Формирование направления плоскости деления клеток растений

Обновлено: 21.09.2024

Таблица 5. Число хромосом соматических клеток некоторых видов организмов

Виды Число хромосом
Малярийный плазмодий
Гидра
Таракан
Комнатная муха
Сазан
Окунь
Зеленая лягушка
Голубь
Кролик
Шимпанзе
Человек
2,
32
48
12
104
28
26
80
44
48
46

Таблица 6. Классификация хромосом по размеру и расположению центромеры

Митоз растительной клетки

Рис. 23. Схема фаз митоза растительной клетки

В процессе митоза растительной клетки происходят сложные последовательные изменения структуры ядра и цитоплазмы, подразделяющиеся на фазы (рис. 23).
Первой фазой митоза является профаза — фаза реорганизации клетки. Разрушается ряд структур, существовавших в клетке до митоза, и строятся новые, связанные с процессом деления. В цитоплазме органоиды смещаются от ядра на периферию клетки. Ядро увеличивается в объеме, хроматин оформляется в хромосомы с кинетохором (определенный участок хромосомы) и с двумя сестринскими хроматидами каждая. Ядрышко постепенно диссоциирует. После распада оболочки ядра на ряд ретикулярных элементов в клетке формируется структура веретена.
В клетках растений нет центриолей (организаторов веретена), характерных для животных клеток. Их функцию выполняют скопления мембран ЭПС на полюсах клетки. С ними связаны структурные элементы веретена.
В течение следующего периода митозаметафазы начинается движение хромосом. Перед его началом кинетохоры увеличиваются в размерах, от них отходят многочисленные хромосомные МТ. Полагают, что кинетохор участвует в формировании МТ и движениях хромосом. В течение митоза хромосомы движутся сначала к полюсам, а затем —к середине веретена. Во время этих перемещений в хромосоме раскручиваются две сестринские хроматиды, которые остаются соединенными в кинетохоре. Повреждение кинетохора в это время избирательным ультрафиолетовым облучением или лазером останавливает движение хромосом.
В результате перемещения хромосомы собираются вдоль поперечника веретена и образуют метафазную пластинку (метафаза). При этом они совершают небольшие перемещения вдоль веретена. В течение метафазы продолжается синтез РНК и белков, хотя и с невысокой скоростью.
Переход клетки к анафазе сопроиождается делением кинетохора, физическим разделением двух сестринских хроматид и перемещением разделившихся хромосом к полюсам кинетохором вперед. Происходит также перераспределение микротрубочек: количество их у полюсов уменьшается и увеличивается в интерполярной области, в районе эватора веретена. В поперечной плоскости веретена начинает образовываться зона скопления везикул — начало формирования разделительной пластинки.
После расхождения хромосом к полюсам начинается последняя стадия митоза — телофаза. У полюсов МТ веретена дезинтегрируют, образуются ядрышки, ядра, заканчивается формирование разделительной пластинки — фрагмопласта, делящей клетку пополам в экваториальной плоскости. В анафазе вдоль экватора веретена скапливаются пузырьки различного размера. Мелкие везикулы являются производными аппарата Гольджи содержат пектиновые вещества. В экваториальной плоскости обнаруживаются также мембраны ЭПС. Для образования фрагмопласта важно также присутствие кальция. Сливаясь, везикулы образуют две мембраны — плазмалеммы дочерних клеток, разделенные полужидким слоем, состоящим из пектиновых веществ. Взаимодействие везикул происходит между микротрубочками веретена.
От центра к периферии фрагмопласт растет за счет присоединения (самосборки) новых пузырьков, но цитоплазма дочерних клеток остается связанной через плазмодесмы, формирующиеся в тех участках клеточной пластинки, в которых сказались локализованными нити веретена с МТ и элементами ЭПС. Со стороны цитоплазмы дочерних клеток начинается формирование первичных клеточных стенок, а фрагмопласт превоащается в срединную пластинку, разделяющую материнскую клетку на две дочерние. Откладывающиеся микрофибриллы целлюлозы первичных клеточных стенок имеют рыхлую текстуру, но основное направление ориентации микрофибрилл перпендикулярно продольной оси клетки. Содержание целлюлозы в первичных клеточных стенках вначале не превышает 2,5%.
После окончания деления дочерние клетки растут благодаря синтезу компонентов цитоплазмы. Именно так растут и животные к метки. Как правило, дочерние клетки достигают размеров материнской и затем могут вновь перейти к делению. Процесс деления (митоз) и период цитоплазматического роста и подготовки к делению (интерфаза) составляют митотический цикл клетки.

Клеточный цикл

Один из постулатов клеточной теории гласит, что увеличение числа клеток, их размножение, происходит путем деления исходной клетки. Это положение полностью исключает какое-либо «самозарождение» клеток или их образование из неклеточного «живого вещества». Обычно делению клеток предшествует редупликация их хромосомного аппарата, синтез ДНК. Это правило является общим для прокариотических и эукариотических клеток.
Время существования клетки как таковой — от деления до деления — обычно называют клеточным циклом. Величина его может быть различной для разных типов клеток. Так, например, для бактериальных клеток в стационарных условиях культивирования это время может быть равно 20—30 мин. У эукариотических одноклеточных организмов время жизни клетки, продолжительность ее клеточного цикла, значительно больше. Так, инфузория туфелька может делиться 1—2 раза в сутки, время клеточного цикла при бесполом размножении у амёбы составляет около 1,5 суток, у инфузории трубача — 2—3 суток. Время прохождения клеточного цикла зависит от температуры и условий окружающей среды.
Клетки многоклеточных организмов обладают разной способностью к делению. Если в раннем эмбриогенезе клетки животных организмов делятся часто, то во взрослом организме они большей частью теряют эту способность. У круглых червей и коловраток клетки теряют способность к делению после прохождения эмбрионального развития, и рост организма, например у аскариды, происходит не за счет роста числа клеток, а за счет увеличения их размера.
В организме высших позвоночных клетки различных тканей и органов имеют неодинаковую способность к делению. Здесь встречаются клетки, полностью потерявшие свойство делиться: это большей частью специализированные, дифференцированные клетки (например, клетки центральной нервной системы). В организме есть постоянно обновляющиеся ткани (различные эпителии, кровь, клетки рыхлой и плотной соединительной ткани). В этом случае в таких тканях существует часть клеток, которые постоянно делятся (например, клетки базального слоя покровного эпителия, клетки крипт кишечника, кроветворные клетки костного мозга и селезенки), заменяя отработавшие или погибающие клеточные типы. Многие клетки, не размножающиеся в обычных условиях, приобретают вновь это свойство при процессах репаративной регенерации органов и тканей.
Примерно такие же типы клеток по способности их вступать в деление встречаются и у растительных организмов: это камбиальные клетки, дающие начало различным органам и тканям, клетки, интенсивно делящиеся, это клетки, возобновляющие деление при регенерации, это дифференцированные клетки, потерявшие в естественных условиях способность делиться. Клетки животных и растений, так же как одноклеточные эукарпотические организмы, вступают в процесс деления после ряда подготовительных процессов, важнейшим из которых является синтез ДНК.
Весь смысл клеточного деления заключается в равномерном распределении редуцированного генетического материала по двум новым клеткам.

Митоз и мейоз

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

Фазы клеточного цикла

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где "n" - число хромосом, а "c" - число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Генетическая формула клетки

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу - подготовку к делению клетки.

    Пресинтетический (постмитотический) период G1 - 2n2c

Интенсивно образуются органоиды (рибосомы и другие), синтезируется белки, АТФ и все виды РНК, ферменты, клетка растет.

Длится 6-10 часов. Важнейшее событие этого периода - удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Происходит удвоение центриолей (репликация центриолей). Активно синтезируются структурные белки ДНК - гистоны.

Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу - делению клетки, синтезируются белки (тубулин для веретена деления) и АТФ, делятся митохондрии и хлоропласты.

Жизненный цикл клетки

Митоз (греч. μίτος - нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры - хромосомы - происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
  • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
  • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления

Профаза митоза

ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

Метафаза митоза

Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним - дочерние хромосомы) к полюсам клетки.

Анафаза митоза

  • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
  • Появляется ядерная оболочка, формируется ядро
  • Разрушаются нити веретена деления

В телофазе происходит деление цитоплазмы - цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений - формированием плотной клеточной стенки (которая растет изнутри кнаружи).

Телофаза митоза

Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид - 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

  • В результате митоза образуются дочерние клетки - генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Фазы митоза

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки - способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

Мейоз

Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio - уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление - эквационное (лат. aequatio — уравнивание) очень похоже на митоз.

    Профаза мейоза I

Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

Профаза мейоза I

Конъюгация (лат. conjugatio — соединение) - сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом - биваленты (лат. bi - двойной и valens - сильный).

После конъюгации становится возможен следующий процесс - кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

Кроссинговер

Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

Метафаза мейоза I

Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки - n2c, за счет чего мейоз I и называется редукционным делением.

Анафаза мейоза I

Происходит цитокинез - деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением - мейозом II.

Телофаза мейоза I

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

Мейоз II

В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку - nc. В этом и состоит сущность мейоза - образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки - половые клетки (гаметы).

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число - 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) ;)

Мейоз

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками - материал для эволюции, который проходит естественный отбор
Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам - бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.

Бинарное деление надвое

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Амитоз (от греч. ἀ - частица отрицания и μίτος - нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется "как кому повезет" - случайным образом.

Амитоз

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Образовательные ткани растений

С тех пор процессы пролиферации и дифференцировки клеток ушли далеко вперед, создав настоящее чудо - вас, человека. У растения жизнь начинается точно так же - с одной маленькой клетки, из которой в дальнейшем будут развиваться ткани и органы самых разных форм. Главная заслуга роста растения принадлежит образовательной ткани.

Образовательные ткани растений

Как вы видите, на картинке схематично изображено месторасположение образовательной ткани. Главным образом это:

  • Кончик побега - конус нарастания в почках
  • Кончик корня - зона деления, прикрытая корневым чехликом для защиты
  • Камбий - обеспечивает рост растения в ширину
  • Основание междоузлий и черешков листьев - это также зоны активного роста растения

Именно в этих местах и происходит деление клеток и рост растения. Важно отметить, что сезонные изменения активности клеток камбия являются причиной возникновения годичных колец древесины. Внешний вид годичных колец обусловлен хронологической закономерностью: весной больше образуется проводящей ткани (более тонкая и рыхлая внутри), а осенью - механическая (толстая, более твердая). Именно поэтому годичные кольца на спиле дерева выглядят как чередование колец, отличающихся друг от друга.

Годичные кольца

На внешний вид годичных колец оказывают весьма сильное влияние условия внешней среды. Так, при дефиците трофического компонента (питательных веществ), к примеру, у растений, растущих на болоте, годичные кольца выглядят тоньше своих обычных размеров.

Ветер также оказывает существенное влияние: при его постоянном действии происходит перераспределение древесины по стволу. Оказывая действие на крону, ветер смещает центр тяжести дерева, что сказывается на его нижележащих отделах. Они начинают компенсаторно утолщаться для предотвращения слома дерева. При постоянно дующем ветре ствол сильно искривляется, а форма кроны становится флагообразной.

Камбий

Тема камбия и форм стволов растений весьма занимательна, и все-таки мы должны разобраться в строении самой образовательной ткани. Она представлена живыми мелкими быстро делящимися клетками с относительно крупным ядром. Объем цитоплазмы небольшой, она вязкая по консистенции, оболочка клетки тонкая. Это уязвимые клетки, которые растение оберегает по-своему, подобно тому, как животные оберегают только что появившееся потомство.

Влияние условий внешней среды на рост растения

Другое название образовательных тканей - меристемы (с др.-греч. — «μεριστός» — делимый). По времени возникновения различают первичные и вторичные меристемы.

Первичные меристемы - закладываются в эмбриогенезе

1) Вставочные меристемы (интеркалярные) - в виде отдельных участков в зоне активного роста в разных частях растения. Такие ткани можно найти в основании междоузлий у злаков, черешков листьев у многих растений. У злаковых наблюдается быстрый рост стебля за счет множественного расположения данной ткани на стебле - "вставочный рост".

2) Прокамбий - основа будущего камбия, перицикла, окружающего проводящие ткани в один или несколько слоёв (у голосеменных). В корнях перицикл является корнеродным слоем, так как в корне с него начинается формирование осевого цилиндра, наружным слоем которого он является. В нём закладываются придаточные и боковые корни, что имеет принципиальное значение для формирования корневой системы растения.

3) Верхушечные (апикальные) - формируются на верхушках стеблей и кончиках корней. В периферической части корня различают три слоя:

  • Дерматоген - в дальнейшем преобразующийся в первичную покровно-всасывающую ризодерму (эпиблему или ризодерму)
  • Периблема - образующая ткани первичной коры
  • Плерома - внутренний слой ткани центрального осевого цилиндра

Образовательная ткань

Вторичные меристемы - закладываются в постэмбриональном развитии

Камбий и феллоген (пробковый камбий) - занимают боковое положение по отношению к оси органа, обеспечивают рост вширь. Растения часто повреждаются, их задевают животные, нарушая целостность тканей и органов. На этот случай в группе вторичных меристем есть раневые меристемы, дающие начало защитной ткани в местах повреждения растения.

Вторичные меристемы

Топографическая классификация меристем

Спешу заверить, это отнюдь не сложная классификация, которой нужно бояться. Речь пойдет о взгляде на те же образовательные ткани с другой стороны. В переводе с греч. τόπος — место. Мы рассмотрим меристемы в соответствии с их месторасположением на растении.

  • Верхушечная или апикальная (лат. apex - вершина) - расположена на кончике корня и конусе нарастания побега
  • Боковая или латеральная (лат. latus - бок): камбий - обеспечивает рост стебля и корня в толщину
  • Краевая или маргинальная (лат. margo - край) меристема даёт начало листовой пластинке
  • Вставочная или интеркалярная (лат. inter - между и calaris - вставочный, добавочный) — расположена преимущественно у основания стеблевых междоузлий между зонами дифференцированных тканей.

Деление клетки

Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл - переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению - можно представить на схеме в виде цикла, в котором выделяют несколько фаз.

Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

Амитоз - относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.

Митоз. Митоз, или непрямое деление, - основной способ деления эукариотических клеток. Митоз - это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.



Рис.1. Митоз и мейоз

При образовании гамет, т.е. половых клеток - сперматозоидов и яйцеклеток - происходит деление клетки, называемое мейозом. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер - обмен гомологичными участками хромосом. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. Из одной диплоидной клетки образуются четыре гаплоидных клетки. Фазы деления клетки, которые следуют за интерфазой, называются профаза, метафаза, анафаза, телофаза и после деления опять интерфаза.



Рис.2. Фазы деления клетки

Профаза - самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой - цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена - веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).

Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.

Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.

Телофаза - последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.

Каждое из вновь образовавшихся ядер получило весь объем генетической информации, которым обладала ядерная ДНК материнской клетки. В результате митоза оба дочерних ядра имеют одинаковое количество ДНК и одинаковое число хромосом, такое же, как в материнском.

Цитокинез - после образования в телофазе двух новых ядер происходит деление клетки и формирование в экваториальной плоскости перегородки - клеточной пластинки.

В ранней телофазе между двумя дочерними ядрами, не достигая их, формируется цилиндрическая система волокон, называемая фрагмопластом, которая также как и волокна ахроматинового веретена, состоит из микротрубочек и связаны с ним. В центре фрагмопласта на экваторе между дочерними ядрами скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке, а их мембраны участвуют в построении плазмолемм по обеим сторонам пластинки. Клеточная пластинка закладывается в виде диска, взвешенного в фрагмопласте. Волокна фрагмопласта, видимо, контролируют направление движения пузырьков Гольджи. Клеточная пластинка растет центробежно по направлению к стенкам материнской клетки за счет включения в нее полисахаридов все новых и новых пузырьков Гольджи. Клеточная пластинка имеет полужидкую консистенцию, состоит из аморфного протопектина и пектатов магния и кальция. В это время из трубчатого ЭР образуются плазмодесмы. Расширяющийся фрагмопласт постепенно приобретает форму бочонка, позволяя клеточной пластинке расти латерально, пока она не соединится со стенками материнской клетки. Фрагмопласт исчезает, обособление двух дочерних клеток заканчивается. Каждый протопласт откладывает на клеточную пластинку свою первичную клеточную стенку.

Цитокинез с помощью клеточной пластинки происходит у всех высших растений и некоторых водорослей. У остальных организмов клетки делятся внедрением клеточной оболочки, которая постепенно углубляется и разделяет клетки.

Биологическое значение митоза состоит в строго одинаковом распределении между дочерними клетками материальных носителей наследственности - молекул ДНК, входящих в состав хромосом. Благодаря равномерному разделению реплицированных хромосом между дочерними клетками обеспечивается образование генетически равноценных клеток и сохраняется преемственность в ряду клеточных поколений. Это обеспечивает таки важные моменты жизнедеятельности, как эмбриональное развитие и рост организмов, восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологической основой бесполого размножения организмов.

Мейоз. Мейоз - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое и переход клеток из диплоидного состояния (2n) в гаплоидное (n). Мейоз - единый, непрерывный процесс состоящий из двух последовательных делений, каждое из которых можно разделть на те же, что и в митозе, четыре фазы: профазу, метафазу, анафазу и телофазу. Обоим делениям предшествует одна интерфаза. В синтетическом периоде интерфазы до начала мейоза удваивается количество ДНК и каждая хромосома становится двухроматидной.

Первое мейотическое, или редукционное, деление.

Профаза I продолжается от нескольких часов до нескольких недель. Хромосомы спирализуются. Гомологичные хромосомы коньюгируют, образуя пары - биваленты. Бивалент состоит из четырех хроматид двух гомологичных хромосом. В бивалентах осуществляется кроссинговер - обмен гомологичными участками гомологичных хромосом, что приводит к их глубокому преобразованию. Во время коссинговера происходит обмен блоками генов, что объясняет генетическое разнообразие потомства. К концу профазы исчезает ядерная оболочка и ядрышко, формируется ахроматиновое веретено.

Метафаза I - биваленты собираются в экваториальной плоскости клетки. Ориентирование материнской и отцовской хромосомы из каждой гомологичной пары к одному или другому полюсу веретена деления является случайным. К центромере каждой из хромосом присоединяется тянущая нить ахроматинового веретена. Две сетринские хроматиды не разделяются.

Анафаза I - происходит сокращение тянущих нитей, и к полюсам расходятся двухроматидные хромосомы. Гомологичные хромосмы каждого из бивалентов уходят к противоположным полюсам. Расходятся случайно перераспределенные гомологичные хромосомы каждой пары (независимое распределение), и на каждом из полюсов собирается половинное число (гаплоидный набор) хромосом, образуется два гаплоидных набора хромосом.

Телофаза I - у полюсов веретена собирается одиночный, гаплоидный, набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочернии.

Второе мейотическое деление следует сразу же после первого и сходно с обычным митозом (поэтому его часто называют митозом мейоза), только клетки, вступающие в него, несут гаплоидный набор хромосом.

Профаза II - непродолжительная.

Метафаза II - снова образуется веретено деления, хромосомы выстраиваются в экваториальной плоскости и центормерами прикрепляются к микротрубочкам веретена деления.

Анафаза II - осуществляется разделение их ценромер и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы направляются к полюсам веретена.

Телофаза II - завершается расхождение сестринских хромосом к полюсам и наступает деление клеток: из двух гаплоидных клеток образуются 4 клетки с гаплоидным набором хромосом.

Редукционное деление является как бы регулятором, препятствующим непрерывному увеличению числа хромосом при слиянии гамет. Не будь такого механизма, при половом размножении число хромосом удваивалось бы в каждом новом поколении. Т.е. благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях каждого вида растений, животных, протист и грибов. Другое значение заключается в обеспечении разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их расхождении в анафазе I мейоза. Это обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Прямо сейчас студенты читают про:

Фонетические процессы русского языка Фонетика - (греч. фоне - звук) - учение о звуковой системе языка.
МЕТОДЫ ИСТОРИЧЕСКОГО ИССЛЕДОВАНИЯ Целью занятия является освоение принципов историко-генетического.
Философия Древнего Китая 1. Общая характеристика китайской философии. Китайская философия представляет собой нечто особенное.
Направленность личности В метрических свидетельствах пишут, где человек родился, когда он родился, и только не пишут, для чего он родился М.
Высшие разовые и суточные дозы ядовитых и сильнодействующих лекарственных средств Лекарственное средство Список ВРД ВСД Адонизид Б 40капель 120 капель Амидопирин Б 0.

Формирование направления плоскости деления клеток растений

Из-за блокировщика рекламы некоторые функции на сайте могут работать некорректно! Пожалуйста, отключите блокировщик рекламы на этом сайте.


Вам нужны консультации по Биологии по Skype?
Если да, подайте заявку. Стоимость договорная.
Чтобы закрыть это окно, нажмите "Нет".

Укажите реальные данные, иначе мы не сможем с вами связаться! Отправляя форму, Вы принимаете Условия использования и даёте Согласие на обработку персональных данных

Введение в ботанику

«Ботаника есть естественная наука, которая учит познанию растений». Такое определение ботаники — необходимое и достаточное — дано выдающимся шведским ученым Карлом Линнеем (1707-1778 гг.). В сферу ботаники входят изучение строения и функций растений, их происхождения, эволюции, классификации, взаимоотношений друг с другом и средой обитания, представления об образуемых растениями сообществах, расселении на Земном шаре, использовании и охране.

Конечно, уже первобытный человек обладал первоначальными знаниями о растениях, необходимых для его существования. Это понятно, поскольку его жизнь зависела от знаний о съедобных, ядовитых, целебных растениях и полезных для скота. Обширнейшими сведениями о растениях, особенно сельскохозяйственных и лекарственных, располагали культуры Индии, Финикии, страны древнего Египта и Месопотамии. Не случайно первый «травник на камне» был создан в знаменитом храме в Карнаке фараоном новой египетской династии Тутмосом III.

Но основы ботаники (от греч. botanicos — относящийся к растениям, botane — трава, растение) как научной дисциплины были заложены в античное время Теофрастом (371-286 гг. до н.э.) — любимым и выдающимся учеником великого древнегреческого мыслителя Аристотеля (384-322 гг. до н. э.). Титул «отца ботаники» Теофраст заслужил потому, что его интересовали не только применение растений в хозяйстве и медицине, он исследовал строение и физиологические отправления растений, их распространение, влияние на них почвы и климата. Теофрасту принадлежит и первая классификация растений, хотя и весьма наивная с позиций XX века.

В процессе исторического развития в ботанике появились разные методы изучения растений. Чем более расширялись представления о растениях, тем более дифференцировались научные дисциплины, составляющие ботанику как одну из самых разветвленных естественных наук: морфология в широком понимании, палеоботаника, физиология, биохимия растений, систематика, география, экология растений, геоботаника, палиноморфология, изучающая структуру пыльцевых зерен, и т.д. Особое место среди этих дисциплин занимала и занимает морфология (от греч. morphe — форма и logos — учение).

«Органическая форма — это видимое проявление внутренних связей, характеризующих жизнь на каждом уровне. Она может быть проще всего определена как биологическая организация и представляет собой наиболее важную проблему, с которой сталкиваются изучающие науку о жизни. Форму можно назвать не только душой естественной истории, так как она служит мерой эволюционного родства, но и душой всей биологии, так как она является очевидным и легко доступным изучению проявлением основных черт жизни».

По морфологическим признакам судят о разнообразии растений, они составляют основу их классификации; без знания структуры невозможно изучать жизненные отправления растений, в том числе их способность благодаря фотосинтезу создавать органические вещества и увеличивать содержание в атмосфере кислорода. Поэтому изучение структурных особенностей растений необходимо для развития других ботанических дисциплин.

Дифференциация методов исследования строения растений привела к разделению морфологии на многочисленные специальные дисциплины: морфологию в узком смысле слова (макроморфологию), изучающую внешнее строение растений; эмбриологию, изучающую начальные этапы развития семенных растений от заложения репродуктивных структур, осуществляющих размножение, до образования семени; анатомию, изучающую строение растений на клеточном и тканевом уровнях. Учение о клетке в настоящее время составляет содержание самостоятельной биологической дисциплины — цитологии.

Разнообразие методов, используемых в морфологии растений, позволяет решать следующие проблемы, нередко имеющие общебиологическое значение.

1. Изучение топографических закономерностей в строении растений. Главным методом исследования служит описательный, созданный К. Линнеем. Сейчас этот метод обычно называют сравнительно-морфологическим.

2. Изучение закономерностей формообразования (морфогенеза) в процессе индивидуального развития растения — его онтогенеза. Это требует изучения структурных преобразований растения на всех этапах его развития — от зиготы до естественной смерти. При этом важное значение имеет анализ всех проявлений морфогенеза: особенностей роста, морфологической и анатомической дифференциации тела растения, возникающих в процессе его развития, полярности, симметрии, корреляции. Естественно, глубина изучения этих вопросов зависит от тесных контактов морфологии с другими ботаническими дисциплинами: физиологией, генетикой, биохимией, биологией развития.

С этой проблемой связано и развитие репродуктивной биологии, основу которой составляет изучение всех структур и процессов, приводящих к размножению растений — одному из главных свойств всех живых организмов, обеспечивающему не только увеличение числа особей, но и их расселение. Большой интерес в настоящее время вызывает раздел репродуктивной биологии, непосредственно связанный с накоплением биомассы, — биотехнологией: культурой изолированных клеток и тканей как способа быстрого размножения растений.

3. Изучение морфогенетических трансформаций в течение длительного процесса эволюции. Развитие этого направления — эволюционной морфологии — основано на синтезе данных онтогенетической морфологии и сравнительной морфологии ныне живущих и вымерших растений. Задача эволюционной морфологии — изучение общих закономерностей преобразования структуры растений в процессе эволюции, без знания которых невозможно решение вопросов, связанных с филогенией растений, отражающей не только родственные отношения между разными таксонами, но и основные направления их эволюции. Таксонами (лат. taxon, во множественном числе taxa) называют любые конкретные систематические группы определенного ранга. Так, таксоном в ранге семейства будет семейство Ranunculaceae (лютиковые), в ранге рода — Ranunculus L. (лютик), а в ранге вида, например, Ranunculus repens L. (лютик ползучий).

О родственных связях прежде всего судят по сходству морфологических признаков. Однако нередко оно может быть не результатом родства, а либо параллельного развития нескольких групп растений от каких-то общих предков, либо следствием конвергенции — появлением сходных особенностей строения под влиянием одинаковых условий существования. Только разностороннее изучение растений и сопоставление данных онтогенетического, сравнительно-морфологического и палеоботанического исследований может восстановить реальный ход их исторического развития, что способствует выявлению родственных связей между таксонами и разработке эволюционной системы растений.

4. Изучение связи между структурой и функцией, между растением и условиями внешней среды.

Взаимодействие структуры и функции составляет основу жизнедеятельности любого организма. Функции без структуры не бывает, структура без функции бессмысленна. Ведь «изучать органы независимо от их отправлений, организмы независимо от их жизни почти так же невозможно, как изучать машину и ее части, не интересуясь их действием». Только соединение морфологического и физиологического методов исследования дает представление о растении как целостной структурно-функциональной и весьма динамичной системе, приспособленной к жизни в определенной экологической обстановке и чутко реагирующей на любые изменения внешних условий.

Реакции растений на неблагоприятные факторы среды их обитания проявляются сначала в биохимических и физиологических нарушениях, затем они затрагивают внутриклеточные структуры и, наконец, возникают изменения морфологического характера, заметные невооруженному глазу. Сначала они проявляются у отдельных растений, а впоследствии распространяются на все сообщество. Оценка уровня деградации растений под действием антропогенных факторов, прогнозирование возможных изменений растений под влиянием неблагоприятных условий составляют сущность ботанического мониторинга (от лат. и англ. monitor — предостерегающий). Его задача — вовремя сигнализировать обо всех случаях превышения отрицательных нагрузок, вызванных деятельностью человека, и принимать действенные меры для изменения режима эксплуатации растительных ресурсов и охраны растительного покрова как части глобальной проблемы сохранения генофонда и охраны окружающей среды.

Само собой очевидно, что морфология растений как фундаментальная ботаническая дисциплина абсолютно необходима для решения разнообразных практических задач: медицинских, лесохозяйственных, природоохранных и многих других. Перечислить все области применения морфологии растений вряд ли возможно.

Предлагаемый учебник посвящен морфологии высших растений. Прежде, чем перейти к анализу закономерностей их строения и демонстрации присущего им морфологического разнообразия, следует определить, что представляет собой растение как объект изучения, каковы его связи с другими живыми организмами, населяющими нашу планету, и, наконец, какое место в мире растений занимают высшие растения.

Читайте также: