Краткое изложение процесса фотосинтеза. Метаболизм фосфоглицерата и триозофосфата.

Обновлено: 22.09.2024

Цикл состоит из трёх стадий: на первой под действием фермента рибулозобисфосфат-карбоксилаза/оксигеназа происходит присоединение CO2 к рибулозо-1,5-дифосфату и расщепление полученной гексозы на две молекулы 3-фосфоглицериновой кислоты (3-ФГК). На второй 3-ФГК восстанавливается до глицеральдегид-3-фосфата (фосфоглицеральдегида, ФГА), часть молекул которого выходит из цикла для синтеза глюкозы, а другая часть используется в третьей стадии для регенерации рибулозо-1,5-дифосфата.

Карбоксилирование рибулозо-1,5-бисфосфата (5-углеродное соединение) осуществляется рубиско (рибулозобисфосфат-карбоксилаза/оксигеназа) в несколько стадий. На первой кетонная группа рибулозы восстанавливается до спиртовой, между 2 и 3 атомами углерода устанавливается двойная связь. Полученное соединение нестабильно и именно оно карбоксилируется с образованием 2-карбокси-3-кето-D-арабитол-1,5-бисфосфата. Его структурный аналог 2-карбокси-D-арабитол-1,5-бисфосфат ингибирует весь процесс. Новое, уже 6-углеродное соединение, также нестабильно и распадается на две молекулы 3-фосфоглицериновой кислоты (3-фосфоглицерат, 3-ФГА).

Восстановление 3-фосфоглицериновой кислоты (3-ФГА) происходит в две реакции.

Сначала каждая 3-ФГА с помощью 3-фосфоглицераткиназы и с затратой одной АТФ фосфорилируется, образуя 1,3-бисфосфоглицериновая кислота (глицерат-1,3-бисфосфат).

Затем под действием глицеральдегид-1,3-фосфатдегидрогеназы бисфосфоглицериновая кислота восстанавливается НАД(Ф)·H (у растений и цианобактерий; у пурпурных и зелёных бактерий восстановителем является НАД·H) параллельно с отщеплением одного остатка фосфорной кислоты. Образуется глицеральдегид-3-фосфат (фосфоглицеральдегид, ФГА, триозофосфат). Обе реакции обратимы.


На последней стадии 5 молекул глицеральдегид-3-фосфатов превращаются в три молекулы рибулозо-1,5-бисфосфата.

Вначале под действием трифосфат-изомеразы глицеральдегид-3-фосфат изомеризуется в дигидроксиацетон-фосфат. Фруктозабисфосфат-альдолаза объединяет их в фруктозо-6-фосфат с отщеплением остатка фосфорной кислоты. Затем следует ряд реакций перестройки углеродных скелетов и образуется рибулозо-5-фосфат. Он фосфорилируется фосфорибулокиназой и рибулозо-1,5-бисфосфат регенерируется.

Большая Энциклопедия Нефти и Газа

Напомним, что триозофосфат является общим названием для 3-фос-фоглицеринового альдегида и для диоксиацетонфосфата. Применявшийся в эксперименте изотоп углерода С14 обозначается в схеме точкой - С. [6]

Фосфоглицериновый альдегид ( триозофосфат ) играет большую роль при построении первичных продуктов фотосинтеза. Часть образованного при фотосинтезе фосфоглицеринового альдегида через гексозофосфат используется на построение других органических соединений и не остается в рибулозофос-фатном цикле. В настоящее время считают, что не остающийся в цикле фосфоглицериновый альдегид через фруктозодифос-фат переходит во фруктозо-1 - фосфат. Фруктозо-6 - фосфат через посредство фермента изомеразы переходит в глюкозо-6 - фос-фат. После отщепления фосфорильной группы возникает молекула глюкозы. [7]

Затем две молекулы триозофосфата объединяются в одну молекулу фруктозодифосфата. Последняя при отщеплении фосфатной группы преобразуется в молекулу глюкозы и молекулу рибулозо-фосфата. Молекула глюкозы является основным продуктом фотосинтеза. [8]

Углеводы пентозофосфатного цикла - триозофосфаты , например соединение ( 6), и 3-фосфоглицериновая кислота ( 5) - являются не только важными промежуточными соединениями в фотосинтетическом связывании диоксида углерода, но и ключевыми соединениями в промежуточном метаболизме углеводов во всех организмах. Метаболизм глюкозы и других углеводов осуществляется по хорошо известному гликолитическому пути; они участвуют также в цикле трикарбоновых кислот; таким путем происходит превращение большей части углеводов в большинстве организмов. Альтернативным путем окисления углеводов, в количественном отношении, правда, менее важном, чем гликолиз и цикл трикарбоновых кислот, является пентозофосфатный путь. Его важность для организмов определяется тем обстоятельством, что он служит источником NADPH и пентозофосфатов. D-глюконолактон-б - фосфат до О-рибулозо - 5-фосфата; при этом образуется также ADPH. Пенто-зофосфат затем превращается в фосфаты других Сахаров, например D-фруктозо-б - фосфат и D-глицеральдегид - З - фосфат, которые затем включаются в метаболизм по гликолитическому пути, а также в Л - эритрозо-4 - фосфат, который наряду с фосфоенолпиру-ватом является исходным соединением в биосинтезе ароматических аминокислот через шикимовую кислоту. [9]

В состав фосфоглицерата и триозофосфата входят углерод, водород и кислород. Для синтеза аминокислот и белков требуются еще азот и сера. Растения получают эти элементы из почвы, а если растения водные - то из окружающей их воды. Азот поступает в виде нитратов или аммиака, сера - в виде сульфатов. [11]

Пятая реакция-это реакция изомеризации триозофосфатов . [12]

Продукт восстановления фосфоглицериновой кислоты, триозофосфат , сам является исходным продуктом реакционной цепи. Он может быть использован как для построения молекулы глюкозы и, таким образом, для синтеза запасных и структурных веществ тканей, так и для построения новой молекулы рибулозофосфата и нового присоединения СОг-Второй путь триозофосфата имеет особое значение в процессе фотосинтеза. Он идет через гексозу ( фруктозу), тетрозу ( эритрозу) и гептозу ( седогептулозу) и снова пентозу, именно рибулозодифосфат, который является акцептором СОа. Это все вместе представляет собой цикл рибулозофосфата. [13]

Несмотря на то, что триозофосфат является конечным продуктом в цикле Кальвина, он не накапливается в больших количествах, поскольку немедленно преобразуется в другие продукты. Наиболее известные из них - глюкоза, сахароза и крахмал; кроме того, быстро образуются жиры, жирные кислоты и аминокислоты. [15]

Метаболизм фосфоглицерата и триозофосфата

Несмотря на то, что триозофосфат является конечным продуктом в цикле Кальвина, он не накапливается в больших количествах, поскольку немедленно преобразуется в другие продукты. Наиболее известные из них — глюкоза, сахароза и крахмал; кроме того, быстро образуются жиры, жирные кислоты и аминокислоты.

Строго говоря, можно считать, что фотосинтез заканчивается с образованием триозофосфата, поскольку дальнейшие реакции протекают и у нефотосинтезирующих организмов, таких как животные и грибы. Однако именно здесь важно показать, каким образом фосфоглицерат и триозофосфат используются для производства основных необходимых растениям питательных веществ.

Метаболизм фосфоглицерата и триозофосфата

На рис. 7.18 суммированы некоторые из основных путей метаболизма, а также показано, какое важное место в метаболизме занимают реакции гликолиза и цикла Кребса. Последние реакции обсуждаются в гл. 9. Оба соединения — и фосфоглицерат, и триозофосфат — являются промежуточными продуктами гликолиза.

Синтез углеводов

Углеводы синтезируются в результате процесса, который по существу является обращенным гликолизом. Два наиболее общих углевода — сахароза и крахмал. В виде сахарозы углеводы поступают из листьев во флоэму (гл. 1З). Крахмал — это запасаемый продукт, и именно наличие крахмала как продукта фотосинтеза легче всего определить.

Синтез липидов

Липиды образуются из глицерола и жирных кислот (разд. З.З). Глицерол получается из триозофосфата. Для синтеза жирных кислот фосфоглицерат вступает на путь гликолиза, где превращается в ацетильную группу, которая, соединяясь с коферментом А, образует ацетилкофермент А. Ацетильные группы превращаются в жирные кислоты и в цитоплазме, и в хлоропластах (но не в митохондриях, где происходит расщепление жирных кислот).

Синтез белков

В состав фосфоглицерата и триозофосфата входят углерод, водород и кислород. Для синтеза аминокислот и белков требуются еще азот и сера. Растения получают эти элементы из почвы, а если растения водные — то из окружающей их воды.

Азот поступает в виде нитратов или аммиака, сера — в виде сульфатов. Сначала через ацетилкофермент А фосфоглицерат превращается в одну из кислот цикла Кребса (рис. 7.18).

Реакции синтеза аминокислот приведены ниже.

Метаболизм фосфоглицерата и триозофосфата

Реакция 2 представляет собой главный путь включения аммиака в аминокислоты. В результате процесса, называемого трансаминированием, т. е. переноса аминогруппы (—NH2) от одной аминокислоты к другой, могут обр2азовываться другие аминокислоты. Например,


Биосинтез аминокислот может осуществляться и другими путями. Некоторые аминокислоты образуются в хлоропластах. В биосинтезе аминокислот непосредственно используется около одной трети фиксируемого углерода и двух третей поглощаемого растениями азота.

Литература. Биология : в 3 т. Т. 1 / Д. Тейлор, Н. Грин, У. Стаут ; под ред. Р. Сопера

Фотосинтез

Фотосинтез — это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них — каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C3 и С4. У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», - во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие — органические.

Выделяют две фазы фотосинтеза — световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы — наиболее распространенного продукта фотосинтеза:

Атомы кислорода, входящие в молекулу O2, берутся не из углекислого газа, а из воды. Углекислый газ - источник углерода, что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент — бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе - солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза - C4, также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.

Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы - присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) - РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) - первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ — первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ — это трехуглеродный сахар, а РиБФ — пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) — конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза - это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.

Фосфогликолат — это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание — это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) - CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C4-фотосинтез, или цикл Хэтча-Слэка

Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой — обкладка проводящего пучка. Наружный слой — клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.

В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.

БИОЛОГИЯ Том 1 - руководство по общей биологии - 2004

Несмотря на то, что триозофосфат является конечным продуктом в цикле Кальвина, он не накапливается в больших количествах, поскольку немедленно преобразуется в другие продукты. Наиболее известные из них — глюкоза, сахароза и крахмал; кроме того, быстро образуются жиры, жирные кислоты и аминокислоты. Строго говоря, можно считать, что фотосинтез заканчивается с образованием триозофосфата, поскольку дальнейшие реакции протекают и у нефотосинтезирующих организмов, таких как животные и грибы. Однако именно здесь важно показать, каким образом фосфоглицерат и триозофосфат используются для производства основных необходимых растениям питательных веществ. На рис. 7.18 суммированы некоторые из основных путей метаболизма, а также показано, какое важное место в метаболизме занимают реакции гликолиза и цикла Кребса. Последние реакции обсуждаются в гл. 9. Оба соединения — и фосфоглицерат, и триозофосфат — являются промежуточными продуктами гликолиза.


Рис. 7.18. Метаболизм ФГ и ТФ. Показаны основные метаболические пути, отражающие взаимосвязь между фотосинтезом и синтезом питательных веществ в растениях. Некоторые промежуточные этапы опущены.

Углеводы синтезируются в результате процесса, который по существу является обращенным гликолизом. Два наиболее общих углевода — сахароза и крахмал. В виде сахарозы углеводы поступают из листьев во флоэму (гл. 13). Крахмал — это запасаемый продукт, и именно наличие крахмала как продукта фотосинтеза легче всего определить.

Липиды образуются из глицерола и жирных кислот (разд. 3.3). Глицерол получается из триозофосфата. Для синтеза жирных кислот фосфоглицерат вступает на путь гликолиза, где превращается в ацетильную группу, которая, соединяясь с коферментом А, образует ацетилкофермент А. Ацетильные группы превращаются в жирные кислоты и в цитоплазме, и в хлоропластах (но не в митохондриях, где происходит расщепление жирных кислот).

В состав фосфоглицерата и триозофосфата входят углерод, водород и кислород. Для синтеза аминокислот и белков требуются еще азот и сера. Растения получают эти элементы из почвы, а если растения водные — то из окружающей их воды. Азот поступает в виде нитратов или аммиака, сера — в виде сульфатов.

Сначала через ацетилкофермент А фосфоглицерат превращается в одну из кислот цикла Кребса (рис. 7.18). Реакции синтеза аминокислот приведены ниже.


Реакция 2 представляет собой главный путь включения аммиака в аминокислоты. В результате процесса, называемого трансаминированием, т. е. переноса аминогруппы (—NH2) от одной аминокислоты к другой, могут образовываться другие аминокислоты. Например,

Биологическая библиотека - материалы для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Читайте также: