Механизм ассиметрии клетки через динамику микротрубочек и моторов

Обновлено: 11.05.2024

Микротрубочки состоят из 13 параллельных тубулиновых протофиламентов (нитей), образующих полые цилиндры диаметром 25 нм и длиной в несколько микрометров. Каждая нить собрана из гетеродимерного белка тубулина, состоящего из двух глобулярных субъединиц - α- и β-тубулина. Сборка микротрубочек осуществляется в т.н. центре организации микротрубочек в центросоме. Микротрубочки - динамичные структуры, постоянно подвергающиеся полимеризации и деполимеризации.

Полимеризация и деполимеризация микротрубочек. Удлинение (рост) микротрубочек происходит за счет полимеризации молекул тубулина. В каждой микротрубочке различают (+)-конец и (-)-конец. Микротрубочки постоянно подвергаются полимеризации и деполимеризации с (+)-конца, тогда как с противоположного (-)-конца (если он не занят стабилизирующим белком) тубулиновые гетеродимеры отделяются от микротрубочек. Как только прекращается добавление новых диаметров к растущему концу, в этом мемте сразу начинается разборка полимера. Повторяющиеся раунды полимеризации и деполимеризации характеризуют динамическую нестабильность микротрубочек. Цитозольные белки, способные связываться с концами микротрубочек и стабилизировать их, относят к семейству ассоциированных с микротрубочками белков.

Функции микротрубочек.Микротрубочки участвуют в поддержании формы клетки, антероградном и ретроградном аксоном транспорте макромолекул, органелл и секреторных везикул, фагоцитозе и функции лизосом. Микротрубочки образуют аксонемы и базальные тельца, обеспечивая подвижность жгутиков и ресничек, в составе центриолей они обеспечивают расхождения хромосом при делении клеток.

Молекулярные моторы. Применительно к микротрубочкам под этим термином понимают АТФазы (динеины и кинезины), одним доменом связывающиеся с тубулином микротрубочек, а другим - с различными мембранными органеллами (митохондриями, секреторными везикулами из комплекса Гольджи, элементами эндоплазматической сети, эндоцитозными пузырьками, аутофагосомами) или макромолекулами. За счет расщепления АТФ моторные белки перемещаются вдоль микротрубочек и таким образом транспортируют ассоциированные с ними органеллы и макромолекулы. При этом кинезиновый мотор направлен к (+)-концу, а динеиновый - к (-)-концу микротрубочки.

Тубулин-кинезиновый хемомеханический преобразователь обеспечивает внутриклеточный транспорт органелл и перемещение хромосом вдоль микротрубочек в ходе клеточного деления. Перемещение органелл вдоль микротрубочек с участием кинезинов осуществляется в направлении (+)-конца микротрубочек.

Тубулин-динеиновый хемомеханический преобразователь отвечает за направленный транспорт макромолекул и органелл к (-)-концу микротрубочек. В составе аксонемы тубулиновый молекулярный мотор приводит в движение жгутик сперматозоида и реснички мерцательных клеток.

Аксонемасостоит из 9 периферических пар микротрубочек и двух расположенных центрально одиночных микротрубочек. В каждой периферической паре различают субфириллу А, содержащую 10-11 тубулинвоых протофиламентов, и субфибриллу В, содержащую 13 протофиламентов. Смежные пары микротрубочек соединены между собой эластичным белком нексином. С субфибриллой А связаны наружные и внутренние ручки. В их состав входит белок динеин, сожержащий 2-3 глобулярные головки, соединенные с гибкой фибриллярной частью молекулы. Основание фибриллярной части вплетено в микротрубочку (субфибрилла А). Глобулярная головка обладает АТФазной активностью. При расщеплении АТФ она скользит по поверхности микротрубочки (субфибрилла В) соседней пары по напарвлению к ее (-)-концу. Этот механизм аналогичен скольжению элементов актомиозинового хемомеханического преобразователя в мышце. Аксонема - основной структурный элемент реснички и жгутика.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных в основании реснички или жгутика; служит матрицей при организации аксонемы.

Ресчника- вырост клетки длиной 5-10 мкм и шириной 0,2 мкм, содержащей аксонему. Реснички присутствуют в эпителиальных клетках воздухопроводящих и половых путей, перемещают слизь с инородными частицами и остатками отмерших клеток и создают ток жидкости около клеточной поверхности.

Жгутик, как правило, не встречается в количестве более двух на клетку. В сперматозоиде человека жгутик имеет длину 50-55 мкм, толщину 0,2-0,5 мкм и содержит аксонему.

Киноцилия - (греч. kinesis, движение; cilium, ресничка) специальная рпганелла подвижности на поверхности волосковых клеток органа равновесия.

Клетки под давлением


Обзор

Автор
Редактор

Статья на конкурс «био/мол/текст»: Вы не задумывались, что привычные нам животные, да и мы сами, могли бы выглядеть иначе? Жизнь началась с того, что образовалась клетка — единица всего живого, развитие которой происходило под действием внешних физических полей: гравитационного и электромагнитного. Изменение внешнего воздействия приводит к изменению механического напряжения внутри клетки, которое должно сопровождаться адекватной реакцией клетки без потери способности к самовоспроизведению и полноценной жизнедеятельности. Выраженность и последствия деформаций будут зависеть от собственных механических характеристик клетки и чувствительности ее механосенсоров, на роль которых претендуют различные структуры. Рассмотрим, что же известно о четырех из них: внеклеточном матриксе, механочувствительных ионных каналах, подмембранном и внутреннем цитоскелете.

Обратите внимание!

Эта работа опубликована в номинации «лучшая обзорная статья» конкурса «био/мол/текст»-2015.

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Клетка — структурная единица всего живого — развивается под постоянным действием внешних стимулов — тепла, пищи, регуляторных гормонов. Однако есть еще один тип стимуляции, который должна воспринимать живая клетка — механическое напряжение. Изменение внешнего воздействия (его вектора, амплитуды) закономерно должно приводить к изменению механического напряжения внутри клетки. Степень выраженности и последствия этих деформаций для жизнедеятельности клетки будут зависеть от собственных механических характеристик клетки и чувствительности ее механосенсоров [1], в роли которых могут выступать различные структуры, способные чувствовать механическую стимуляцию и реагировать на нее. Можно выделить четыре основных типа механосенсоров: внеклеточный матрикс, механочувствительные ионные каналы, подмембранный цитоскелет и комплексы компонентов внутреннего цитоскелета. Рассмотрим, что же известно на сегодня о каждом из них.

Внеклеточный матрикс и мембранные белки

Первый претендент на роль механосенсора — внеклеточный матрикс и связанные с ним мембранные белки (рис. 1). Одной из причин такого предположения послужила реакция этих структур на внешнее механическое воздействие. Было показано, что приложение растягивающей силы к культуре нейронов или гладкомышечных клеток через внеклеточный матрикс приводит к увеличению полимеризации микротрубочек [2, 3].

Мембранные белки

Cтроение молекулы интегрина

Каким же образом это могло произойти? Попробуем рассмотреть этот процесс на молекулярном уровне. Интегрины — трансмембранные гетеродимерные клеточные рецепторы, формирующие связи с различными белками внеклеточного матрикса (фибронектином, витронектином, коллагеном, ламинином) и передающие межклеточные сигналы, образуют первичный участок трансдукции и поэтому могут рассматриваться как механосенсор. Что совсем не удивительно, ведь интегрины — неотъемлемые участники процессов клеточной адгезии, пролиферации и перемещения.

Интегриновые рецепторы — это гетеродимеры, состоящие из одной α- и одной β-субъединицы (рис. 2). У человека синтезируется как минимум 18 α- и 8 β-субъединиц, из которых в разных комбинациях строится 24 типа интегрина [4], различающихся по специфичности взаимодействия с лигандами. Субъединицы α определяют специфичность интегрина к лиганду, а β связаны со структурами цитоскелета и обеспечивают передачу сигнала внутри клетки. Интегрины присутствуют в мембране постоянно, но для связывания лиганда они должны активироваться, а это происходит, например, при взаимодействии других клеточных рецепторов с цитокинами [5].

У внутренней поверхности клеточной мембраны в зонах образования интегриновых контактов с адгезивными белками внеклеточного матрикса целый ряд белков собирается в фокально-адгезивный комплекс. Это существенно затрудняет анализ вклада каждого из них в механотрансдукцию и пока не позволяет выявить ведущую роль какого-либо из них. Однако представляется очевидным, что внешняя механическая сила может приводить к конформационным изменениям одного или нескольких белков фокально-адгезивного комплекса, запуская далее каскад нижележащих сигнальных путей [6].

Механочувствительные ионные каналы

Второй претендент — механочувствительные ионные каналы. В настоящее время они являются самым малоизученным классом ионных каналов и представляют особый интерес для понимания механизмов клеточной сигнализации.

Впервые такие каналы были обнаружены в электрофизиологических экспериментах с использованием метода патч-кламп (patch-clamp). Было выявлено, что при растягивании мембраны меняется катион-транспортная активность механочувствительного канала — в результате конформационных изменений липидного бислоя [6, 7] или воротных доменов самогό канала.

Наглядно это было представлено на наиболее просто устроенных живых организмах — бактериях. А именно — на механочувствительном канале MscL, представляющем собой пору большого диаметра с низкой ионной селективностью. Эксперименты показали, что увеличение натяжения мембраны, контролируемое путем варьирования глубины всасывания в пипетку, вызывает увеличение проводимости канала в случае, когда силы, действующие на канал, превышают определенную величину [8]. Авторы отметили, что напряжение в этом случае оказывалось чуть ниже (10 -2 Па·м), чем напряжение, приводящее к разрыву (6 × 10 -2 Па·м), что может иметь большое физиологическое значение, например, при разбухании бактериальной клетки вследствие осмотического шока.

В эукариотических клетках в качестве механочувствительных каналов можно рассматривать эпителиальные натриевые каналы ENaCs (рис. 3) — семейство ионных каналов из суперсемейства дегенрин/ENaC (DEG/ENaC), — обнаруженные в клетках различных натрий-абсорбирующих типов эпителия [9].

Эпителиальные Na+-каналы

Рисунок 3. Схема строения эпителиальных Na + -каналов. Предполагается, что каждая субъединица состоит из двух трансмембранных участков, выпетливания на поверхности клетки и N- и C-концевых доменов, находящихся внутри клетки. Рисунок из [9].

Накапливается всё больше доказательств того, что ENaC могут активироваться механическими силами; как минимум напряжение сдвига при ламинарном течении жидкости может быть адекватным стимулом, имеющим физиологическое значение [10, 11]. Также косвенным аргументом в пользу механочувствительности может служить тот факт, что гены этих высокоселективных Na + -каналов экспрессируются в тканях, которые наиболее подвержены механическим воздействиям, а именно — на которые действует напряжение сдвига: дистальный отдел нефрона [10, 12], эпителий легкого [13], сосудистая ткань 16, чувствительные нервные окончания, включая те, что участвуют в механосенсорных процессах [17]. Активность этих каналов служит лимитирующим фактором поглощения натрия и скорости трансэпителиального движения воды (осмоса) [18]. Таким образом, ENaC является регулятором транспорта ионов в почке, и именно с ним могут быть связаны механозависимые адаптивные ответы, существенные для обеспечения ионного гомеостаза.

Подмембранный цитоскелет

Третий претендент — подмембранный цитоскелет (рис. 4), роль которого в регуляции ионных каналов доказана в ряде исследований. Рассмотрим некоторые из них.

Актин-спектриновый цитоскелет эритроцитов

В эксперименте при обработке культуры клеток (например, К562) цитохалазином D* происходит активация натриевых каналов, а полимеризация актина на цитоплазматической стороне клеточной мембраны вызывает их инактивацию [19]. При этом в клетках линии К562 фрагментация актиновых филаментов, ассоциированных с плазматической мембраной, может быть основным фактором, влияющим на активность натриевых каналов в ответ на повышение внутриклеточной концентрации ионов кальция [20].

* — Цитохалазины — группа структурно родственных метаболитов плесневых грибов. Они связываются с быстро растущим концом актинового филамента и блокируют (иногда не полностью) как присоединение, так и отсоединение субъединиц на этом конце.

С помощью метода патч-кламп было показано, что актиновые микрофиламенты принимают участие в регуляции хлорных каналов [21, 22], Na + -K + -АТФазы [23], электровозбудимых натриевых каналов в клетках мозга [24], натриевых каналов в клетках реабсорбирующего эпителия [25].

Авторы работ, посвященных изучению богатых холестерином липидных микродоменов плазматической мембраны (рафтов) как фактора, определяющего активность интегральных мембранных белков и ионных каналов 27, считают, что нарушения структуры рафтов, обусловленные снижением уровня мембранного холестерина, препятствуют реализации клеточных функций, включающих перестройки актиновой сети [29, 32].

В клетках с пониженным содержанием холестерина наблюдалось повышение порога активации и снижение вероятности открытого состояния каналов. При этом измерения механозависимых токов в разных условиях и комплементарные данные флуоресцентной микроскопии свидетельствовали о том, что подавление активности механочувствительных каналов опосредовано реорганизацией актина, инициированной, по мнению ученых, нарушением целостности рафтов из-за снижения уровня мембранного холестерина [33, 34].

Внутриклеточные структуры

И последний по счету, но не по значимости претендент — внутриклеточные структуры. Хорошо известно, что внешнее силовое воздействие может привести к изменениям уровня экспрессии генов. При приложении силы через мембраносвязанные рецепторы в некоторых случаях деформируется ядро [35], то есть можно предположить прямое влияние внешних сил на хроматин, а значит, и на уровень экспрессии генов [36]. Силы в этом случае могут трансдуцироваться через цитоскелетную сеть к ядерной оболочке, а затем через ламининовую сеть (рис. 5) к хроматину. Кроме того, внешнее силовое воздействие может передаваться на микротрубочки, приводить к их разрыву, деполимеризации и запуску сигнальных путей [37].

Схема полимеризации ламинина

Рисунок 5. Схема полимеризации ламинина в базальной мембране. Ламинин связан по меньшей мере с тремя другими белками внеклеточного матрикса, образуя сеть в базальной ламине. Ламинины также связываются с интегриновыми рецепторами, которые вытягиваются от поверхности клеток, прикрепленных к базальной ламине. Рисунок из [9].

Следует отметить, что конформационные изменения различных белков могут претендовать на роль механосенсора, но прямых доказательств этого практически нет. Хотя существует как минимум один пример того, что биохимическая реакция обусловлена конформационными изменениями белков. Свернутые домены фибронектина могут быть выявлены при действии силы, растягивающей молекулу и провоцирующей формирование фибрилл. Этот процесс исследовался экспериментально, а также методами динамического молекулярного моделирования [38, 39], и в результате было показано, что сила 3-5 пН достаточна для разворачивания доменов, а дальнейшее увеличение силы до 5 пН может привести к удлинению исходной молекулы в пять раз [39, 40]. Эти уровни силы сравнимы с теми, которые, согласно оценкам, могут инициировать механотрансдукцию.

По сути, любой белок, участвующий в механотрансдукции от внеклеточных контактов внутрь клетки, может быть механосенсором и стимулировать разворачивание интегринов [41] и ассоциированных с ними белков [42].

Согласно теории Дональда Ингбера [43], цитоскелет в целом реагирует на изменения механического напряжения, передающиеся посредством внеклеточного матрикса и ассоциированных с ним интегринов, реорганизуя микрофиламенты и микротрубочки. В то же время кортикальный цитоскелет, как жесткий 3D-каркас, поддерживающий плазматическую мембрану, находится в напряженном состоянии во внешнем механическом поле [44]. Поэтому можно полагать, что практически все вероятные механизмы первичной механотрансдукции зависят от состояния подмембранного кортикального цитоскелета, целостность которого обусловливает механические свойства (жесткость) того или иного типа клеток.

Заключение

Участие клеточной механочувствительности во множестве физиологических процессов и довольно скудное количество безусловно установленных фактов делают рассматриваемую область исследований очень привлекательной для молекулярных биологов, цитологов и физиологов. Механозависимая регуляция процессов жизнедеятельности клетки может по праву считаться новым механизмом негуморальной регуляции. Выяснение вклада каждого возможного механосенсора будет способствовать расшифровке основ морфогенеза живого организма на ранних стадиях развития и при различных внешних параметрах.

Механика митоза

Вскоре после того, как немецкий патофизиолог Р.Вирхов в середине XIX в. сформулировал основной принцип клеточной теории в виде афоризма Omni cellula ex cellula («Всякая клетка - из другой клетки»), было установлено, что жизнь соматической клетки протекает циклически, начинаясь с деления и делением оканчиваясь. За полтора века, прошедшие с тех пор, получено множество новых данных об особенностях деления различных клеток. Стали понятны многие процессы организации и регуляции деления, их невероятная сложность. И все большее восхищение исследователей вызывает точность, с которой происходит разделение хромосом между будущими дочерними клетками. Именно о механизмах разделения хромосом (на примере клеток животных) и пойдет речь ниже.

Клеточный цикл - это последовательность закономерно сменяющих друг друга фаз от образования клетки в результате деления до либо разделения ее на дочерние клетки в следующем акте деления, либо гибели. У эукариот клеточный цикл состоит из интерфазы и собственно деления, или митоза. Каждой из этих фаз соответствуют определенные явления и процессы, которые позволяют разделить их на более мелкие стадии. У разных организмов количество и последовательности стадий клеточного цикла различаются.

Интерфаза значительно более длительна, чем митоз (обычно занимает не менее 90% всего времени клеточного цикла), и обычно подразделяется на три периода: пресинтетический (G1), синтетический (S) и постсинтетический (G2). На стадии G2 клетка может перейти к следующему делению или к состоянию покоя (G0). Переход к делению возможен только из стадии G2, поэтому, если клетка находится в состоянии G0, для продолжения деления ей необходимо вернуться в состояние G2. Стадия G1 может продолжаться от 2 ч до нескольких недель или даже месяцев, продолжительность стадии S 6-12 ч, а стадии G2 - от получаса до нескольких часов.

Собственно непрямое деление, или митоз, состоит из стадий кариокинеза (деления ядра) и цитокинеза (деления цитоплазмы). Разделение хромосом происходит на стадии кариокинеза, поэтому рассмотрим ее подробнее.

В первой фазе митоза - профазе - хромосомы спирализуются и становятся видны в световой микроскоп в виде тонких нитей. Клеточные центры, удвоение которых происходит на стадии S, расходятся к полюсам клетки. В конце профазы ядрышки исчезают, ядерная оболочка разрушается и хромосомы выходят в цитоплазму.

Затем клетка переходит в метафазу, начало которой называют прометафазой. В прометафазе хромосомы располагаются в цитоплазме довольно беспорядочно. Формируется митотический аппарат, в состав которого входит веретено деления и центриоли. Веретено деления - это система особых структур, микротрубочек (МТ), в делящейся клетке, обеспечивающая расхождение хромосом. Затем кинетохоры (центромеры) хромосом захватываются МТ, отходящими от обоих полюсов веретена деления, и через некоторое время хромосомы выстраиваются в экваториальной плоскости клетки. В метафазе хромосомы максимально спирализованы. Центромеры хромосом располагаются в экваториальной плоскости клетки независимо друг от друга. Совокупность хромосом в экваториальной плоскости клетки образует метафазную пластинку.

Наша справка

На следующей стадии деления - в анафазе - происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой. Сначала сестринские хроматиды расходятся к противоположным полюсам веретена деления, а сами полюса остаются неподвижными (анафаза А), а затем полюса веретена расходятся к противоположным концам клетки (анафаза В).

После этого клетка переходит в телофазу: веретено деления разрушается, хромосомы у полюсов клетки деспирализуются, вокруг них формируются ядерные оболочки. В клетке образуются два ядра, генетически идентичные исходному ядру.

С окончанием кариокинеза клетка переходит в стадию цитокинеза, на которой происходит разделение цитоплазмы и формирование мембран дочерних клеток. У животных цитокинез происходит путем «перешнуровывания» клетки. У растений цитокинез происходит иначе: в экваториальной плоскости образуются пузырьки, которые сливаются с образованием двух параллельных мембран. На этом митоз завершается, и дочерние клетки переходят в интерфазу.

Шесть стадий клеточного деления

На всех стадиях кариокинеза важнейшую роль играют МТ - их образование и пространственная ориентация, взаимодействие с кинетохорами хромосом, структурные изменения, создающие силы, необходимые для разделения хромосом, и, наконец, их разрушение. МТ входят в состав цитоскелета и играют важнейшую роль в поддержании и изменении формы клетки и направленном переносе внутриклеточных компонентов (везикул, органелл, белков и т.п.) в цитоплазме. В клетках животных несколько тысяч МТ. Все они растут из специальных образований, называемых центрами организации МТ (ЦОМТ). В клетке может быть 1-2 ЦОМТ. Исследования показали, что от центросомы отходят всего несколько десятков МТ, следовательно, МТ не обязательно связаны с центросомой. Центриоли же дают начало новым МТ, которые приходят на смену постепенно деполимеризующимся старым.

Центросома, или клеточный центр, - главный ЦОМТ и регулятор хода клеточного цикла в клетках эукариот. Центросома состоит из аморфного материала и пары центриолей - материнской и дочерней, расположенных строго определенным образом и образующих структуру, называемую диплосомой. (О структуре и функциях центросом можно прочитать, например, в журнале «Природа», 2007, №5.) Помимо участия в делении ядра, центросома играет важную роль в формировании жгутиков и ресничек. Центриоли, расположенные в ней, выполняют функцию центров организации для МТ аксонем жгутиков. У организмов, лишенных центриолей (например, у сумчатых и базидиевых грибов, покрытосеменных растений), жгутики не развиваются.

ЦОМТ могут репродуцироваться самостоятельно: новый центр образуется рядом с существующим, а затем отходит от него. До сих пор оставалось тайной, как это происходит. Но совсем недавно американские ученые, изучая экстракты центросом ооцитов моллюска Spisula solidissima, обнаружили, что центросомы содержат особые молекулы РНК. Учитывая, что центросомы имеют очень древнее происхождение и чрезвычайно консервативны, это открытие позволило предположить, что они имеют собственный генетический аппарат.

МТ представляет собой очень маленькую трубочку длиной несколько микрометров при наружном диаметре 25 нм. Она построена из 13 длинных «палочек» - протофиламентов, параллельных оси трубочки и расположенных по кругу. Протофиламент составлен из чередующихся глобул альфа- и бета-тубулина, причем в каждой паре таких глобул (димере тубулина) альфа-тубулин взаимодействует с бета-тубулином, а бета-тубулин - с альфа-тубулином ближайших соседних димеров, что и позволяет образоваться очень прочной цилиндрической конструкции. Как же такая конструкция может обеспечивать перемещение чего-либо внутри клетки?

Что касается органелл, белков и других компонентов клетки, то они перемещаются по МТ, прикрепляясь к белкам-моторам: динеинам и кинезинам, которые способны буквально «шагать» по МТ в определенном направлении, потребляя в качестве топлива АТФ. Хромосомы же прикрепляются к концам МТ, которые затем каким-то образом быстро растаскивают их к полюсам веретена деления.

Было известно, что длина МТ может быть постоянной, как, например, в жгутиках. Однако длина цитоплазматических МТ меняется постоянно: они то растут, то укорачиваются, могут исчезнуть совсем, потом опять начнут расти… Когда МТ в процессе роста достигает мишени, ее длина стабилизируется, но как это происходит, до сих пор не вполне ясно.

Экспериментально установлено, что МТ может находиться в трех основных состояниях: полимеризации, деполимеризации и катастрофы. Полимеризация - это присоединение одиночных молекул тубулина, находящихся в цитоплазме, к торцу трубочки (деполимеризация - обратный процесс). Альфа- и бета-субъединицы димера тубулина в цитоплазме сначала присоединяют по одной молекуле гуанозинтрифосфата (ГТФ), похожего по свойствам на АТФ, а затем уже могут присоединиться к торцу растущей МТ. Для роста МТ необходимо также наличие в цитоплазме некоторых специфических белков, присутствие ионов магния и отсутствие ионов кальция.

Пока с димером тубулина связаны две молекулы ГТФ, он находится в Т-состоянии, и при этом вся конструкция трубочки устойчива. Однако на бета-субъединице димера тубулина через некоторое время происходит гидролиз ГТФ, который превращается в гуанозиндифосфат (ГДФ), при этом весь димер переходит в D-состояние, а кольцо молекул тубулина на торце МТ становится напряженным, неустойчивым. В этом состоянии к торцу МТ уже не могут присоединиться новые димеры тубулина, и МТ переходит в состояние катастрофы. Поэтому рост МТ возможен только пока на конце МТ есть кольцо из Т-димеров тубулина, так называемая Т-шапочка. Если концентрация тубулина в цитоплазме невелика, димеры «Т-шапочки» могут успеть перейти в D-состояние, прежде чем к ним присоединятся новые Т-димеры и трубочка перейдет в состояние катастрофы.

Если при деполимеризации происходит отсоединение молекул тубулина по кольцу на торце МТ, то при катастрофе протофиламенты разъединяются, как отдельные проволочки, и стремятся закрутиться в колечки. При этом разборка МТ происходит очень быстро. Конец МТ, закрепленный в центросоме и защищенный от катастроф, называют «минус»-концом МТ, а другой конец, который либо нарастает, либо быстро разрушается - «плюс»-концом. В цитоплазме существует множество белков, которые могут взаимодействовать с тубулином в разных состояниях, влияя на скорость роста или распада МТ. Существенно, что белки-моторы умеют различать «плюс»- и «минус»-концы МТ: динеины движутся к «минус»-концу, а кинезины - к «плюс»-концу микротрубочки.

Каждой стадии митоза соответствует особое поведение МТ. Митотическое деление происходит с образованием специальной структуры - веретена деления, основой строения которого являются МТ, исходящие из двух клеточных центров, расположенных в полюсах клетки. Веретено деления состоит как бы из двух перекрывающихся в центральной части полуверетен, на концах которых находятся центросомы. В растительных клетках образование веретена деления происходит без участия центросом.Всего можно выделить три типа МТ: астральные, полюсные и кинетохорные. Кинетохорные МТ связывают центросому с кинетохором хромосомы. Они образуются в прометафазе. На стадии ранней профазы быстро растут астральные МТ, направленные радиально от каждого из двух клеточных центров. Астральные МТ тянутся от центросом к периферии клетки, их «плюс»-концы взаимодействуют с белками, закрепленными в клеточной мембране, по-видимому, с помощью динеинов, притягивающих центросомы к мембране.

В это же время появляются полюсные МТ, которые растут по направлению от одного клеточного центра к другому. Полюсные МТ имеют тенденцию объединяться в группы от двух до шести МТ (на стадии метафазы), в основном с МТ противоположного полюса. Так образуются полюсные нити, в которых МТ направлены антипараллельно, т.е. «плюс»-концами в противоположные стороны. Упомянутые выше моторные белки, взаимодействуя с антипараллельными МТ, приводят либо к стягиванию клеточных центров по направлению друг к другу или к их расталкиванию. Отсутствие или дефекты какого-либо из этих моторных белков приводят к нарушениям расхождения центросом и митоза в целом.

Кроме изменений в организации МТ, связанной с удвоением центросомы, изменяется и их динамика. Во время интерфазы МТ относительно длинные и стабильные, состояние роста длится в среднем около 10 мин. При переходе к митозу частота катастроф увеличивается примерно в 10 раз, поэтому состояние роста МТ укорачивается и становится меньше 1 мин. Эти изменения вызываются, в основном, специальными белками, контролирующими ход митоза, и приводят к тому, что МТ становятся нестабильными, быстро изменяющимися.

Благодаря тому, что на стадии прометафазы ядерная мембрана уже разрушена, МТ могут дотянуться до хромосом. Присоединение их к кинетохорам происходит случайно, при соприкосновении кинетохора с «плюс»-концом или боковой поверхностью МТ. В последнем случае (латеральное взаимодействие) хромосома начинает быстро, со скоростью 20-25 мкм/мин, двигаться к соответствующему полюсу веретена деления. Эта скорость сравнима со скоростью перемещения динеина вдоль МТ, но прямых данных об участии динеина в этом процессе пока нет. Затем латеральное взаимодействие заменяется концевым за счет разрушения МТ в кинетохоре, и длина МТ стабилизируется.

Кинетохор представляет собой трехслойную структуру, видимую на микрофотографиях как два темных слоя, разделенных светлым промежутком. Он имеет длину 0,3-0,6 мкм и толщину около 0,1 мкм. Один темный слой кинетохора связан с центромерой, другой - с МТ. К кинетохору могут быть прикреплены и МТ, не связанные с центросомой (в растительных и некоторых других клетках веретено деления образуется вообще без центросом). Полярность присоединения таких МТ та же: «плюс»-конец присоединен к кинетохору, а «минус»-конец находится вблизи полюса веретена. Такие МТ более стабильны, чем МТ, заканчивающиеся в полюсах веретена деления.

Направленный транспорт белков внутри клетки

В начале митоза кинетохоры хромосом расположены несимметрично относительно полюсов веретена деления, поэтому они быстрее захватываются МТ, идущими из ближайшего полюса. Однако до тех пор, пока сестринский кинетохор не будет захвачен МТ, идущей от другого полюса, и пара хромосом не будет расположена по экватору веретена деления, митоз не перейдет к следующей стадии - анафазе. Это обеспечивают специальные белки, входящие в состав системы контрольных точек митоза. Таких контрольных точек в клеточном цикле несколько. Только если предыдущая стадия митоза завершена нормально, они вырабатывают сигнал готовности к продолжению митоза.

К каждому их двух кинетохоров сестринских хроматид прикрепляется по 10-40 МТ, образующих кинетохорную нить. При этом скорость присоединения МТ к кинетохорам возрастает к концу метафазы примерно в 10 раз по сравнению с прометафазой. Это объясняется тем, что уже присоединившиеся к кинетохору МТ облегчают присоединение следующих МТ. Такой процесс называется кооперативным.

Нарушения митоза. При различных патологических процессах нормальное течение митоза нарушается. Выделяют 3 основных вида патологии:

1) повреждения хромосом (набухание, склеивание, фрагментация, образование мостов, повреждения центромеров, отставание отдельных хромосом при движении, нарушение их спирализации и деспирализации, раннее разъединение хроматид, образование микроядер;

2) повреждения митотического аппарата (задержка митоза в метафазе, многополюсный, моноцентрический и асимметричный митоз, трёхгрупповая и полая метафазы);

3) нарушения цитотомии.

Основная функция веретена деления - это обеспечение правильного разделения сестринских хроматид. Для направленного движения таких больших структур, как хроматиды, необходимо действие на них значительных сил. Эксперименты показывают, что существуют несколько типов таких сил.

Сила первого типа возникает за счет непрерывного наращивания «плюс»-конца МТ и деполимеризации «минус»-конца. Эти процессы (при равенстве их скоростей) приводят к тому, что димеры тубулина непрерывно перемещаются в сторону «минус»-конца, а длина трубочки при этом не меняется. Если заблокировать присоединение тубулина на «плюс»-конце МТ (добавлением таксола), то разборка МТ в центросомах все равно продолжается и центросомы начинают двигаться по направлению к хромосомам со скоростью, определяемой скоростью деполимеризации МТ. Определение скорости перемещения тубулина по таким МТ показало, что возникающая при этом сила обеспечивает до 25% скорости движения хромосом к полюсу веретена деления в анафазе. В изолированном из яйца лягушки митотическом веретене движение хромосом полностью обеспечивается этой силой.

Силы второго типа («полярный ветер») действуют на участки хроматид, не связанные с кинетохором. Экспериментально показано, что после отрезания плеч хромосом от центромеры они начинают двигаться к экватору веретена деления со скоростью около 2 мкм/мин и в конце концов занимают положение между полюсами веретена деления. Скорее всего, эти силы обусловлены взаимодействием связанных с хроматином белков-моторов (типа кинезина) с МТ.

Наконец, сила третьего типа - это сила, с которой кинетохорная нить тянет хромосому к полюсу веретена деления. Это главная сила, обеспечивающая расхождение хромосом в анафазе. Она имеет, по-видимому, несколько составляющих. Во-первых, в состав кинетохора входят моторные белки (динеин), которые могут взаимодействовать с боковой поверхностью МТ и вызывать перемещение кинетохора в сторону центросомы. Во-вторых, в кинетохоре имеются белки, которые способны существенно влиять на скорость роста или разрушения МТ в зависимости от сигналов системы контрольной точки, белки которой также находятся в кинетохоре. После прохождения контрольной точки и перехода клетки в анафазу скорость деполимеризации МТ в кинетохоре резко возрастает. В результате МТ начинает быстро сокращаться, развивая необходимую для движения хромосомы к полюсу силу. Кроме того, натяжение кинетохорных нитей возрастает даже при постоянной их длине за счет расхождения антипараллельных участков полюсных МТ и, как результат, увеличения их длины. Сила, генерируемая за счет этого процесса, тем меньше, чем больше длина полюсных МТ: упругость МТ конечна, поэтому при увеличении длины они начинают изгибаться, и сила, раздвигающая полюсы веретена деления, уменьшается. Следовательно, чем дальше друг от друга находятся полюсы веретена деления, тем меньше расталкивающая их сила.

Баланс перечисленных выше сил приводит сначала к выстраиванию хромосом по экватору веретена деления, а затем, как следствие изменения баланса, к их расхождению к полюсам. Надо отметить, что баланс этот динамический, а не статический, поэтому даже при стабильном расположении хромосом в плоскости экватора веретена деления, они постоянно смещаются то к одному полюсу, то к другому. Скорость таких колебательных движений - 2-3 мкм/мин. Пока точной модели этих колебаний нет.

Кратко суммируем сказанное выше. Важнейшей задачей митоза является правильное разделение сестринских хромосом, которое осуществляется с помощью веретена деления. Веретено деления образуется МТ, с которыми взаимодействуют белки-моторы (динеины и кинезины), кинетохоры, центриоли, мембранные белки. Белки-моторы могут связываться с белками различных внутриклеточных структур (например, с хроматином) и обеспечивают их перемещение по МТ в одну или другую сторону, осуществляемое за счет энергии гидролиза АТФ. Перемещение хромосом обеспечивается как за счет взаимодействия МТ с белками-моторами, так и за счет процессов роста или распада МТ. При этом именно соотношение скоростей последних двух процессов, регулируемое белками системы контрольных точек, обеспечивает, в основном, и выстраивание хромосом в экваториальной плоскости, и расхождение их к полюсам веретена деления.

Хотя непосредственно измерить силы, действующие со стороны МТ на хромосомы, не представляется возможным, многие детали молекулярных механизмов этих процессов позволят выяснить их адекватные модели. В последнее время стали появляться модели, связывающие биохимические и механические процессы в ходе митоза, но решающее слово, как всегда, остается за экспериментальными исследованиями, которые еще предстоит выполнить.

Перемешивание митохондрий при делении клеток

Клеточные органеллы, называемые митохондриями, играют ключевые роли в метаболизме клеток, и их наследование должно протекать в правильном порядке в ходе деления клетки. Это выражается в трех типах взаимодействий с актиновыми филаментами и в распределении митохондрий при делении клеток.

В 1855 году немецкий естествоиспытатель Рудольф Вирхов произнес фразу «Omnis cellula e cellula» — «Все клетки происходят из клеток». Иначе говоря, клетки возникают вследствие роста и деления существующих клеток. Генетическая информация, хранящаяся в хромосомах, передается следующему поколению во время деления клеток в сложно организованном процессе, называемом митозом. В ходе многих десятилетий биологи бились над расшифровкой молекулярной хореографии этого увлекательного процесса. Однако значительно меньше внимания уделялось наследованию органелл, называемых митохондриями, принципиально важных для энергетического метаболизма. Поскольку эти структуры клетки не могут быть образованы de novo, они должны быть правильно унаследованы. В своей статье в «Nature» Moore с соавт. [1] описывают этот процесс с беспрецедентной подробностью.

За динамику клеток ответственны два основных составляющих цитоскелета (сети белков, определяющих клеточную архитектуру). Это микротрубочки — структуры, служащие рельсами для переноса органелл на дальние расстояния (в масштабах внутриклеточного пространства — прим. перев.), и нити актина, опосредующие транспортировку на короткие расстояния и позволяющие изменять форму на внешней границе клетки в области, именуемой корой. При делении клеток происходит кардинальная перестройка цитоскелета. Микротрубочки создают структуру, называемую веретено деления, которая необходима для распределения хромосом в ходе клеточного деления, а позже актиновые филаменты формируют сократительное кольцо, способствующее непосредственному разделению клеток.

Во время митоза органеллы претерпевают значительную перестройку. В клетках человека митохондрии часто образуют соединительные сети большой протяженности, и эти митохондрии фрагментируются на многочисленные небольшие объекты, которые теряют связь с микротрубочками при делении клетки [2, 3]. Долгое время считалось, что разделение митохондрий во время деления клеток по большей части является пассивным процессом, но это мнение претерпевает изменение уже сейчас.

Около десяти лет назад учеными сообщалось об открытии необычного поведения актинового цитоскелета в клетках человека [4]. Как было обнаружено, кластер актиновых нитей появляется на ранних этапах митоза, а затем проходит по кругу через цитоплазму с постоянной угловой скоростью. Это было зафиксировано с помощью покадровой съемки клеток с флуоресцентными нитями в виде кружащихся волн (рис. 1), которые выглядели как дисплей радара [4]. Несмотря на то, что это явление было впечатляющим с визуальной точки зрения, функции его оставались неясными. Теперь Moore с соавт. проливают свет на эту загадку. Используя передовые технологии в световой микроскопии, авторы приводят доказательства того, что эти актиновые волны задействованы во фрагментации митохондрий во время митоза клеток человека. Как и разделение хромосом, наследование митохондрий зависит от динамических процессов, напрямую зависящих от цитоскелета, но оказывается, что эти события разделения происходят совершенно по-иному.

Moore с соавт. [1] сообщают о трех типах взаимодействия с актиновыми филаментами, способствующими распределению митохондрий при делении клеток человека. Используя современную микроскопию, авторы обнаружили, что митохондрии могут быть прикреплены к структурам, похожим на провода. Ранее сообщалось [4], что некоторые актиновые филаменты в делящихся клетках образуют волны, которые вращаются вокруг клетки (черная стрелка на рисунке), как на экране радара. В этих волнах авторы наблюдали два типа взаимодействия между актином и митохондриями. Митохондрии часто были заключены в структуру, похожую на облако актиновых нитей, что ограничивало подвижность органелл. Вместо этого у некоторых митохондрий в этих волнах были структуры, похожие на кометные хвосты, состоящие из актиновых нитей, что позволяло органеллам быстро хаотично перемещаться (красная стрелка на рисунке). Авторы проследили судьбу меченых митохондрий, которые были повреждены с помощью экспериментальной техники. Активность, опосредованная актином, помогает перемешивать и распределять митохондрии между двумя дочерними клетками во время деления, что приводит к равномерному распределению поврежденных органелл.

Авторы описывают три пути взаимодействия митохондрий и актина во время митоза (рис. 1). В предыдущей работе высказывалось предположение [5] о том, что миозиновый двигательный белок Myo19 обеспечивает динамическую связь митохондрий с актиновой сетью и поддерживает распределение митохондрий по цитоплазме. В первую очередь авторы отмечают, что в ходе своего исследования они очень подробно следили за этим процессом и обнаружили, что он не зависит от присутствия актиновых волн. Помимо этого, внутри волны митохондрии окружены актиновыми нитями, напоминающими облака, которые, похоже, способствуют обездвиживанию органелл. И в-третьих, иногда эти облака «раскрываются», после чего следует удивительный всплеск митохондриального движения. Органеллы приводились в движение за счет быстрого роста (полимеризации) актиновых филаментов. В результате образовалось нечто, похожее на хвост кометы, состоящее из актина. Эти движения митохондрий оказались быстрыми, хаотично ориентированными и покрывали значительные расстояния в клетке.

Особенно интересны наблюдения Moore с соавт. за хвостами актиновых «комет». 20 лет назад было высказано предположение, что полимеризация актина управляет подвижностью митохондрий в клетках дрожжей [6]. Однако эта модель противоречива, потому что транспорт митохондрий в почки дрожжей, образующихся при делении этого грибка, опосредуется двигательным белком миозином, «движущимся» по «проводам» актина [7], а митохондриальные хвосты актиновых «комет» у дрожжей зафиксированы не были. Тем не менее, движение, основанное на динамике актина, довольно часто встречается в клетках животных. Такие процессы способствуют интернализации везикул, а актин используется некоторыми внутриклеточными патогенными микроорганизмами, позволяя им перемещаться в цитоплазме клетки-хозяина.

Авторы предоставляют потрясающие изображения двойных актиновых «хвостов», исходящих из передней части митохондрий и развивающихся позади органелл, подобно инверсионным следам, оставленным в небе двухмоторным самолетом. Хвосты «комет», которые наблюдали ученые, часто были слегка изогнутыми и очень напоминали кометные «хвосты» актина, образуемые некоторыми бактериями рода Rickettsia, которые инфицируют клетки и вызывают болезни [8].

Какой может быть функция такой динамики актиновых нитей при наследовании митохондрий? Внутри этих органелл содержится собственный геном, который кодирует основные белки, необходимые для выработки энергии в ходе процесса, называемого дыхательной цепью (также известной как цепь переноса электронов). Если в клетке накапливаются митохондрии с мутациями в ДНК, кодирующей компоненты этого метаболического процесса, производство энергии нарушается. Более того, если материнская клетка во время деления передаст дочерней большое количество митохондрий с мутированной ДНК, в ходе каждого последующего деления эти дефекты энергетического синтеза будут передаваться дочерним клеткам. Следовательно, аномалии могут распространяться на большую часть ткани и в конечном итоге нарушать функцию органа. Эта возможность подтверждает то, почему динамика актина может активно влиять на распределение митохондрий при клеточном делении.

Moore с соавт. применили так называемые оптогенетические устройства для создания клеток с поврежденными митохондриями. Авторы запустили синтез активных форм кислорода в выбранной группе митохондрий и специфичным образом пометили эти митохондрии. Было замечено, что распределение поврежденных органелл зависит от наличия циклических актиновых волн. Авторы загрузили результаты своих экспериментов в компьютерные модели, с помощью чего удалось подтвердить, что волны актина запускают всплески движения органелл, вызванные «хвостами» комет, что случайным образом распределяет митохондрии во время деления клеток. Эта активность способствует распространению органелл и служит гарантией того, что количество поврежденных митохондрий равномерно распределится между двумя дочерними клетками в ходе метода (рис. 1).

Открытия авторов приоткрывают несколько интригующих вопросов, заслуживающих дальнейшего изучения. Необходимо определить молекулярные пути, регулирующие динамику актина на поверхности митохондрий. В предыдущей работе [9] сообщалось, что вращающиеся волны актина регулируют баланс между распределением и слиянием митохондрий во время интерфазы клеточного цикла, предшествующей митозу. Также важно выяснить, является ли движение митохондрий, взаимосвязи и распределение процессами, взаимно влияющими друг на друга.

Некоторые типы клеток делятся асимметрично, что приводит к образованию дочерних клеток с различной судьбой. Во время деления стволовой клетки более старые митохондрии в делящейся клетке преимущественно переходят в дочернюю клетку, запрограммированную для дифференцировки. Более молодые и «приспособленные» митохондрии переходят в дочернюю клетку, поддерживающую функционал стволовых клеток [10]. Следовательно, можно предугадать, что перемешивание митохондрий подавлено в этих клетках и что другие, пока неизвестные, механизмы обеспечивают асимметричное распределение митохондрий. Ясно одно: митохондриальные исследования преподнесут еще много сюрпризов в будущем.

Аксональный транспорт


Активный транспорт органелл, белков и РНК по аксону уже давно интересует научный мир, ведь жизнедеятельность всего аксона, что может достигать длины одного метра, зависит от процессов, происходящих в соме нейрона. В 1976 году Гриффином и коллегами было показано, что мембранные органеллы движутся по направлению к дистальному концу аксона «быстро» (до 40 см в день), а белки цитоскелета и некоторые другие — медленно (< 8 мм в день).

Транспорт из сомы был назван «антероградным», а в обратном направлении — «ретроградным», а эти термины используются и по сей день. Первый необходим для транспорта новосинтезированных белков, нейромедиаторов и т. д. к пресинаптической мембране, а второй же важен, например, для реакции на повреждение дистальных отделов аксона.

Микротрубочки — структуры из белка тубулина, обладающие полярностью («+» конец, постоянно удлиняющийся, направлен к концу аксона, а «-», более стабильный — в соме). В процессах транспорта они играют роль «рельс», по которым «ездят» белковые моторы. С ними тесно связаны белки, ассоциированные с микротрубочками (MAP), каноническая роль которых — контроль за полимеризацией и стабилизацией микротрубочек, но они также выполняют и регуляторную роль, модулируя связывание с моторами.

Моторные белки делятся на два больших класса: кинезины и динеины. Первые представляют собой огромное суперсемейство; более всего богата разнообразием его представителей именно нервная система: в мозге экспрессируется 38 генов кинезинов из 45 всех найденных. Кинезины делят на 14 семейств, соответственно структурному и функциональному сходству, из которых кинезины 1, 2 и 3 участвуют в аксональном транспорте.

Кинезины первого семейства обеспечивают быстрый транспорт широкого круга карго, включая органеллы, белки и РНК. Представители второго перемещают N-кадгерин, холин-ацетилтрансферазу и бета-катенин, а также фодрин-положительных предшественников плазмалеммы, а кинезины-3 — предшественников синаптических везикул. Отметим, что все кинезины обеспечивают сугубо антероградный транспорт.

Кинезин-1 (или просто кинезин) — гетеротетрамер, состоящий из двух тяжелых цепей (KHC) и двух легких (KLC). Каждая тяжелая цепь имеет составе глобулярный моторный домен, связывающий АТФ и контактирующий с микротрубочками, за которым следует «шейка», участвующая в димеризации, и «хвост», что служит для связывания с карго.

Семейство динеинов устроено много проще: конкретно моторную субъединицу кодирует один-единственный ген, хотя и есть вариации в других субъединицах. Динеины, в отличие от кинезинов, в зависимости от контекста и структуры, обеспечивают оба вида транспорта, как антероградный, к плюс-концу, так и ретроградный. Для большинства действий, выполняемых этими белками, требуется специфический активатор, динактин — высококонсервативный мультибелковый комплекс.

Кинезины и динеины несколько различаются по свойствам: помимо уже указанных отличий в направлении движения, первые «сильнее» — развивают силу до 5 пиконьютонов, вторые же — до 1 пН; динеины способны к «командной работе», так как могут перемещаться в разные стороны, и для эффективного движения требуется совместная деятельность нескольких белков, чего не скажешь о кинезинах.

Как показали опыты, карго в процессе движения связывается с различными типами моторных белков, к примеру, выяснилось, что даже аутофагосомы, движущиеся строго в одном направлении, связываются как с кинезинами, так и динеинами; другими словами, противодействующими друг другу моторами.

Предложено три модели взаимодействия белков: первая проста — кинезины и динеины соперничают друг с другом, и кто окажется сильнее, в ту сторону движение и пойдет; исходя из второй, мы скажем, что моторные белки работают по очереди, а процесс строго регулируется внешними стимулами. Точка зрения авторов третьей модели находится посередине между двумя предыдущими и заключается в том, что хоть процесс взаимодействия и контролируется, но работают одновременно оба типа моторов, а эффект зависит от того, какой из них будет ингибирован сильнее. И всё больше доказательств получает именно последняя, и в настоящий момент, несмотря на множество белых пятен в нашем понимании процессов транспорта, сомнений не вызывают четыре положения:

  1. Двигатели остаются стабильно связанными с грузом во время транспортировки, даже когда они неактивны;
  2. Для эффективного перемещения даже крупных (> 1 мкм) органелл вдоль микротрубочки необходим лишь небольшой набор двигателей. Эти двигатели функционируют группами, при этом возможно даже противодействие внутри этих групп;
  3. Двигатели регулируются механизмами, которые могут включать в себя Rab-специфическую регуляцию, регуляцию киназами, фосфатазами и адаптерными белками (scaffolding proteins);
  4. Мутации в моторах, адаптерах, или регуляторах могут приводить к нейродегенерации или гибели нейронов (таблица), что согласуется с существенной ролью аксонального транспорта в поддержании гомеостаза нейронов.

Транспорт предшественников синаптических везикул (synaptic vesicle precursors, SVP) и везикул с плотным ядром (dense core vesicles, DCV), содержащих нейропептиды и нейротрофины, регулируется и осуществляется по-разному.

SVP транспортируются кинезинами третьего семейства, а именно KIF1A; было показано, что у мышей с нокаутом по соответствующему гену не происходит нормального развития синапсов. Адаптерами для них служат белки липрин-α и DENN/MADD, обладающие специфичностью к SVP и к кинезинам-3. Антероградный транспорт DCV происходит по тому же механизму, при этом регуляция осуществляется с помощью циклин-зависимой киназы 5, что активирует кинезины, обеспечивая однонаправленный транспорт.

В то же время, DCV, содержащие BDNF (нейротрофический фактор мозга), должны быть способны двигаться в обоих направлениях, в зависимости от контекста. Куда пойдет везикула решается с помощью ковалентных модификаций белка хантингтина (huntingtin, гентингтин). Дефосфорилированный, он увеличивает активность динеина, происходит ретроградный транспорт, а если же серин в 421 положении фосфорилируется, активируется кинезин-1, и везикула начинает быстро двигаться к пресинаптической терминали.

Транспорт различных сигнальных молекул, синтезируемых тканями, иннервирующихся конкретным нервом, начинается с их связывания с рецепторами на пресинаптической мембране, а затем они движутся по направлению к соме нейрона. К примеру, нейротрофины связываются со своими рецепторами (TrkA, B, C, p75), происходит их эндоцитоз, потом образуются так называемые сигнальные эндосомы, транспортируемые посредством динеин-динактиновых комплексов в тело нейрона.

Митохондрии, «энергетические станции», а также депо кальция клетки, тоже движутся в обоих направлениях, в зависимости от контекста. При повышении концентрации кальция, что наблюдается в местах повышенной синаптической активности, митохондрии перестают двигаться, в свою очередь положительно модулируя высвобождение SVP, обеспечивая тем самым стабильность амплитуд возбуждающего постсинаптического потенциала.

Ионы кальция связываются с митохондриальной Rho-ГТФ-азой (MIRO), связанной с адаптерными белками кинезинов-1 TRAK1 и 2, в результате чего ингибируется активность ассоциированной с ней моторной единицы кинезина-1. Белок синтафиллин, тоже реагирующий на повышение концентрации кальция, взаимодействует как с кинезином-1, так и с микротрубочками, что приводит к аналогичному эффекту. В то же время синтабулин, FEZ1 и некоторые другие белки повышают подвижность митохондрий; но работают ли они независимо, связаны ли с комплексом MIRO/TRAK, пока неизвестно.

Описанные карго движутся «быстро», но огромное число синтезированных сомой белков — нейрофиламентов и пр. транспортируется медленным способом. Очень медленным: расстояние в 1 м некоторые белки проходят больше чем за три месяца, а темп такой в силу того факта, что короткие «перебежки» чередуются с длительными паузами, хотя в движении и участвуют такие мощные моторы, как кинезин-1.

Читайте также: