходного уровня покоя нередко наблюдается фаза следовой гиперполяризации. Эти следовые потен­циалы могут длиться десятки и сотни миллисекунд.

Ионные механизмы потенциала действия

В основе изменений мембранного потенциала (МП), происходящих в течение потенциала действия (ПД), лежат ионные механизмы. На рис. 5—7 представлены суммарные ионные токи, протекающие че­рез мембрану нервной клетки в ходе потенциала действия.

Рис. 5-7. Потенциал действия и ионные токи нервной клетки [5|. По оси ординат отложены значения МП (мВ), по оси абсцисс — время (мс)

Локальный потенциал. Раздражение клетки приводит к открытию части Na+-каналов и появлению локального (нераспространяющегося) потенциала.

Фаза деполяризации. При достижении критического уровня де­поляризации мембраны (соответствует порогу активации потен-циалозависимых Na+-каналов) начинается лавинообразный про­цесс открытия большого количества Na+-каналов. В фазу деполяризации происходит массивный вход в клетку ионов Na+ по концентрационному и электрохимическому градиентам.

Овершут. Деполяризация мембраны приводит к реверсии МП (МП становится положительным). В фазу овершута Na+-ток начинает стремительно спадать, что связано с инактивацией потенциало-зависимых Na+-каналов (время открытого состояния -- доли миллисекунды) и исчезновением электрохимического градиента Na+.

Фаза реполяризации. Помимо инактивации Na+-каналов, разви­тию реполяризации способствует открытие потенциалозависимых K+-каналов. Этот процесс происходит медленнее, чем от­крытие Na+-каналов, но K+-каналы остаются открытыми более продолжительное время. Выход К+ наружу способствует полно­му завершению фазы реполяризации.

Следовые потенциалы связаны с длительными изменениями ки­нетических свойств К+-каналов. Восстановление исходного уровня МП приводит Na+- и K+-каналы в состояние покоя.

Изменения возбудимости во время потенциала действия

В ходе развития ПД происходят изменения возбудимости мембраны не­рвной клетки.

Абсолютно рефрактерный период. Во время фазы деполяризации и большей части фазы реполяризации ПД клетка находится в абсолютно рефрактерном периоде, в течение которого даже сверх­пороговое раздражение не способно вызвать ПД. Этот феномен связан с инактивацией большинства Na+-каналов.

Относительно рефрактерный период. В конце фазы реполяриза­ции, а также во время следовой гиперполяризации клетка спо­собна генерировать ПД только в ответ на сверхпороговые раз­дражители. Это связано со значительным реполяризующим действием выходящих калиевых токов.

Наличие рефрактерности ограничивает частоту генерации ПД. Физиологическое значение рефрактерности заключается в создании условий для своевременного и полного осуществления восстановительных процессов в нервной клетке. Феномен рефрактерности лежит в основе понятия о функциональной подвижности, или лабильности (Н.Е. Введенский [1] ).

Лабильность — максимально возможная частота генерации ПД для данного типа возбудимой клетки. Лабильность большинства нейронов составляет приблизительно 400 ПД/с, а у интернейро­нов спинного мозга доходит до 1000 ПД/с.

В нормальных условиях рефрактерность предохраняет нервные клетки от излишне частой генерации ПД. Мутации, гипоксия, механические травмы и другие патологические воздействия приводят к значительным изменениям возбудимости нейронов. Такие нейроны или группы нейронов являются потенциальными источниками возникновения пароксизмальных состояний ЦНС, эпилептических припадков и других неврологических расстройств.

Проведение возбуждения по нервным волокнам

Нервные волокна — аксоны нервных клеток, окружённые оболочкой из олигодендроглиоцитов в ЦНС и шванновских [2] клеток в периферических нервах. Нервные волокна подразделяют на 2 типа — безмиелиновые и миелиновые. Основная функция нервных волокон — проведение ПД. Скорость проведения в миелиновых и безмиелиновых волокнах различна (рис. 5-8) и существенно зависит от диаметра нервных волокон.

Рис. 5-8. Скорость проведения возбуждения в миелиновых и безмиелиновых нервных волокнах разного диаметра [4]. Скорость проведения пропорциональна диаметру нервного волокна и в миелиновых волокнах выше, чем в безмиелиновых.

Безмиелиновые нервные волокна (рис. 5-9А). В покое мембрана аксона (осевого цилиндра) поляризована — положительно заряжена снаружи и отрицательно внутри. При ПД полярность изменяется, и наружная поверхность мембраны приобретает отрицательный заряд. Из-за разности потенциалов между возбуждённым и невозбуждёнными сегментами возникают локальные токи, деполяризующие соседний участок мембраны. Теперь этот участок становится возбуждённым и деполяризует следующий участок мембраны.

Рис. 5-9. Проведение возбуждения в нервных волокнах [7]. А — безмиелиновое волокно (электротоническое проведение), Б — миелиновое волокно (скачкообразное проведение). Миелин, полностью окружая аксон в межузловых промежутках, выступает в роли электрического изолятора, а межклеточная жидкость в перехватах Ранвье [3] — проводник.

Такое проведение известно как электротоническое, а проведение ПД — своего рода «эстафета», в которой каждый участок мембраны является сначала раздражаемым, а затем раздражающим. ПД возникает за счёт увеличения проводимости через потенциалозависимые Na+?каналы, встроенные в аксолемму с плотностью около 110-120 каналов на 1 мкм 2 .

Появление так называемых рефрактерных каналов (рефрактерное состояние мембраны после прохождения ПД) предупреждает распространение возбуждения в обратном направлении.

Скорость проведения возбуждения по безмиелиновому нервному волокну в основном составляет 0,5-2 м/с и зависит от диаметра волокна: чем больше диаметр, тем выше скорость проведения ПД (см. рис. 5-8).

Миелиновое нервное волокно (рис. 5-9Б) состоит из осевого цилиндра (аксона), вокруг которого шванновские клетки образуют миелин за счёт концентрического наслаивания собственной плазматической мембраны. Миелин прерывается через регулярные промежутки (от 0,2 до 2 мм) концентрической щелью шириной около 1 мкм, это узлы, или перехваты Ранвье. Таким образом, межузловые сегменты аксона, расположенные между соседними перехватами Ранвье, содержат миелин — электрический изолятор, не позволяющий проходить через него локальным токам, поэтому ПД возникают только в перехватах Ранвье. Другими словами, ПД перемещается вдоль нервного волокна скачками, от одного перехвата Ранвье к другому перехвату (скачкообразное проведение).

Плотность потенциалозависимых Na+?каналов аксолеммы в перехватах Ранвье — до 2000 на 1 мкм2 (в перикарионе — 50-70, в начальном сегменте аксона — 2000, в межузловых сегментах Na+?каналы практически отсутствуют). В силу высокой плотности Na+?каналов перехваты Ранвье характеризуются высокой возбудимостью, а локальные токи достаточно велики для возбуждения соседнего перехвата.

Локальные токи текут от перехвата к перехвату (через внеклеточную жидкость кнаружи от миелина и через аксоплазму внутри аксона) с минимальными потерями.

Скорость проведения ПД в миелиновых волокнах в десятки раз выше, чем в наиболее «быстрых» безмиелиновых аксонах.

Энергозатраты нервного волокна на проведение ПД относительно невелики, поскольку возбуждаются только перехваты Ранвье, площадь которых составляет менее 1% общей поверхности мембраны аксона. Поэтому даже после длительных ритмических пачек ПД трансмембранный градиент концентраций ионов практически не изменяется.

В физиологических условиях ПД движутся в одном направлении от места раздражения (ортодромное проведение). ПД, проходящий по нервному волокну, возбуждает следующий, но не предыдущий участок мембраны. Это связано с рефрактерностью предыдущего участка после возбуждения. Проведение в противоположном направлении (антидромное проведение) возможно при травматическом поражении нервных волокон и в редких случаях (аксон-рефлекс).

Нарушение миелинизации нервных волокон приводит к нарушениям проводимости (демиелинизирующие заболевания). При разрушении миелиновой оболочки происходит резкое снижение скорости и надёжности проведения возбуждения по нервам. Наиболее распространённым среди демиелинизирующих заболеваний является множественный склероз, проявляющийся различными параличами и потерей чувствительности.

Законы проведения возбуждения

Бездекрементное проведение возбуждения. Амплитуда ПД в различных участках нерва одинакова, то есть проведение возбуждения по нервному волокну осуществляется без затухания (бездекрементно). Таким образом, кодирование информации осуществляется не за счёт изменения амплитуды ПД, а путём изменения их частоты и распределения во времени.

Изолированное проведение возбуждения. Нервные стволы обычно образованы большим количеством нервных волокон, однако ПД, идущие по каждому из них, не передаются на соседние. Эта особенность нервных волокон обусловлена:

  • наличием оболочек, окружающих отдельные нервные волокна и их пучки (в результате образуется барьер, предупреждающий переход возбуждения с волокна на волокно);
  • сопротивлением межклеточной жидкости (жидкость, находящаяся между волокнами, имеет гораздо меньшее сопротивление току, чем мембрана аксонов; поэтому ток шунтируется по межволоконным пространствам и не доходит до соседних волокон).

Физиологическая и анатомическая целостность. Необходимым условием проведения возбуждения является не только его анатомическая целостность, но и нормальное функционирование мембраны нервного волокна (физиологическая целостность). В клинике широко применяют различные ЛС, нарушающие физиологическую целостность нервных волокон. Так, эффекты местных анестетиков (новокаин, лидокаин, и др.) основаны на блокаде потенциалозависимых Na+?каналов. Нарушение физиологической целостности чувствительных нервных волокон вызывает анестезию (потерю чувствительности).

Типы нервных волокон и их функции

При регистрации электрической активности нервного ствола Джо­зеф Эрлангер и Герберт Гассер в 1937 г. обнаружили составной харак­тер тока действия нервного ствола. На основании полученных данных (диаметр, скорость проведения, функция) разработана классифика­ция (табл. 5—1), в соответствии с которой нервные волокна подразде­лены на группы А, В и С с дальнейшими градациями ( ? , ? , и т.д.).

Орлов Р.С., Ноздрачёв А.Д. Нормальная физиология : Учебник. - М.: ГЭОТАР-Медиа, 2009. 688 с. - Глава 5. Физиология нейронов. - Потенциал действия. С. 73-78.

[1] Введенский Николай Евгеньевич (1852-1922), отечественный физиолог, ученик И.М. Сеченова; впервые при отведении токов действия нерва с помощью телефона прослушал ритм возбуждения в нерве. Сравнивая ритмы возбуждения в нерве и мышце, он открыл явления оптимума и пессимума, на основе которого установил закон относительной функциональной подвижности — лабильности. Ему принадлежит учение о парабиозе, развитое в монографии «Возбуждение, торможение и наркоз» (1901).

[2] Шванн Теодор (Schwann T.), немецкий гистолог и физиолог (1810-1882); вместе с М. Шульце создал клеточную теорию (1839 г.); в 1836 г. открыл пепсин, в 1838 г. опубликовал первую работу по строению миелиновой оболочки.

[3] Ранвье Луи (Ranvier L.), французский патолог (1835-1922). Занимался изучением нервной ткани с применением азотнокислого серебра и хлорного золота. Его именем названы безмиелиновые участки (узловые перехваты) миелинового нервного волокна.

Потенциал действия, его фазы. Современное представление о механизме его генерации.

Потенциал действия — волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляетэлектрический разряд — быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Потенциал действия развивается на мембране в результате её возбуждения и сопровождается резким изменением мембранного потенциала.

В потенциале действия выделяют несколько фаз:

• фаза быстрой реполяризации;

• фаза медленной реполяризации (отрицательный следовый потенциал);

• фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциал чувствительных Na+- каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации. В результате деполяризации мембраны происходит открытие потенциалчувствительных К+- каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется. Усиливает реполяризацию поступление в клетку Ca2+ Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+/K+ помпы. Поступление в клетку Cl- дополнительно гиперполяризует мембрану Изменение величины мембранного потенциала во время развития потенциала действия связано в первую очередь с изменением проницаемости мембраны для ионов натрия и калия.


Современные представления о механизме его генерации

Методом фиксации мембранного потенциала удалось измерить токи, текущие через плазмолемму аксона (аксолемму) кальмара и убедиться в том, что в покое ток катионов (К + ) направлен из цитоплазмы в интерстиций, а при возбуждении доминирует ток катионов (Na + ) в клетку. В состоянии «покоя» плазмолемма почти непроницаема для ионов, находящихся в межклеточном пространстве(Na + С1 - и НСОз - ,).

Электpотонический потенциал

Локальный ответ

Потенциал действия

Электротонический потенциал - это пассивный сдвиг величины мембранного потенциала (МП) при действии подпорогового стимула электрического тока.

1. Возникает в ответ на действие катода постоянного тока по силе воздействия меньше 0,5 поpоговой величины

2. Сопpовождается пассивной, слабо выpаженной электpотонической деполяpизацией за счет "-" заpяда катода (ионная пpоницаемость мембpаны пpактически не изменяется), котоpая наблюдается только во вpемя действия pаздpажителя

3. Развитие и исчезновение потенциала пpоисходит по экспоненциальной кpивой и опpеделяется паpаметpами

4. pаздpажающего тока, а также сопpотивлением и емкостью мембpаны

5. Такой вид возбуждения имеет местный хаpактеp и не может pапpспpостpаняться

6. Увеличивает возбудимость ткани

Механизм возникновения

Простейшая модель раздражимости при прохождении тока представляет собой процесс, при котором положительные заряды тока кратковременно разряжают, т.е. деполяризуют мембрану, что вызывает нарушение равновесия ионных потоков.

Во время деполяризации больше ионов калия (+К) покидает клетку и тем самым уравновешивается поток ионного и электрического тока, что, в свою очередь, приводит к стабилизации заряда мембранной емкости. Сдвиг потенциала, вызываемый импульсом тока, называетсяэлектротоническим потенциалом, илиэлектротоном.

Скорость нарастания электротонического потенциала определяется в основном емкостью мембраны. Однако большинство нервных клеток имеют вытянутую форму. Нервное волокно иногда достигает длины 1 м при диаметре 1 мкм. Следовательно, выходя из такой клетки, пропускаемый через нее ток будет распределяться очень неравномерно. Установлено, что по мере увеличения расстояния от источника возбуждения (тока) временной ход электротонического потенциала (электротона) постепенно замедляется. Происходит это потому, что электротон преодолевает сопротивление не только мембраны, но продольное сопротивление внутренней среды самой нервной клетки. Для малых сдвигов потенциала электротонические потенциалы в нерве можно зарегистрировать на расстоянии не более нескольких сантиметров от места их возникновения, т.е. локально.

Деполяризующий электротонический потенциал, который превышает пороговый уровень, вызывает возбуждение. Возбуждение возможно тогда, когда импульс тока имеет адекватную длительность и амплитуду. Соответственно определенный уровень длительности и амплитуды импульса тока существенно влияет на передачу информации в форме потенциала действия. В этой связи локальный характер деполяризации дендиритов, тел нервных клеток и аксонов различается.

Деполяризация дендритов и соответственно тел нервных клеток наблюдается едва достигается пороговый уровень. Происходит это потому, что деполяризация идет за счет повышения натриевой (+Nа) проницаемости мембраны, которая в дальнейшем продолжает деполяризацию автоматически.


Локальный потенциал(ЛП) - это местное нераспространяющееся подпороговое возбуждение, существующее в пределах от потенциала покоя (-70 мВ в среднем) до критического уровня деполяризации (-50 мВ в среднем). Его длительность может быть от нескольких миллисекунд до десятков минут.

1. Возникает в ответ на действие pаздpажителя силой от 0,5 до 0,9 поpога

2. Активная фоpма деполяpизации, поскольку ионная пpоницаемость повышается в зависимости от силы подпоpогового pаздpажителя

3. Гpадуален по амплитуде (амплитуда находится в пpямой зависимости от силы и частоты pаздpажений)

4. Развитие деполяpизации пpоисходит до кpитического уpовня, пpичем не пpямолинейно, а по S-обpазной кpивой. Пpи этом деполяpизация пpодолжает наpастать после пpекpащения pаздpажения, а затем сpавнительно медленно исчезает

5. Способен к суммации (пpостpанственной и вpеменной)

6. Локализуется в пункте действия pаздpажителя и пpактически не способен к pаспpостpанению, т.к. хаpактеpизуется большой степенью затухания

7. Повышает возбудимость стpуктуpы

1. Рецепторный. Возникает на рецепторных клетках (сенсорных рецепторах) или рецепторных окончаниях нейронов под действием стимула (раздражителя). Механизм возникновения такого рецепторного локального потенциала детально рассмотрен на примере восприятия звука слуховыми рецепторами - Молекулярные механизмы рецепции (трансдукции) звука по пунктам Этот процесс называется "трансдукция", то есть преобразование раздражения в нервное возбуждение. Сенсорные рецепторы вторичного типа не умеют порождять нервный импульс, поэтому их возбуждение остаётся локальным и от его амплитуды зависит то, сколько рецепторная клетка выбросит медиатора.

2. Генераторный. Возникает на сенсорных афферентных нейронах (на их дендритных окончаниях, перехватах Ранвье и/или аксонных холмиках) под действием медиаторов, которые выделили сенсорные клеточные рецепторы вторичного типа. Генераторный потенциал превращается в потенциал действия и нервный импульс при достижении им критического уровня деполяризации, т.е. он генерирует(порождает) нервный импульс. Потому он и назван генераторным.

3. Возбуждающий постсинаптический потенциал (ВПСП). Возникает на постсинаптической мембране синапса, т.е. он отражает передачу возбуждения от одного нейрона к другому. Обычно он составляет +4 мВ. Важно отметить, что возбуждение передаётся от одного нейрона другому именно в виде ВПСП, а не готового нервного импульса. ВПСП вызывает деполяризацию мембраны, но подпороговую, не достигающую КУД и не способную породить нервный импульс. Поэтому обычно требуется целая серия ВПСП для того, чтобы родился нервный импульс, т.к. величина единичного ВПСП совершенно недостаточна для того, чтобы достичь критического уровня деполяризации. Вы можете сами подсчитать, сколько требуется одновременно действующих ВПСП, чтобы родился нервный импульс. (Ответ: 5-6.)

4. Тормозный постсинаптический потенциал (ТПСП). Возникает на постсинаптической мембране синапса, но только не возбуждает её, а, наоборот, тормозит. Соотвтетственно, эта постсинаптическая мембрана входит в состав тормозного синапса, а не возбуждающего. ТПСП вызывает гиперполяризацию мембраны, т.е. сдвигает потенциал покоя вниз, подальше от нуля. Обычно он составляет -0,2 мВ. Используются два механизма создания ТПСП: 1) "хлорный" - происходит открытие ионных каналов для хлора (Cl-), через них в клетку входят ионы хлора и увеличивают её электроотрицательность, 2)"калиевый" - происходит открытие ионных каналов для калия (К+), через них выходят ионы калия, уносят из клетки положительные заряды, что увеличивает электроотрицательность в клетке.

5. Пейсмекерные потенциалы - это эндогенные близкие к синусоидальным периодические колебания мембранного потенциала с частотой 0,1-10 Гц и амплитудой 5-10 мВ. Их генерируют у себя специальные нейроны-пейсмекеры (водителями ритма) самостоятельно, без внешнего воздействия. Пейсмекерные локальные потенциалы обеспечивают периодическое достижение нейроном-пейсмекером критического уровня деполяризации и спонтанную (т.е. самопроизвольную) генерацию им потенциалов действия и, соответственно, нервных импульсов.

Важно понять то, что процесс рождения локального потенциала начинается с открытия ионных каналов. Открытие ионных каналов - это самое главное! Их нужно открыть для того, чтобы в клетку пошёл поток ионов и принёс в неё электрические заряды. Эти ионные электрические заряды как раз и вызывают смещение электрического потенциала мембраны вверх или вниз, т.е. локальный потенциал.

Если открываются ионные каналы для натрия (Na+), то в клетку вместе с ионами натрия попадают положительные заряды, и её потенциал смещается вверх в сторону нуля. Это - деполяризация, и так рождается возбуждающий локальный потенциал. Можно сказать, что возбуждающие локальные потенциалы порождаются натриевыми ионными каналами, когда они открываются.

Образно можно сказать и так: "Каналы открываются - потенциал рождается".

Если открываются ионные каналы для хлора (Cl-), то в клетку вместе с ионами хлора попадают отрицательные заряды, и её потенциал смещается вниз ниже потенциала покоя. Это гиперполяризация, и таким способом рождается тормозный локальный потенциал. Можно сказать, что тормозные локальные потенциалы порождаются хлорными ионными каналами.

Существует также ещё один механизм формирования тормозных локальных потенциалов - за счёт открытия дополнительных ионных каналов для калия (К+). В этом случае из клетки через них начинают выходить "лишние" порции ионов калия, они выносят положительные заряды и увеличивают электроотрицательность клетки, т.е. вызывают её гиперполяризацию. Таким образом, можно сказать, что тормозные локальные потенциалы порождаются дополнительными калиевыми ионными каналами.

Как видите, всё очень просто, главное - открыть нужные ионные каналы. Стимул-управляемые ионные каналы открываются раздражителем (стимулом). Хемо-управляемые ионные каналы открываются медиатором (возбуждающим или тормозным). Точнее, в зависимости от того на какие каналы (натриевые, калиевые или хлорные) будет действовать медиатор, таков будет и локальный потенциал - возбуждающий или тормозный. А медиатор как для возбуждающих локальных потенциалов, так и для тормозных, может быть одним и тем же, тут важно, какие ионные каналы будут связываться с ним своими молекулярными рецепторами - натриевые, калиевые или хлорные.

Потенциал действия- это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

1. Возникает пpи действие pаздpажителей поpоговой и свеpхпоpоговой силы (может возникать пpи суммации подпоpоговых pаздpажителей вследствии достижения уpовня кpитической деполяpизации)

2. Активная деполяpизация пpотекает пpактически мгновенно и pазвивается пофазно (деполяpизация, pеполяpизация)

3. Hе имеет гpадуальной зависимости от силы pаздpажителя и подчиняется закону "все или ничего". Амплитуда зависит только от свойств возбудимой ткани

4. Hе способен к суммации

5. Снижает возбудимость ткани

6. Распpостpаняется от места возникновения по всей мембpане возбудимой клетки без изменения амплитуды

Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсиейзаряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут- период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал- разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки - чем больше пороговый потенциал, тем меньше возбудимость клетки.

6. Возбудимость. Изменение возбудимости в процессе возбуждения.

А. Возбудимость клетки во время ее возбуждения быстро и сильно изменяется. Различают несколько фаз изменения возбудимости, каждая из которых строго соответствует определенной фазе ПД и, так же как и фазы ПД, определяется состоянием проницаемости клеточной мембраны для ионов. Схематично эти изменения представлены на рис. 3.6.б.

1. Кратковременное повышение возбудимости в начале развития ПД, когда уже возникла частичная деполяризация клеточной мембраны. Если деполяризация не достигает критической величины, то регистрируется локальный потенциал. В случае, если деполяризация достигает Екр, то развивается ПД. При замедленном развитии начальной деполяризации она оценивается как препотенциал. Возбудимость повышена потому, что клетка частично деполяризована, мембранный потенциал приближается к критическому уровню, поскольку открывается часть потенциалчувствительных быстрых Na-каналов. При этом достаточно небольшого увеличения силы раздражителя, чтобы деполяризация достигла Екр, при которой возникает ПД.

2. Абсолютная рефракторная фаза - это полная невозбудимость клетки (возбудимость равна нулю), она соответствует пику ПД и продолжается 1-2 мс; если ПД более продолжителен, то более продолжительна и абсолютная рефракторная фаза. Клетка в этот период при любой силе раздражения не отвечает. Невозбудимость клетки в фазу деполяризации и инверсии (в первую ее половину - восходящая часть пика ПД) объясняется тем, что потенциалзависимые т-ворота Na-каналов уже открыты и ионы Na + быстро поступают в клетку по всем каналам. Те ворота Na-каналов, которые еще не успели открыться, открываются под влиянием деполяризации - уменьшения мембранного потенциала. Поэтому дополнительное раздражение клетки относительно движения ионов Na + в клетку ничего изменить не может.

Рис. 3.6. Фазовые изменения возбудимости клетки(б)во время ПД (а). 1,4 - возбудимость повышена; 2 - абсолютная рефрактерная фаза;

2. Относительная рефрактерная фаза- это период восста­новления возбудимости, когда сильное раздражение может вы­звать новое возбуждение (см. рис. 3.6,5, кривая 3). Относитель­ная рефрактерная фаза соответствует конечной части фазы ре­поляризации от уровня Екр ± 10 мВ и следовой гиперполяри­зации клеточной мембраны, что является следствием все еще по­вышенной проницаемости для ионов К + и избыточного выхода ионов К + -каналов из клетки. Поэтому, чтобы вызвать возбужде­ние в этот период, необходимо приложить более сильное раз­дражение, так как часть Nа + -каналов в конце реполяризации на­ходится еще в состоянии инактивации, а выход ионов К + из клетки препятствует ее деполяризации. Кроме того, в период следовой гиперполяризации мембранный потенциал больше и, естественно, дальше отстоит от критического уровня деполяри­зации. Если реполяризация в конце пика ПД замедляется (см. рис. 3.6,а), то относительная рефрактерная фаза включает и пе­риод замедления реполяризации, и период гиперполяризации. Рис. 3.6.Фазовые изменениявозбудимости клетки (b) во времяПД (а).1,4-возбудимость повышена;2-абсолютная рефрактерная фаза;3-относительная рефрактерная фаза

4. Фаза экзальтации - это период повышенной возбудимости. Он соответствует следовой деполяризации. В нейронах ЦНС вслед за гиперполяризацией возможна частичная деполяризация клеточной мембраны. В эту фазу очередной ПД можно вызвать более слабым раздражением, поскольку мембранный потенциал несколько ниже обычного и оказывается ближе к критическому уровню деполяри­зации, что объясняют повышенной проницаемостью клеточной мембраны для ионов Nа + . Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность.

Б. Лабильность, или функциональная подвижность(Н.Е.Вве­денский)— это скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД. Это означает, что лабильность, как и ПД, определяется скоростью перемещения ионов в клетку и из клет­ки, которая, в свою очередь, зависит от скорости изменения проницаемости клеточной мембраны. Особое значение при этом имеет длительность рефрактерной фазы: чем больше рефрактер­ная фаза, тем ниже лабильность ткани.

Читайте также: