Оси ЭКГ отведений от конечностей. Векторный анализ потенциалов ЭКГ

Обновлено: 07.05.2024

ЭКГ - запись биопотенциалов (которые возникают в сердце во время распространения возбуждения) с помощью электродов, расположенных на поверхности тела. ЭКГ помогает определить место возикновения импульса (водитель ритма) и характер распространения возбуждения по миокарду предсердий и желудочков.

ГЕНЕЗ ЗУБЦОВ:(См. схему ЭКГ): зубец Р отражает процесс деполяризации предсердий; сегмент PQ (изоэлектрическая линия) отражает время проведения через АВ-узел (атриовентрикулярная задержка); комплекс зубцов QRS отражает процесс деполяризации желудочков; сегмент ST (изоэлектрическая линия) - полное возбуждение всех кардиомиоцитов желудочков (совпадает с фазой «плато» потенциала действия); зубец Т отражает процесс реполяризации желудочков.

Отведение ЭКГ - это расположение двух электродов на поверхности тела (в определенных точках). Линия, соединяющая два электрода, называется осью отведения.Ось отведения имеет определенную полярность: один из электродов «отрицательный» (-), т.е. сигнал от него подается на отрицательный «вход» электрокардиографа, другой электрод -«положительный» (+), т.е. сигнал от него подается на положительный «вход» электрокардиографа.

При обследовании больных регстрируют как минимум 12 отведений: 3 стандартных отведения от конечностей (I, II и III); 3 усиленных отведения от конечностей (AVR, AVL, AVF) и 6 грудных отведений (V1 - V6).

Стандартные отведения от конечностей: биполярные (двухполюсные) - оба электрода активные Оси этих отведений представляют собой стороны треугольника Эйнтховена:

1 станд.отв.: правая рука (-) и левая рука (+)

II станд.отв.: правая рука (-) и левая нога (+)

III станд.отв.: левая рука (-) и левая нога (+)

Усиленные отведения от конечностей: униполярные (однополюсные) - один электрод активный другой - пассивный (индифферентный, электрод сравнения, нулевой).

AVR: активный электрод на правой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVL: активный электрод на левой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVF: активный электрод на левой ноге (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

Оси всех отведений от конечностей расположены во фронтальной плоскости. Для анализа ЭКГ их можно объединить в общую шестиосевую систему координат.

Грудные отведения: униполярные (однополюсные) - один электрод активный, расположен в определенной точке на поверхности грудной клетки (+); другой -электрод сравнения (нулевой) получен путем соединения всех трех электродов конечностей. Сигнал от него через дополнгительное сопротивление подается на отрицательный «вход» электрокардиографа.

Оси грудных отведений расположены в горизонтальной плоскости.

19. Амплитудно-временные характеристики электрокардиограммы здорового человека Анализ электрокардиограммы здорового человекаРабота 5.8 - стр.188

20. Определение электрической оси сердца по стандартным отведениям ЭКГ Алипов

Что называют осью отведения? В каких единицах и как определяют положение оси отведения?

Ось отведения - условная линия, соединяющая два электрода данного ЭКГ-отведения. Положение оси отведения определяют величиной угла, образованного положительной полуосью данного отведения и положительной полуосью 1 стандартного отведения (горизонтальная линия), условно принятой за 0.

Укажите положение осей стандартных отведений (I, II, III) в трехосевой системе координат.

I стандартное отведение 0 о ; II стандартное отведение +60 о ; III +120 о .

12. Укажите направление осей однополюсных усиленных отведений от конечностей (aVR, aVL, aVF) в шестиосевой системе координат.

aVF +90; aVR + 210 (-150); aVL +330 (-30).

. В какой плоскости преимущественно регистрируются потенциалы электрического поля сердца с помощью стандартных и усиленных однополюсных отведений от конечностей и грудных отведений?

С помощью отведений от конечностей - во фронтальной плоскости, с помощью грудных отведений - в горизонтальной плоскости.

Что называют средним результирующим вектором ЭДС сердца?

Среднюю величину и направление суммарного вектора ЭДС сердца в течение всего периода распространения волны деполяризации или реполяризации по соответствующим отделам сердца.

Сколько средних результирующих векторов ЭДС сердца в течение сердечного цикла принято различать? Как их называют и обозначают?

Три вектора: вектор деполяризации предсердий (Р), вектор деполяризации желудочков (QRS), вектор реполяризации желудочков (Т).

Векторы ЭДС сердца. Вектор Р - предсердный вектор - нарвлен сверху вниз, справа налево. Вектор Q - 1-ый вектор деполяризации желудочков - направлен снизу вверх, слева направо (0.02 сек от начала деполяризации желудочков; возбуждение нижней части межжелудочковой перегородки).

Вектор R - 2-ой вектор деполяризации желудочков - направлен сверху вниз, справа налево (0.04 сек от начала деполяризации желудочков; возбуждение распространяется от верхушки сердца к основанию желудочков, причем от эндокарда к эпикарду).

Вектор S - 3-ий вектор деполяризации желудочков - направлен снизу вверх, слева направо, (0.06 сек от начала деполяризации желудочков; возбуждение основания левого желудочка).

Вектор Т - направлен сверху вниз, справа налево (реполяризация, происходит во всех отделах желудочков, причем от эпикарда к эндокарду).

Проекция суммарного моментного вектора (P,Q,R,S,T) на ось отведения соответствует определенному зубцу на кривой ЭКГ. Если проекция вектора направлена к (+) полюсу оси отведения, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный зубец). Если проекция вектора направлена к (-) полюсу оси отведения, зубец ЭКГ направлен вниз от изоэлектрической линии (отрицательный зубец). Амплитуда зубца пропорциональна длине проекции вектора на оси отведения. Если вектор проходит параллельно оси отведения - его проекция на ось данного отведения ( а значит и амплитуда зубца в данном отведении) максимальна. Если вектор проходит перпендикулярно к оси отведения - его проекция на ось данного отведения равна нулю (значит зубец в данном отведении отсутствует).

Электрическая ось сердца. - это проекция среднего результирующего вектора деполяризации желудочков на фронтальную плоскость. Средний результирующий вектор деполяризации желудочков получен путем суммации трех моментных векторов - Q, R и S. Направление электрической и анатомической осей сердца у взрослого здорового человека совпадают. У астеников это направление более вертикальное (правограмма), у гиперстеников - более горизонтальное (левограмма).

21. Исследование сердечного выброса СВ учебник

22. Оценка сократительной функции миокарда учебник

Показатели давления: изучают скорость увеличения давления в желудочках сердца во время изометрического сокращения (dP/dt). Для этого проводят зондирование полостей сердца и регистрацию кровяного давления с помощью обычного и дифференциального манометра. Показатель dP/dt для левого желудочка 2000мм Hg/сек, для правого желудочка 200 мм Hg/сек.

Показатели объема: (1) минутный объем крови МОК (или сердечный выброс СВ) - объем крови, который сердце перекачивает в артерии за минуту. МОК = СО х ЧСС; МОК=70 мл х 75 уд/мин = 5 л/мин (ЧСС - частота сердечных сокращений)

Сердечный индекс (СИ) = МОК, который приходится на 1 м 2 площади поверхности тела. (в норме 3-4 л/мин/м 2 ) - показывает, насколько сердечная деятельность удовлетворяет метаболические потребности организма в покое.

Методы определения МОК: (1)метод Фика, (2) метод разведения индикатора (см.учебник)

(2) систолический объем (СО) - объем крови, который поступает из желудочка в артерии во время одной систолы (примерно 70 мл). СО = МОК :ЧСС

Систолический объем правого и левого желудочков в норме одинаковый.

Фракция выброса (ФВ) = СО : КДО (в норме 0.5-0.7) - показывает, какую часть конечно-диастолического объема крови (КДО) желудочек перекачивает в артерии во время систолы.

Методы определения СО: УЗИ (ультразвуковое исследование) в настоящее время успешно заменило многие рентгеновские и др. методы. Данные УЗИ обрабатывает компьютер и расчитывает все важнейшие показатели деятельности сердца.

23. Исследование звуковых явлений - тонов сердца (аускультация, фонокардиография). Работа 5.10 - стр.191

Звуки, которые возникают во время сердечных сокращений, называются тонами сердца. Обычно при аускультации слышны основные тоны I и II (и только иногда можно услышать тоны III и IV - чаще у детей и спортсменов). Выслушивание тонов сердца дает информацию о состоянии клапанов (недостаточность) и отверстий (стеноз), а так же о состоянии миокарда..

ПРОИСХОЖДЕНИЕ ТОНОВ СЕРДЦА:

I тон (систолический) возникает в самом начале систолы желудочков за счет напряжения мышц желудочков и захлопывания атриовентрикулярных клапанов.

II тон (диастолический) возникает в самом начале диастолы желудочков за счет захлопывания полулунных клапанов оарты и легочной артерии.

III тон (диастолический) возникает во время быстрого пассивного наполнения желудочков.

IV тон (предсердный) возникает во время систолы предсердий (т.е. быстрого активного наполнения желудочков).

МЕСТА ВЫСЛУШИВАНИЯ ТОНОВ СЕРДЦА

I и II тоны хорошо слышны над всей поверхностью сердца. Чтобы оценить состояние каждого из четырех клапанов (два атриовентрикулярных и два полулунных клапана) найдены четыре точки на поверхности грудной клетки. В каждой из этих точек наилучшим образом выслушиваются звуки, создаваемые одним клапаном. Эти точки не совпадают с местом проекции клапанов на поверхность грудной клетки; звуки работающего клапана доносятся сюда током крови.

(1) Место выслушивания левого атриовентрикулярного клапана (I тон) - в области верхушки сердца (пятое межреберье слева на 1.5 см кнутри от среднеключичной линии).

(2) Место выслушивания правого атриовентрикулярного клапана (I тон) - по срединной линии у места прикрепления мечевидного отростка к грудине.

(3) Место выслушивания полулунного клапана аорты (II тон) - во втором межреберье справа

(4) Место выслушивания полулунного клапана легочной артерии(II тон) - во втором межреберье слева у края грудины.

ЗАПИСЬ ТОНОВ СЕРДЦА НАЗЫВАЕТСЯ ФОНОКАРДИОГРАММОЙ.

При сопоставлении ФКГ и ЭКГ важно учесть, что I тон (ФКГ) возникает после зубца Q (ЭКГ) - во время зубца R (от зубца Q до I тона проходит фаза асинхронного сокращения, когда атриовентрикулярные клапаны еще открыты). II тон возникает в конце зубца Т (ЭКГ).

24. Определение артериального давления по методу Короткова и Рива-Роччи Работа 5.23 - стр.211

АД можно измерить прямым(кровавым) методом (введение иглы, катетера в артерию) и непрямым (бескровным) методом (пальпаторный метод Рива-Роччи или аускультативный метод Короткова).

25. Прямая регистрация артериального давления (3 типа волн на кривой АД) Работа 5.33 - стр.226

На кривой АД, записанной прямым методом, можно видеть волны 1-го порядка (это пульсовые волны частотой 70 в мин, связанные с сокращениями сердца), волны 2-го порядка (это дыхательные волны частотой 16 в мин, связанные с изменениями гемодинамики во время вдоха и выдоха), а также волны 3-го порядка (2-3 в мин), связанные с изменениями тонуса сосудодвигательного центра (например, при гипоксии ЦНС).

26. Экспериментальные исследования влияния блуждающего и депрессорного нервов на АД. Работа 5.33 - стр.226

27. Сопоставление кривых одновременной записи электрокардиограммы и фонокардиограммы Работа 5.11 - стр.193

28. Методы оценки работы клапанного аппарата сердца: аускультация, фонокардиография, эхокардиография, допплерография Работы 5.10,11,13,? - стр.191, 193,195

29. Методы оценки показателей насосной функции сердца: эхокардиография, метод Фика, Работа 5.13 - стр.195

Электрокардиография - теория и практика

image

Электрокардиография (ЭКГ) входит обязательной частью в алгоритм диагностики патологии сердечно-сосудистой системы, головного мозга (в том числе инсульта). Также дает функциональную характеристику работы сердца, его возможностей и запаса прочности.

Методика проста, досконально изучена и доступна в любом медицинском учреждении. Но мало записать ЭКГ, ее еще нужно правильно расшифровать. Здесь от врача требуется опыт и внимательность.

Техническое обоснование методики

ЭКГ основана на регистрации электрических потенциалов, которые возникают в сердечной мышце при ее ритмичных сокращениях. Человеческое ухо слышит это как стук сердца.

Для регистрации электрических импульсов, генерируемых сердечной мышцей, применяется прибор электрокардиограф. Аппараты разные, обладают разными возможностями. Аппаратура на цифровых технологиях помогает представить информацию, полученную во время ЭКГ в удобном виде, и даже сразу предлагает вероятный диагноз

Результат ЭКГ представляет собой особый график, который бывает сложно правильно интерпретировать. Но если расшифровку сделать профессионально, то можно составить мнение не только о функции сердца, но и процессах, происходящих во всем организме.

Одна лишь запись кардиограммы не позволяет сделать однозначные выводы о состоянии пациента. Поэтому ЭКГ дополняет комплекс обследования неврологического больного. Ее данные синхронизируются с другими инструментальными методиками.

Регистрировать электрические импульсы сердца научились после того, как были изобретены специальные усилители микротоков.

Попытки улавливать потенциалы мышц сердца (миокарда) в процессе сокращения и расслабления, предпринимались с XIX века.

Аппарат для снятия ЭКГ - электрокардиограф

Теоретическое обоснование методики

Сердце - мышечный орган. Его сокращение и расслабление сопровождаются изменениями электрических потенциалов внутри кардиомиоцитов и в межклеточном пространстве.

Изоэлектрические потенциалы сердца изменяются в зависимости от его состояния. Их регистрацию применяют в клинической практике с диагностической целью для выявления патологии сердечной мышцы. Как функционального (отмечается при вегетососудистой дистонии), так и органического (инфаркт, кардиосклероз), характера.

Откуда берется микроимпульс

Электрические импульсы возникают в сердечной мышце вследствие того, что ее клетки (кардиомиоциты), постоянно обмениваются с внеклеточной средой ионами натрия, калия, хлора и кальция. На определенном этапе возникает критическая разница потенциалов между внутренностью клетки и внешним пространством, что и приводит к возникновению короткого электроимпульса.

Каждая отдельная мышечная клетка, мышечное волокно и, соответственно, сердце в целом, являются источниками тока. Их электродвижущую силу можно измерить, поместив электрод непосредственно на мышцу, или недалеко от нее.

Упрощенно, сердце представляет собой электрический диполь. Два разноименных полюса его соединяются силовыми невидимыми линиями, в совокупности образующими электромагнитное поле вокруг органа.

Сердце как электрический диполь

Чтоб полно оценить электродвижущую силу, создаваемую диполем, необходимо помещать электроды для регистрации импульсов в разных областях этого поля.

Сердце, по сути, идентично источнику электрического поля, элементу питания с положительным и отрицательным полюсом. Между которыми ритмически проходит разряд, сопровождающийся сокращением мышцы.

Поэтому результат ЭКГ будет формироваться направлением силовых линий диполя и осью, на которой располагается электрод.

Что записывает электрокардиограф

Миокард состоит из мышечных клеток и волокон, в каждом имеется свое направление движения импульса, разряда. Направления движения импульса в отдельных таких элементах различаются. Поэтому на ЭКГ мы регистрируем суммарный потенциал кардиомиоцитов в конкретный момент времени. В результате отслеживаем вектор движения электроимпульса сердца.

В момент возбуждения мышцы сердца происходит сложное движение этого вектора в трех плоскостях пространства. По направлению от начальной точки сокращения (в норме - правое предсердие), через желудочки и до конечной - межжелудочковой перегородки.

Наглядно в графическом виде, движение этого вектора представляется при регистрации ЭКГ в одном из отведений, о которых расскажем ниже.

Эйнтховен предложил классические три отведения от конечностей. С их помощью оценивается движение вектора импульса сердца в плоскости, перпендикулярной земле (фронтальной). Для практической медицины эти данные имеют первоочередное значение.

Устанавливаемые прямо на грудную клетку электроды (по Вильсону), регистрируют путь импульса в горизонтальной плоскости. То есть, параллельной земле. Их данные предоставляют больше данных о характеристиках желудочков.

График ЭКГ

Результирующий импульс, вектор, улавливается и выводится в визуальном виде электрокардиографом.

В зависимости от типа прибора - на дисплей или бумагу. Результат при этом имеет сложной кривой линии с направленными вверх и вниз зубцами. На рисунке это P, Q, R, S, T. Зубец U бывает непостоянным и регистрируется у отдельных людей.

Рисунок стандартной ЭКГ

Высота и глубина зубцов на электрокардиограмме определяется не только силой генерирующих их импульсов, но и удаленностью электрода от их источника. С удалением от источника тока, электрод воспринимает импульсы как более слабые. На расстоянии свыше 12 см, эта зависимость прослеживается нечетко.

Отведения записи ЭКГ

В специализированных учреждениях еще применяют чреспищеводные электроды и два, помещаемые на спину. В рутинной клинической практике их не используют.

Впервые зарегистрировать биоэлектрические импульсы сердца с помощью двух электродов, удаленных от него, удалось в 1887 году голландцу Виллему Эйнтховену.

Затем добавили грудные монополярные электроды (предложил американец Вильсон). И самыми последними, исторически, стали применять усиленные отведения (по Гольдбергеру). Эти методики мы рассмотрим ниже.

Сейчас сложился стандарт, что кардиограмма снимается в 12 поверхностных отведениях. Датчики крепятся по одному на конечности и шесть прямо на кожу грудной клетки:

  • первое стандартное отведение - электрод красного цвета к правому запястью (I);
  • второе стандартное отведение - желтый датчик на левое запястье (II);
  • третье стандартное отведение - датчик с зеленой окраской на левую лодыжку (III);
  • и шесть униполярных грудных электродов, крепящихся непосредственно над областью сердца.

Схема установки грудных электродов

К лодыжке справа крепится заземляющий электрод черного цвета.

С рук и ног записываются 3 отведения (рука правая, левая и левая лодыжка), еще 3 с усилением (по Гольдбергеру). В сумме с 6 электродами с грудной клетки (по Вильсону) и получается 12 отведений. Это минимальный объем регистрации ЭКГ.

Путь вектора по треугольнику Эйнтховена

При регистрации стандартных биполярных отведений, между активными электродами (красный, желтый, зеленый), проводится воображаемая линия. Ее называют осью отведения.

Три оси отведений образуют собой треугольник, который носит имя Эйнтховена. Из точки локализации сердца, к сторонам треугольника проводят перпендикуляры. Места пересечений этих высот теугольника делят оси на положительную и отрицательную части.

Соответственно, электродвижущая сила отдельных участков сердечной мышцыпроецируется на положительную на или отрицательную часть оси. От этого зависит направление зубца на электрокардиограмме.

В качестве положительных регистрируются зубцы P, R, T, а в качестве отрицательных - Q, S, в отдельных отведениях - P и T. Названия зубцам дал сам Эйнтховен в 1895 году.

Схема формирования стандартных отведений ЭКГ

Для упрощения анализа электрокардиограммы и отслеживания вектора электродвижущей силы (ЭДС) сердечной мышцы, допускается смещение воображаемых осей биполярных отведений так, чтобы они проходили через центр сердца.

В итоге получаем систему координат с тремя осями, углы между которыми равны 60°. Так, как и в классическом треугольнике Эйнтховена.

Такое смещение не изменяет результата ЭКГ, так как полученные оси параллельны исходным. Следовательно, проекции вектора электродвижущей силы на них аналогичны.

На ленте ЭКГ или экране аппарата, стандартные отведения обозначаются просто римскими цифрами: I (первое), II (второе) и III (третье).

Усиленные отведения

ЭКГ от трех стандартных отведений от конечностей, дополняется тремя усиленными отведениями. Методику предложил в 1942 году американский кардиолог Гольдбергер.

Роль положительного, активного полюса, отводится одному из электродов стандартного отведения, а отрицательный полюс формируется за счет соединения двух других.

График ЭКГ, записанный по методу Гольдбергера, маркируется не так, как стандартные по Эйнтховену. Здесь применяются английские буквы:

  • первая буква - «a» - augmentet - «дополненный, усиленный»;
  • вторая - «V» - voltage - «напряжение»;
  • третья буква обозначает, какая конечность играет роль положительного полюса: r - right - правая рука, l - left - левая рука, f - foot - левая нога.

Часть оси при униполярном отведении, идущая от центра сердца к «активной» конечности, считается положительной. Та ее часть, которая продолжается за центром сердца - отрицательная.

Схема формирования усиленных отведений

Частично, оси усиленных отведений совпадают с осями стандартных.

Так, кривая, полученная в отведении aVl, похожа на кривую первого отведения. График aVr является практически зеркальным отражением перевернутого второго отведения. В свою очередь, aVf похожа и на второе, и на третье отведение.

Грудные электроды

В 1934 году, еще до Гольдбергера, Вильсоном была разработана система униполярных отведений. Используется она и поныне. Применяется шесть активных электродов, каждый помещается на строго установленную точку грудной клетки. Роль «массы», отрицательных электродов, играют три стандартные, с конечностей. Они объединяются между собой, дополняются сопротивлением. Их общий потенциал приблизительно равен 0,2 mV и, таким образом, приближается к нулевой отметке.

В настоящее время шесть грудных отведений по Вильсону используются при электрокардиографии всегда. Обозначаются латинской литерой V и цифрой от 1 до 6.

Для записи каждого грудного отведения предусмотрено стандартное место:

  • V1 - первый электрод помещается сразу справа от грудины, на уровне четвертого межреберья.
  • V2 - устанавливается аналогично в том же межреберье, но на этот раз сразу слева от грудины.
  • V3 - теоретически, точка установки расположена по окологрудинной линии в четвертом межреберье. На практике же, это место определяется как расположенное между вторым и четвертым электродами.
  • V4 - электрод устанавливается в пятом межреберном промежутке, по линии, проведенной через середину левой ключицы.
  • V5 - электрод находится в том же межреберье. Но на его пересечении с линией, проведенной вертикально через передний край подмышечной впадины.
  • V6 - располагается в пятом межреберном промежутке по средней подмышечной линии.

Установленные грудные электроды для ЭКГ

Грудные отведения существенно дополняют ЭКГ, снятую со стандартных и усиленных отведений. Потому что они дают информацию о перемещении ЭОС в горизонтальной плоскости. А от конечностей получаем движение вектора в плоскости фронтальной.

Шесть осей

В 1943 году Бейли попробовал совместить оси стандартных и усиленных отведений. В результате чего вместо трехосевой, Эйнтховенской, получилась система координат с шестью осями. Считается, что так лучшим образом отражается перемещение электрической оси сердца во фронтальной плоскости в процессе сердечного цикла.

В системе Бейли все шесть осей проходят через воображаемую середину сердца. По расположению относительно электрода с «+» или «-» знаком, оси делятся, в свою очередь, на положительную и отрицательную части.

Следует помнить о том, что электрокардиографическая кривая в каждом отведении отражает лишь проекцию ЭДС сердца на одну из шести осей. Врачам нужно установить положение электрической оси сердца на фронтальной плоскости в отдельный момент времени. Поэтому необходимо сопоставлять данные сразу всех шести кривых.

Система Бейли позволила ввести такой диагностический критерий, как положение электрической оси сердца (ЭОС).

Величину отклонения ЭОС во время сокращения и расслабления оценивают в градусах. За нулевую отметку (0°) принимается воображаемая линия, проходящая между центром сердца и положительным электродом первого стандартного отведения.

Система осей по Бейли

Таким образом, положительные электроды других стандартных и усиленных отведений имеют следующее расположение:

  • отведение II +60°;
  • усиленное aVf +90°;
  • третье стандартное +120°;
  • усиленное aVl -30°;
  • усиленное aVr -150°.

Оси aVl и стандартного II, aVf и первого отведения, aVr и III стандартного отведения взаимоперпендикулярны.

Проходит она по-разному в зависимости от анатомического расположение органа: вертикально у астеников, горизонтально у гиперстеников.

Если анатомическая локализация сердца и электрическая его ось не совпадают, это важный диагностический критерий патологии.

Алгоритмы анализа ЭКГ в амбулаторной практике

Рассмотрены алгоритмы интерпретации электрокардиограммы. Предлагаемые алгоритмы позволяют максимально быстро ответить на первый важный вопрос, встающий перед амбулаторным врачом: «норма — патология», а далее, опираясь на близкий и понятный для практикующе

Algorithms of electrocardiography were considered. The suggested algorithms allow to answer the first, most important question asked by outpatient doctor, as fast as possible: «norm or pathology», and, furthermore, basing on the clinical principle of diagnostics, close and comprehensible for the practicing doctor: «symptom — syndrome — nosology», formulate electrocardiological conclusion.

Электрокардиография (ЭКГ), несмотря на более чем 100-летнюю историю применения в клинической практике, до сих пор остается востребованным методом диагностики сердечно-сосудистой патологии. Еще в начале 20 века Владимир Филиппович Зеленин впервые начал проводить систематические электрокардиографические исследования пациентов в клинике [1]. Особую значимость метод имеет в амбулаторной общеврачебной практике благодаря информативности и доступности. Наличие портативных аппаратов дает возможность многократного применения, в том числе на дому.

Важно, чтобы каждый врач, использующий данный метод, мог быстро и правильно трактовать полученные данные. Сегодня в арсенале врача имеется большое количество доступной литературы по клинической электрокардиографии, которая, как правило, адресована врачам функциональной диагностики 2.

Разработанные нами алгоритмы анализа ЭКГ обобщают и делают данные специальной литературы более доступными для врачей первичного звена здравоохранения. Практическое применение данных алгоритмов на практике, на протяжении многолетнего опыта преподавания врачам общей практики, свидетельствует о рациональности и эффективности представленных приемов анализа электрокардиограмм для освоения основ электрокардиографии и их использования в клинической практике [7].

Основная цель использования данных алгоритмов — облегчить освоение приемов интерпретации электрокардиограмм с помощью упрощенных, но в то же время академичных методов анализа ЭКГ. Предлагаемые алгоритмы позволяют максимально быстро ответить на первый важный вопрос, встающий перед амбулаторным врачом: «норма — патология», а далее, опираясь на близкий и понятный для практикующего врача клинический принцип диагностики «симптом — синдром — нозология», сформулировать электрокардиографическое заключение.

На электрокардиограмме выявляются признаки отклонения от нормы (ЭКГ-симптомы), группирующиеся одним механизмом развития в ЭКГ-синдромы, и при сопоставлении с возрастом, полом, конституцией пациента, клиникой заболевания формулируется электрокардиографическое заключение (ЭКГ-диагноз).

Основой клинического диагноза являются особенности клинической картины заболевания (дебют, факторы риска, клинические симптомы и синдромы, темпы прогрессирования), и электрокардиография играет важную, но вспомогательную роль.

Для интерниста, не владеющего специальными знаниями функциональной диагностики, необходим строгий порядок анализа ЭКГ. Использование алгоритма предполагает строгую последовательность анализа основных элементов электрокардиограммы, который должен включать следующие параметры:

  • оценка контрольного милливольта (стандартный милливольт = 10 мм);
  • оценка скорости регистрации ЭКГ (50 мм/сек или 25 мм/сек);
  • определение основного ритма (синусовый, эктопический);
  • определение правильности ритма (равенство интервалов R-R; максимальное и минимальное расстояния R-R отличаются друг от друга менее чем на 0,15 сек);
  • подсчет частоты сердечных сокращений (ЧСС = 60: R-R (сек) или по линейке);
  • характеристика зубцов, интервалов, сегментов (табл.);
  • определение вольтажа (достаточный — если хотя бы в одном стандартном или однополюсном отведении амплитуда комплекса QRS > 5 мм и хотя бы в одном из грудных отведений > 8 мм);
  • определение электрической оси сердца;
  • электрокардиографическое заключение;
  • сопоставление данных ЭКГ с:
    • возрастом и конституцией пациента;
    • физиологическими особенностями (беременность и пр.);
    • клинической картиной и давностью заболевания;
    • проводимой терапией.

    Для каждого элемента ЭКГ необходимо проанализировать определенные параметры, сопоставить их с нормой, выделить отклонения от нормы и сделать заключение.

    В табл. перечислены параметры, требующие анализа, и их нормальные характеристики, что позволяет выявить основные отклонения от нормы.

    Рис. 1-3 отражают непосредственно алгоритмы ЭКГ-диагностики по принципу «синдром — нозология». Следование алгоритму требует от врача последовательного и тщательного анализа ЭКГ и с большой вероятностью исключает возможность пропустить значимую патологию.

    Примеры ЭКГ

    Таким образом, предлагаемый анализ параметров элементов ЭКГ по определенному плану, являясь первым шагом, дает направление расшифровке электрокардиограммы с привлечением источников литературы по клинической медицине и функциональной диагностике.

    Литература

    1. Зеленин В. Ф. Электрокардиограмма, ее значение для физиологии, общей патологии, фармакологии и клиники // Воен.-мед. журн., 1910. Т. 228. С. 677.
    2. Орлов В. Н. Руководство по электрокардиографии. М.: Медицина, 1983. 528 с., ил.
    3. Сыркин А. Л. ЭКГ для врача общей практики. М.: ОАО «Издательство «Медицина», 2006. 176 с., ил.
    4. Эберт Г. Простой анализ ЭКГ: интерпретация, дифференциальный диагноз. М.: «Логосфера», 2010. 279 с.
    5. Материалы 13-го Конгресса «Клиническая электрокардиография», 25-26 апреля 2012 г., Калининград.
    6. Циммерман Ф. Клиническая электрокардиография. Второе издание. 2016. 424 с. ISBN 978-5-9518-0164-7, 0-07-14302-8
    7. Чегаева Т. В. Алгоритмы ЭКГ-диагностики в общеврачебной практике / Под редакцией академика РАН И. Н. Денисова. Москва, 2011.

    Т. В. Чегаева, кандидат медицинских наук
    Е. О. Самохина, кандидат медицинских наук
    Т. Е. Морозова 1 , доктор медицинских наук, профессор

    ФГАОУ ВО Первый МГМУ им. И. М. Сеченова МЗ РФ, Москва

    Алгоритмы анализа ЭКГ в амбулаторной практике/ Т. В. Чегаева, Е. О. Самохина, Т. Е. Морозова

    Для цитирования: Лечащий врач № 2/2018; Номера страниц в выпуске: 20-23
    Теги: сердце, электрокардиографическое заключение, диагностика

    ЭКГ: описание, норма и признаки патологий

    ЭКГ: описание, норма и признаки патологий

    Электрокардиография - это метод фиксации и изучения электрических полей, появляющихся в процессе работы сердца. Эти электрические поля дают точное представление о том как функционирует сердечно-сосудистая система. ЭКГ - это недорогой и эффективный метод диагностики в кардиологии.

    Принцип ЭКГ

    Работа аппарата ЭКГ заключается в том, что датчики, размещенные на теле пациента фиксируют вектор и силу электрического заряда, который создает сердце в процессе работы. Изменения вектора электрического заряда записывается на бумажной ленте в виде графика. Анализ этого графика позволяют сделать вывод о правильности работы сердца и возможных заболеваниях.

    • трех стандартных отведениях;
    • в 12 отведениях.

    Определяется разность потенциалов между:

    1. левой рукой и правой рукой - это показатель работы передней стенки сердца;
    2. между левой ногой и правой рукой - это суммарное отражение 1 и 3 отведений;
    3. между левой ногой и левой рукой - это показатель работы задней стенки сердца.

    Эти отведения образуют равносторонний треугольник Эйнтховена, вершины которого расположены на электродах, размещенных на конечностях. В середине треугольника находится электрический центр сердца. Электрод на правой не используется для отведений, а предназначен для заземления.

    Линия, соединяющая два электрода одного отведения, называется осью отведения. Когда вектор электрического заряда сердца находится в отрицательной части оси отведения, то записывается отрицательное отклонение - зубцы Q, S, если вектор находится в положительной части оси отведения, то записывается положительное отклонение - зубцы P, R, T.

    Помимо 3 стандартных отведений определяется разность потенциалов между:

    • между левой ногой и объединенными руками (aVF) - это показатель работы задне-нижней сердечной стенки;
    • между левой рукой и объединенными левой ногой и правой рукой (aVL) - это показатель работы левой передне-боковой стенки;
    • между правой рукой и объединенными левой ногой и левой рукой (aVR) - это показатель работы правой боковой стенки.

    Кроме этого используются шесть однополюсных грудных отведений, когда 6 электродов устанавливаются непосредственно на грудную клетку:

    • V1 и V2 - это показатель работы правого желудочка;
    • VЗ - это показатель работы межжелудочковой перегородки;
    • V4 - это показатель работы верхушки;
    • V5 - это показатель работы левого желудочка и передне-боковой стенки;
    • V6 - это показатель работы боковой стенки левого желудочка.

    Электрокардиограмма

    Что показывает ЭКГ

    • частоту сердечных сокращений;
    • ритм сердечных сокращений;
    • положение электрической оси сердца;
    • размеры и расположение сердца;
    • состояние сердца.

    При наличии патологий электрокардиография может выявить:

    • аритмию;
    • блокаду;
    • инфаркт миокарда;
    • ишемические изменения;
    • дистрофические процессы;
    • электролитные нарушения;
    • синдром Вольфа-Паркинсона-Уайта;
    • гипертрофию желудочков;
    • другие патологические процессы в сердце.

    Нормальная ЭКГ

    Нормальная ЭКГ

    На нормальной электрокардиограмме последовательно отображаются:

    1. нулевая линия;
    2. маленький зубец Р - в норме продолжительностью 0,7 - 0,12 секунд и амплитудой 0,5 - 2,5 мм;
    3. небольшой ровный сегмент PQ;
    4. отрицательный зубец Q (может отсутствовать) - в норме продолжительностью 0,03 секунд и амплитудой 0,3 - 0,5 мм;
    5. высокий положительный зубец R, в норме амплитудой 10-19 мм, и отрицательный зубец S, в норме амплитудой 0,2-0,5 мм;
    6. ровный сегмент ST;
    7. округлый положительный зубец Т - в норме продолжительностью 0,12-0,28 секунд и амплитудой не более четверти зубца R;
    8. очень низкий округлый положительный зубец U.

    Норма интервалов составляет:

    1. P-Q - продолжительность 0,2 - 0,8 секунд;
    2. P-R - продолжительность 0,18 - 0,2 секунд;
    3. QRST - продолжительность 0,38 - 0,55 секунд;
    4. QRS - продолжительность 0,06 - 0,1 секунд;
    5. S-T - продолжительность 0,35 - 0,44 секунд.

    Частота сердечных сокращений рассчитывается как:

    ЧСС = 60/(расстояние между зубцами R * K).
    K - коэффициент, зависящий от того с какой скоростью снята электрокардиограмма: при скорости 25 мм/c коэффициент - 0,04, а при 50 мм/c коэффициент равен 0,08.

    Нормой считается 50-90 ударов в минуту.

    Например, если расстояние R составило 20 мм, а кардиограмма снята при скорости 25 мм/c:

    ЧСС = 60/(20*0,04) = 75 ударов в минуту (в норме).

    Сердечный ритм оценивается по степени ритмичности кардиограммы. В норме она должны быть повторяющейся с возможными отклонениями до 10%. Для оценки отклонений сравниваются расстояние между зубцами R-R.

    При этом сердечный ритм в норме имеет синусовую природу, на что указывает зубец P, который положителен в 1 и 2 отведении и отрицателен в отведении aVR.

    В основном такие показатель говорят о том, что сердце здорово. Но стоит помнить, что расшифровку ЭКГ должен делать врач, только он может поставить правильный диагноз, поэтому не стоит расшифровывать электрокардиограмму самостоятельно.

    Патологии в ЭКГ

    Электрокардиограмма отличная от нормальной может указывать на различные заболевания и нарушения в работе сердца.

    Среди заболеваний могут быть:

    • аритмия;
    • гипертрофия предсердий;
    • блокада;
    • ишемическая болезнь;
    • перикардит;
    • миокардит;
    • тромбоэмболия;
    • гипокалиемия;
    • тахикардия;
    • нарушения ритма сердца;
    • инфаркт миокарда.

    Аритмия

    Аритмия характеризуется тем, что среди нормальных сокращений сердца есть и сокращения с отклонениями от нормы, сердце бьется реже или чаще, чем нужно, размер зубцов кардиограммы не одинаковый в каждом сердцебиении.

    Такие особенности ЭКГ могут говорить об аритмии.

    Аритмия может быть опасна и приводить к тромбоэмболии, сердечной недостаточности и даже остановке сердца при отсутствии своевременного лечения и помощи.

    Гипертрофия предсердий

    При гипертрофии левого предсердия на ЭКГ зубец P в 1 и 2 отведении является двугорбым, а в V1 отрицательным и продолжительными.

    Гипертрофия миокарда предсердий — это увеличение толщины миокардиальной стенки сердца, в условиях хронической перегрузки работы сердца объемом и давлением. Гипертрофия может привести к аритмии сердца.

    Блокада

    При блокаде ножек пучка Гиса на ЭКГ наблюдается уширением интервала QRS, а при полной блокаде сегмент ST и зубец Т становятся отрицательными.

    Блокада - это замедление проведения электрического сигнала по проводящей системе сердца. Приводит к замедление частоты сердечных сокращений до менее 50 ударов в минуту.

    Ишемическая болезнь

    При ишемической болезни сердца на ЭКГ сегмент ST слегка опущен, а зубец T имеет неглубокое отрицательное значение.

    Ишемическая болезнь представляет собой стеноз коронарных артерий в результате атеросклероза. В результате закупорки артерии может развиться инфаркт миокарда.

    Перикардит

    При перикардите на ЭКГ наблюдается незначительный подъем сегмента ST от восходящего колена зубца S, обращенный вогнутостью вниз, а зубец Т - положительный. При хроническом перикардите сегмент ST не приподнятый, а зубец Т - отрицательный и острый.

    Перикардит - это воспалительное поражение серозной оболочки сердца, проявляющееся в появлении жидкости в области перекарда и фиброзам, что приводит к затруднению работы сердца.

    При своевременной диагностике и лечении пациент полностью выздоравливает.

    Миокардит

    При миокардите на ЭКГ чаще наблюдается депрессия сегмента ST и отрицательный зубец Т. Но не всегда, бывают и другие особенности ЭКГ, которые указывают на миокардит, такие как изменение продолжительности интервала PQ, признаки, указывающие на блокады левой или правой ножки ПГ и нарушение ритма сердца.

    Миокардит - это поражение мышечной оболочки сердца в результате воспалительных процессов. Приводит к сердечной недостаточности, одышке, нарушению ритма сердца, дискомфорт, боли в области сердца и другие симптомы.

    При обнаружении миокардита положена госпитализация и лечение.

    Тромбоэмболия

    При тромбоэмболии легочных артерий на ЭКГ сегмент RS - Т смещен вверх и наблюдается отрицательный зубец T в отведениях V1-V4.

    Тромбоэмболия представляет собой закупорку сосуда тромбом и нарушение кровотока.

    При обнаружении тромбоэмболии необходима срочная госпитализация и лечение.

    Гипокалиемия

    При гипокалиемии на ЭКГ при начальной форме заболевания наблюдается большая волна U, а при тяжелой форме - депрессия сегмента ST и глубокий отрицательный зубец Т.

    Гипокалиемия - сниженная концентрация ионов калия в крови. Может вызывать утомляемость, слабость, нарушение дыхания, кишечную непроходимость и другие нарушения.

    Лечение направлено на восполнения уровня калия в организме.

    Тахикардия

    Тахикардия характеризуется увеличением частоты сердечных сокращений выше 90 ударов в минуту в покое. При тахикардии на ЭКГ может наблюдаться увеличенный сегмент QRS.

    Тахикардия это симптом, который указывает на наличие ряда заболеваний чаще эндокринной и нервной систем.

    При выявлении тахикардии требуется дальнейшая диагностика для выявления причины и ее устранения.

    Инфаркт миокарда

    При инфаркте миокарда на ЭКГ в одном случае может наблюдаться как отсутствие подъема сегмента ST и зубца Q, так и подъем и деформация сегмента ST, большой зубец Q и остроконечный отрицательный зубец T.

    Инфаркт миокарда - острое, угрожающее жизни заболевания при котором нужна быстрая госпитализация и оперативное лечение.

    Инфаркт миокарда возникает из-за тромбоза коронарной артерии, в результате чего возникает закупорка артерии, частичное или полное прекращение кровоснабжения и начало процесса отмирания тканей.

    Электрокардиография

    Как проходит диагностика ЭКГ

    Процедура электрокардиографии происходит безболезненно и быстро:

    1. Пациент заходит в диагностический кабинет ЭКГ.
    2. Снимает одежду по пояс и закатывает штаны, оголяя голени ног.
    3. Врач смазывает датчики гелем и прикрепляет к телу пациента, фиксируя их.
    4. Доктор просит пациента принять нужное положение тела на кушетке, стоя или на велоэргометре.
    5. Диагност включает аппарат ЭКГ и начинает записывать диаграмму.
    6. Врач снимает датчики с тела пациента, просит протереть тело салфетками от геля и одется.
    7. Доктор анализирует электрокардиограмму, ставит диагноз, дает рекомендации и дальнейшие указания.

    При суточном холтеровском мониторировании врач размещает датчики на теле пациента, которые подключены к небольшому портативному устройству, собирающими данные электрокардиографии непрерывно в течение суток. Датчики и устройство ЭКГ прячутся под одежду и пациент носит их 24 часа. Затем возвращается к врачу, снимает устройство и датчики. Доктор анализирует ЭКГ, делает выводы и ставит диагноз пациенту.

    Методы ЭКГ

    Велоэргометрия

    Расшифровка ЭКГ

    Расшифровкой электрокардиограммы занимается врач, только он может выявить заболевания, поставить правильный диагноз и дать дальнейшие направления. Человеку без медицинского образования заниматься расшифровкой ЭКГ не следует.

    При расшифровке электрокардиограммы диагност обращает внимание на продолжительность, амплитуду, форму, частоту, повторяемость и прочие параметры следующих элементов кардиограммы:

    • зубец Р;
    • сегмент PQ;
    • зубец Q;
    • зубец R;
    • зубец S;
    • сегмент ST;
    • зубец Т.

    Когда нужно делать ЭКГ

    Электрокардиографию следует делать в следующих случаях:

    • Направления терапевта или другого врача;
    • В профилактических целях 1 раз в год после 40 лет;
    • Боли в грудной клетке или под лопаткой;
    • Затрудненное дыхание;
    • Отек конечностей и лица;
    • Отдышка в состояния покоя;
    • Повышенное артериальное давление;
    • Хронические заболевания опорно-двигательного аппарата.

    Холтеровское мониторирование

    Стоимость ЭКГ в нашей клинике

    Мы оказываем следующие услуги в области кардиологии и ЭКГ диагностики:

    • Прием кардиолога первичный - 1500 рублей;
    • Прием кардиолога повторный - 1400 рублей;
    • ЭКГ с расшифровкой - 500 рублей;
    • ЭКГ без расшифровки - 250 рублей;
    • Расшифровка ЭКГ, сделанной в другой клинике - 300 рублей;
    • Суточное мониторирование ЭКГ по Холтеру - 2200 рублей;
    • Комплексное суточное мониторирование АД + ЭКГ по Холтеру - 3500 рублей;
    • Велоэргометрия (нагрузочные пробы) - 1800 рублей;
    • Программа "здоровое сердце" - 6500 рублей;
    • Суточное мониторирование АД - 1700 рублей;
    • Тропаниновый тест - 400 рублей.

    Отведения ЭКГ

    Стандартные двухполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удаленными от сердца и расположенными во фронтальной плоскости - на конечностях. Электроды попарно подключаются к электрокардиографу для регистрации каждого из трех стандартных отведений. Стандартные отведения от конечностей регистрируют при следующем попарном подключении электродов

    · I отведение - электрод левой руки (+) и электрод правой руки (-);

    · II отведение - электрод левой ноги (+) и электрод правой руки (-);

    · III отведение - электрод левой ноги (+) и электрод левой руки (-).

    Знаками (+) и (-) здесь обозначено соответствующее подключение электродов к положительному или отрицательному полюсам гальванометра, т. е. указаны положительный и отрицательный полюс каждого отведения.


    Как видно из рисунка 4 три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена), вершинами которого являются правая рука, левая рука и левая нога с установленными там электродами. В центре равностороннего треугольника Эйнтховена расположен электрический центр сердца, или точечный единый сердечный диполь, одинаково удаленный от всех трех стандартных отведений.

    Гипотетическая линия, соединяющая два электрода, участвующие в образовании электрокардиографического отведения, называется осью отведения. Осями стандартных отведений являются стороны треугольника Эйнтховена. Перпендикуляры, проведенные из центра сердца, к оси каждого стандартного отведения, делят каждую ось на две равные части: положительную, обращенную в сторону положительного (активного) электрода (+) отведения, и отрицательную, обращенную к отрицательному электроду (-). Если ЭДС сердца в какой-либо момент сердечного цикла проецируется на положительную часть оси отведения, на ЭКГ записывается положительное отклонение (положительный зубец). Если ЭДС сердца проецируется на отрицательную часть оси отведения, на ЭКГ регистрируются отрицательные отклонения (отрицательный зубец).


    Усиленные отведения от конечностей.Усиленные отведения от конечностей были предложены Гольдбергером в 1942 г. Они позволяют зарегистрировать разность потенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения (правая рука, левая рука или левая нога), и средним потенциалом двух других конечностей. Таким образом, в качестве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Гольдбергера, который образуется при соединении через дополнительное сопротивление двух конечностей.

    Три усиленных однополюсных отведения от конечностей обозначают следующим образом:

    aVR - от правой руки и объеденного электрода (ЛН+ЛР);

    aVL - от левой руки и объеденного электрода (ЛН+ПР);

    aVF - от левой ноги и объеденного электрода (ЛР+ПР).

    Оси усиленных однополюсных отведений от конечностей получают, соединяя электрический центр сердца с местом наложения активного электрода данного отведения, т.е. фактически - с одной из вершин треугольника Эйнтховена (рис.5).

    Грудные отведения ЭКГ.Грудные однополюсные отведения, предложенные Вильсоном в 1934 г., регистрируют разность потенциалов между активным положительным электродом, установленным в определенных точках на поверхности грудной клетки, и отрицательным объединенным электродом Вильсона.

    Последний образуется при соединении через дополнительные сопротивления трех конечностей (правой и левой рук, левой ноги), объединенный потенциал которых близок к нулю.

    Обычно для записи ЭКГ используют 6 общепринятых позиций грудного электрода на передней и боковой поверхности грудной клетки, которые в сочетании с объединенным электродом Вильсона образуют 6 грудных отведений. Грудные отведения обозначаются заглавной латинской буквой V (потенциал, напряжение) с добавлением номера позиции активного положительного электрода, обозначенного арабскими цифрами.

    Рис. 6 Расположение грудных электродов

    · Отведение V1 - активный электрод установлен в четвертом межреберье по правому краю грудины.

    · Отведение V2 - активный электрод расположен в четвертом межреберье по левому краю грудины.

    · Отведение V3 - активный электрод находится между второй и четвертой позицией, примерно на уровне четвертого ребра по левой парастернальной линии.

    · Отведение V4 - активный электрод установлен в пятом межреберье по левой срединно-ключичной линии.

    · Отведение V5 - активный электрод расположен на том же горизонтальном уровне, что и V4 по левой передней подмышечной линии.

    · Отведение V6 - активный электрод по левой средней подмышечной линии на том же горизонтальном уровне, что и электроды отведений V4 и V5

    Итак, в клинической электрокардиографии наиболее широкое распространение получили 12 электрокардиографических отведений (3 стандартных, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений). Электрокардиографические отклонения в каждом из этих отведений отражают суммарную ЭДС всего сердца, т. е. являются результатом одновременного воздействия на данное отведение изменяющегося электрического потенциала в левых и правых отделах сердца, в передней и задней стенке желудочков, в верхушке и основании сердца и т. д.

    Об этом полезно знать:

    Целеполагание в педагогике Цель является системообразующим (определяющим) элементом педагогической деятельности.
    Истинный суицид Истинное суицидальное поведение - это осознанные действия.
    Торможение в ЦНС (И.М. Сеченов), его виды и роль. Современное представление о механизмах центрального торможения. Тормозные синапсы и их медиаторы. Ионные механизмы ТПСП Торможение - активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения.
    Культура и цивилизация Проблема соотношения цивилизации и культуры многогранна. Сложность анализа этой проблемы в том.
    Идеальное государство по Платону. Государство, по Платону, возникает из-за естественной потребности людей к объединению с целью облегчения условий своего существования.

    Читайте также: