Белки нуклеации в контроле полимеризации актина

Обновлено: 18.05.2024

В актин это цитозольный белок, образующий микрофиламенты. У эукариот актин - один из самых распространенных белков. Например, он составляет 10% от общего веса белка в мышечных клетках; и от 1 до 5% белка в немышечных клетках.

Этот белок вместе с промежуточными филаментами и микротрубочками образует цитоскелет, основной функцией которого является подвижность клетки, поддержание формы клетки, деление клеток и перемещение органелл у растений, грибов и животных.

Изоформы актинового цитоскелета выполняют различные функции, такие как: регулирование развития активного напряжения в гладких мышцах, клеточный цикл, развитие эмбриона, развитие тканей и заживление ран.

С эволюционной точки зрения актин является высококонсервативным белком. Гомология последовательностей у разных видов составляет около 90%. У одноклеточных организмов один ген кодирует изоформу актина. В то время как в многоклеточных организмах разные гены кодируют несколько изоформ актина.

Актин вместе с миозином были решающими структурами в эволюционной эволюции эукариотических организмов и в их диверсификации, поскольку они позволяли движение в отсутствие других структур, таких как жгутики и реснички.

Структура: актиновые нити

Актин представляет собой глобулярный одноцепочечный полипептидный белок. В мышцах актин имеет молекулярную массу примерно 42 кДа.

Этот белок имеет два домена. У каждого есть два поддомена и промежуток между доменами. АТФ - Mg +2 присоединяется к нижней части расщелины. Амино- и карбоксильные терминалы встречаются в субдомене 1.

Актин G и актин F

Есть две основные формы актина: мономер актина, называемый G-актином; и нитевидный полимер, состоящий из мономеров G-актина, называемый F-актином.Филаменты актина, наблюдаемые с помощью электронной микроскопии, имеют узкие и широкие области, соответственно 7 нм и 9 нм в диаметре.

Вдоль филамента мономеры актина образуют плотно упакованную двойную спираль. Повторяющаяся единица вдоль филамента состоит из 13 спиралей и 28 мономеров актина и находится на расстоянии 72 нм.

Актиновая нить имеет два конца. Один образован щелью, которая связывает ATP-Mg +2 , который расположен в одном направлении во всех актиновых мономерах филамента, называется (-) концом; а другая крайность противоположна, называемая (+) крайностью. Следовательно, актиновая нить имеет полярность.

Эти компоненты часто называют микрофиламентами, поскольку они представляют собой компоненты цитоскелета с наименьшим диаметром.

Где мы находим актин?

Актин - чрезвычайно распространенный белок в эукариотических организмах. Из всех клеточных белков актин составляет около 5-10% - в зависимости от типа клетки. В печени, например, в каждой из составляющих ее клеток содержится почти 5-10 клеток. 8 молекулы актина.

характеристики

Две формы актина, мономер и филамент, постоянно находятся в динамическом балансе между полимеризацией и деполимеризацией. В целом, это явление можно выделить три основных характеристики:

1) Актиновые нити характерны для строения мышечной ткани и цитоскелета эукариотических клеток.

2) Полимеризация и деполимеризация - это динамический процесс, который регулируется. Где полимеризация или агрегация мономеров актина G - ATP - Mg +2 это происходит на обоих концах. Произойдет ли этот процесс, зависит от условий окружающей среды и регуляторных белков.

3) Образование пучков и сеток, составляющих актиновый цитоскелет, придает силу подвижности клеток. Это зависит от белков, которые участвуют в образовании поперечных связей.

Сокращение мышц

Функциональной и структурной единицей скелетных мышц является саркомер, который имеет два типа волокон: тонкие волокна, образованные актином, и толстые волокна, образованные миозином. Обе нити расположены поочередно, точно геометрически. Они позволяют мышцам сокращаться.

Тонкие нити прикреплены к участкам, называемым дисками Z. Эта область состоит из сети волокон, в которых находится белок CapZ и к которым прикреплены (+) концы актиновых нитей. Этот якорь предотвращает деполимеризацию (+) конца.

С другой стороны, тропомодулин находится на (-) концах актиновых филаментов и защищает их от деполимеризации. В дополнение к актину тонкие филаменты содержат тропомиозин и тропонин, которые контролируют взаимодействия актомиозина.

Как происходит сокращение мышц?

Во время сокращения мышц толстые нити совершают вращательные движения, вытягивая тонкие нити к середине саркомера. Это вызывает скольжение грубых и тонких волокон.

Таким образом, длина толстых и тонких нитей остается постоянной, но перекрытие между обеими нитями увеличивается. Длина саркомера уменьшается из-за прикрепления тонких нитей к Z-дискам.

Как остановить сокращение мышц?

АТФ - это энергетическая валюта клетки. Поэтому он почти всегда присутствует в живых мышечных тканях.Принимая во внимание вышесказанное, должны быть механизмы, позволяющие расслабить мышцу и прекратить сокращение.

Два белка, называемые тропомиозином и тропонином, играют фундаментальную роль в этом явлении. Они работают вместе, чтобы блокировать сайты связывания миозина (тем самым предотвращая его связывание с актином). В результате мышца расслабляется.

И наоборот, когда животное умирает, оно испытывает явление, известное как трупное окоченение. За это упрочнение тушки отвечает блокирование взаимодействия между миозином и актином вскоре после смерти животного.

Одним из следствий этого явления является потребность в АТФ для высвобождения двух белковых молекул. Логично, что в мертвых тканях АТФ недоступен, и его высвобождение не может произойти.

Другие виды движения

Тот же механизм, который мы описываем (позже мы углубимся в механизм, лежащий в основе движения), не ограничивается мышечными сокращениями у животных. Он отвечает за амебоидные движения, которые мы наблюдаем у амеб и некоторых колониальных форм.

Точно так же движение цитоплазмы, которое мы наблюдаем у водорослей и наземных растений, осуществляется аналогичными механизмами.

Регулирование полимеризации и деполимеризации актиновых филаментов

Сокращение гладкой мышечной ткани и клеток приводит к увеличению F-актина и уменьшению G-актина.Полимеризация актина происходит в три стадии: 1) зародышеобразование, медленная стадия; 2) удлинение, быстрый шаг; и 3) устойчивое состояние. Скорость полимеризации равна скорости деполимеризации.

Актиновая нить растет быстрее на (+) конце, чем на (-). Скорость удлинения пропорциональна концентрации мономеров актина, находящихся в равновесии с актиновыми филаментами, называемой критической концентрацией (Cc).

Cc для (+) конца составляет 0,1 мкМ, а для (-) конца составляет 0,8 мкМ. Это означает, что для полимеризации (+) конца требуется в 8 раз меньшая концентрация мономеров актина.

Полимеризация актина в основном регулируется тимозином бета4 (ТВ4). Этот белок связывает G-актин и удерживает его, предотвращая его полимеризацию. Профилин же стимулирует полимеризацию актина. Профилин связывается с мономерами актина, облегчая полимеризацию на (+) конце за счет диссоциации комплекса актин-ТВ4.

Другие факторы, такие как увеличение количества ионов (Na + , К + или Mg +2 ) способствуют образованию волокон.

Формирование актинового цитоскелета

Формирование актинового цитоскелета требует создания поперечных связей между актиновыми филаментами. Эти связи образованы белками, выдающимися характеристиками которых являются: они имеют актин-связывающие домены; многие имеют домены, гомологичные кальпонину; и каждый тип белка экспрессируется в определенном типе клетки.

В филоподиях и стрессовых волокнах поперечные связи между актиновыми филаментами осуществляются фасциной и филамином. Эти белки, соответственно, заставляют актиновые филаменты располагаться параллельно или иметь разные углы. Таким образом, актиновые филаменты определяют форму клетки.

Область клетки с наибольшим количеством актиновых филаментов расположена рядом с плазматической мембраной. Эта область называется корой. Кортикальный цитоскелет организован по-разному, в зависимости от типа клетки, и связан с плазматической мембраной через связывающие белки.

Некоторые из наиболее описанных цитоскелетов - это мышечные клетки, тромбоциты, эпителиальные клетки и эритроциты. Например, в мышечных клетках белок, связывающий дистрофин, связывает актиновые филаменты с целостным гликопротеиновым комплексом на мембране. Этот комплекс связывается с белками внеклеточного матрикса.

Модель действия актин-миозинового взаимодействия

Исследователи под руководством Раймента предложили четырехступенчатую модель для объяснения взаимодействия актина и миозина. Первый шаг происходит при связывании АТФ с головками миозина. Это связывание вызывает конформационное изменение белка, высвобождая его из актина в тонком филаменте.

Затем АТФ гидролизуется до АДФ с высвобождением неорганического фосфата. Молекула миозина присоединяется к новой субъединице актина, создавая высокоэнергетическое состояние.

Выделение неорганического фосфата вызывает изменение миозина, возвращение к исходной конформации и движение мелких нитей относительно толстых нитей. Это движение вызывает движение двух концов саркомера, сближая их.

Последний шаг включает выпуск ADP. На этом этапе головка миозина свободна и может связываться с новой молекулой АТФ.

Движение клеток за счет полимеризации актина

Ползучая подвижность - это тип подвижности клеток. Шагами этого типа подвижности являются: проекция оси лидера адгезии к субстрату; адгезия к основанию; задний втягивание; и отторжение.

Проекция лидерной оси требует участия белков, которые участвуют в полимеризации и деполимеризации актиновых филаментов. Ведущая ось находится в коре клеток, называемой ламеллиподиумом. Шаги проецирования оси:

- Активация рецепторов внеклеточным сигналом.

- Образование активных GTPases и 4,5-бисфосфатфосфоинозитола (PIP2).

- Активация белков WASp / Scar и Arp2 / 3, которые связываются с мономерами актина с образованием ответвлений в актиновых филаментах.

- Быстрый рост актиновых филаментов ветви, украшенных миозином. Мембрана выдвигается вперед.

- Завершение удлинения, производимого белками оболочки.

- Гидролиз АТФ, связанного с актином в старых филаментах.

- Деполимеризация актин-АДФ из филаментов, вызванная АДФ / кофилином.

- Обмен АДФ на АТФ, катализируемый профилином, генерирующий актин Г-АТФ, готовый начать удлинение ответвлений.

Заболевания, связанные с актином

Мышечная дистрофия

Мышечная дистрофия - дегенеративное заболевание скелетных мышц. Он рецессивно наследуется и связан с хромосомой X. В основном он поражает мужчин с высокой частотой в популяции (один на каждые 3500 мужчин). Матери этих мужчин гетерозиготны, бессимптомны и могут не иметь семейного анамнеза.

Есть две формы мышечной дистрофии, Дюшенна и Беккера, и обе они вызваны дефектами гена дистрофина. Эти дефекты состоят из делеций, которые удаляют аксоны.

Дистрофин - это белок (427 кДа), который образует поперечные связи между актиновыми филаментами. Он имеет актин-связывающий домен на N-конце и мембранно-связывающий домен на C-конце. Между обоими доменами находится третий трубчатый домен, состоящий из 24 тандемных повторов.

В мышечном кортикальном ретикулуме дистрофин участвует в связывании актиновых филаментов с плазматической мембраной через гликопротеиновый комплекс. Этот комплекс также связывается с белками внеклеточного матрикса.

У пациентов с дефицитом функционального дистрофина с мышечной дистрофией Дюшенна кортикальный цитоскелет не поддерживает плазматическую мембрану. Следовательно, плазматическая мембрана повреждается стрессом от повторяющихся мышечных сокращений.

Белки нуклеации в контроле полимеризации актина

Биологическая подвижность и полимеризация актина (Клячко Н.Л. , 2000), БИОЛОГИЯ

Дана новая информация о механизме полимеризации актина, лежащей в основе многих проявлений биологической подвижности. Рассмотрен путь передачи внеклеточного сигнала на полимеризующийся актин, включающий G-белки, WASP и Arp2/3-комплекс. Приведены примеры эксплуатации подвижными патогенными бактериями механизма полимеризации актина в клетках хозяина.

И ПОЛИМЕРИЗАЦИЯ АКТИНА

Институт физиологии растений им. К.А. Тимирязева Российской академии наук, Москва

Полимеризация актина важна для многих процессов в клетке, она подвержена строгой пространственной и временной регуляции. Актиновые микрофиламенты вместе с микротрубочками и промежуточными филаментами образуют динамичную сеть в цитоплазме клеток, так называемый цитоскелет, который не только определяет форму клетки и пространственную организацию ее компонентов, но и лежит в основе разнообразных типов внутриклеточной и клеточной подвижности.

Из статей, опубликованных ранее в "Соросовском Образовательном Журнале", можно узнать об общей организации цитоскелета, его составе, основных формах движения клеток животных и работе молекулярных моторов, то есть молекул, умеющих превращать химическую энергию гидролиза АТФ в механическую работу при сокращении мышц, перемещении органелл и т.п. 2. Одним из примеров такого моторного белка, участвующего в движении по нитям полимерного актина, является миозин. Взаимодействие актина и миозина приводит к сокращению мышц. Оно также лежит в основе перемещения органелл и молекул вдоль нитей актина, который в данном случае играет роль рельсов для перемещения, в то время как моторный белок служит паровозом.

Однако некоторые формы движения осуществляются без участия специализированных моторов: они основаны на процессе полимеризации актина. Само по себе быстрое удлинение нитей актина приводит к возникновению движущей силы в направлении роста этих нитей. Быстрая полимеризация актина происходит, например, при перемещении клеток фибробластов и некоторых низших грибов с помощью специализированных выростов - псевдоподий в сторону привлекательного для них сигнала или в направлении от отталкивающего сигнала (положительный и отрицательный таксис).

До недавнего времени механизм быстрой локальной полимеризации актина в клетках оставался неясным. Еще не так давно Ю.М. Васильев писал о полимеризации актина в местах выбрасывания псевдоподий подвижными клетками животных: "Вероятно, под мембраной в этих местах концентрируются какие-то белки, вызывающие полимеризацию новых микрофиламентов, но пока природу этих белков мы еще точно не знаем" [1, с. 39]. В последние годы сделано несколько открытий, позволивших узнать больше о таких белках и заполнить брешь в цепи событий, происходящих на пути от внеклеточного сигнала до конечного результата, а именно движения. Описанию этих новых фактов и посвящена данная статья.

НОВОЕ О ПОЛИМЕРИЗАЦИИ АКТИНА

Актин: мономеры и полимеры

Актин присутствует в клетке как в форме мономерного белка с молекулярным весом 42 кД, так и в виде длинных нитей и их пучков, связанных с другими элементами цитоскелета и мембранами. Мономеры актина имеют грушевидную форму, и при их полимеризации возникает спирально закрученная полярная нить с различающимися концами: заостренным (минус) и оперенным (плюс) концом (рис. 1). Такие названия появились в связи с тем, что при взаимодействии актиновых нитей с фрагментами молекулы моторного белка миозина образуется комплекс, имеющий под электронным микроскопом стреловидную форму. При этом острие стрелы указывает на заостренный конец, а ее оперение обращено в сторону противоположного конца филамента.

Полимеризация актина происходит в две стадии. Первая стадия носит название "нуклеация", то есть создание ядра (nucleus) или затравки из первых трех мономеров актина. Димер (комплекс двух мономеров) является нестабильной структурой и легко разрушается. Именно нуклеация определяет общую скорость полимеризации. Вторая стадия, удлинение нити, протекает легче, с большей скоростью.

В пробирке мономерный актин может присоединяться и диссоциировать с обоих концов нити, но присоединение происходит быстрее к плюс-концу. Процесс непрерывного присоединения мономеров к оперенному (плюс) концу и их диссоциации с заостренного (минус) конца, то есть непрерывный круговорот мономеров (от англ. treadmilling - бесконечная, монотонная механическая работа) (см. рис. 1).

В живой клетке процесс полимеризации актина может быть не похож на treadmilling, то есть на круговорот мономеров в пробирке, поскольку полярные концы актинового филамента могут быть несвободными. В клетке присутствуют десятки так называемых актинсвязывающихся белков, которые сильно влияют на процесс полимеризации актина. Некоторые из них могут блокировать активно растущий оперенный плюс-конец, так называемые кэп-белки (от англ. cap - шапочка), прекращая таким образом полимеризацию уже существующих нитей и освобождая мономерный актин для построения новых нитей. Другие белки могут разрезать нити актина, формируя тем самым новые фрагменты с заостренными и оперенными концами. Существуют белки, связывающие мономеры актина и таким образом делающие их недоступными для полимеризации (например, профилин), белки, деполимеризующие актин, и т.п.

Актин - крайне консервативный белок, состоящий практически из одинаковых аминокислот у всех исследованных организмов. Однако помимо такого консервативного классического актина в клетках имеется много так называемых актиноподобных белков (actin-related proteins, Аrp), гомология которых с актином составляет всего от 30 до 60%. Различают несколько подсемейств таких белков: Аrp1, Аrp2, Аrp3 и др. Области гомологии этих белков с актином расположены главным образом в центральной части белковой глобулы. Поэтому долгое время считали, что эти белки неспособны к полимеризации, а также и совместной полимеризации с актином. Однако в последнее время становится ясно, что такое утверждение не вполне верно. Так, было обнаружено, что Аrp1 (центрактин) может полимеризоваться вместе с актином в составе так называемого динактинового комплекса, участвующего в перемещении органелл по микротрубочкам. Аrp2 и Аrp3 поодиночке действительно не взаимодействуют с актином. Однако недавно было показано, что эти два белка входят в состав так называемого Arp2/3-комплекса, содержащего помимо Аrp2 и Аrp3 белков еще пять или шесть (в зависимости от организма) субъединиц, не имеющих гомологии ни с одним из белков в компьютерных базах данных (рис. 2, а). Этот сложно устроенный комплекс был впервые выделен из амебы Acanthamoeba castellanii. Впоследствии было показано, что Arp2/3-комплекс очень консервативен и присутствует у всех исследованных эукариотных организмов от дрожжей до человека (для растений таких данных пока нет). В живых клетках этот комплекс накапливается в местах, где происходит быстрая полимеризация актина, например в разного рода псевдоподиях, в кортикальном слое цитоплазмы у дрожжей, в хвосте подвижных патогенных бактерий.

Оказалось, что Arp2/3-комплекс имеет повышенное сродство к минус-концам актиновых филаментов, а именно гетеродимер Arp2-Arp3 может служить матрицей, на которой происходит образование новых актиновых нитей (нуклеация) (рис. 2, а). Кроме того, комплекс может присоединяться к боковым сторонам нитей и таким образом обеспечивать их ветвление (рис. 2, б ). Интересно, что боковые нити актина отходят от основной нити строго под углом 70?, образуя жесткую сеть. Быстро растущие плюс-концы нитей актина обращены в сторону периферии клеток, например к мембране псевдоподия (рис. 2, б ). При этом создается движущая сила, толкающая мембрану вперед, в направлении перемещения клетки.

Концентрация Arp2/3-комплекса в клетках в 40-100 раз меньше, чем концентрация мономеров актина, но она достаточно велика, чтобы заблокировать все заостренные концы нитей, например у Acanthamoeba. Это, конечно, не означает, что treadmilling (круговорот мономеров) актина никогда не происходит в живых клетках. Напомним, во-первых, что комплекс характерен не для всех субпопуляций актина, и, во-вторых, возможно, что при определенных физиологических условиях он может диссоциировать от актиновых полимеров.

Сродство Arp2/3-комплекса к актину не слишком велико, и он ускоряет полимеризацию актина всего в 2-3 раза. Оказывается, для более эффективного функционирования сам комплекс должен быть активирован. Роль активаторов комплекса играют другие белки.

Движение патогенной бактерии Listeria

Первый белок, играющий роль активатора Arp2/3-комплекса, был обнаружен у патогенной бактерии Listeria monocytogenes, которая может вызывать опасные для жизни человека заболевания, такие, как энцефалит. Эта бактерия способна с большой скоростью перемещаться в цитоплазме клеток хозяина. Однако она не имеет жгутиков, и в ее клетке, как и у других прокариот, нет собственного актинового цитоскелета. Эта бактерия-паразит приспособилась использовать для перемещения актин эукариотной клетки, в которой она живет. L. monocytogenes научилась быстро полимеризовать актин хозяина вблизи одного из своих полюсов. В результате в ее кильватере образуется "хвост кометы" из непрерывно полимеризующегося актина, что и создает движущуюся силу для перемещения бактерии (рис. 3, вставка).

Оказалось, что на поверхности этой бактерии вблизи одного из ее полюсов имеется белок ActA, который умеет присоединять и активировать Arp2/3-комплекс и как следствие - во много раз ускорять полимеризацию актина. Пространственно процесс ограничен областью вблизи поверхности бактерии. Это достигается совместным действием многих актинсвязывающих белков, которые блокируют концы растущих филаментов актина, обеспечивают их ветвление, деполимеризацию и т.д. Растущие нити актина, по-видимому, направлены быстро растущими оперенными плюс-концами в сторону движения бактерии (точно так же, как это происходит при образовании псевдоподий в клетках эукариот) и толкают бактерию вперед.

Недавно M.-F. Carlier и ее сотрудники воссоздали процесс движения бактерии в системе in vitro, состоящей только из очищенных цитоскелетных белков. Ученые также определили степень необходимости каждого из белков - участников этого процесса. Помимо актина для моделирования процесса движения оказались необходимы всего три компонента: Arp2/3-комплекс, актиндеполимеризующий фактор и кэп-белки. Еще три белка были полезны, но необязательны для поддержания движения. Скорость движения бактерий составила 2-4 мкм/мин, то есть была не намного меньше, чем в клеточных экстрактах.

Таким образом, на предметном стекле был воспроизведен процесс движения патогенной бактерии Listeria и изучен его молекулярный механизм. Показано, что бактерия использует для передвижения полимеризацию актина цитоплазмы клетки-хозяина, активируя его с помощью собственного мембранного белка ActA.

РЕГУЛЯЦИЯ ПОЛИМЕРИЗАЦИИ АКТИНА

В КЛЕТКАХ ЭУКАРИОТ

Если полимеризация актина вблизи поверхности патогенной бактерии происходит конститутивно (без внешнего сигнала), то в подвижных клетках эукариот (например, в псевдоподиях фибробластов) или в зонах внутриклеточной подвижности, основанной на полимеризации актина, перестройка актинового цитоскелета обычно происходит в ответ на внеклеточный сигнал (свет, химический стимул). Уже давно известны начальные и конечные звенья в передаче этого сигнала. Внеклеточный сигнал воспринимается мембранным рецепторным белком и затем передается на так называемые G-белки, небольшие белки, способные связывать ГТФ, изменять свою конформацию и благодаря этому передавать сигналы на другую белковую молекулу. Гидролиз ГТФ до ГДФ G-белком возвращает его в неактивную конформацию. Некоторые такие G-белки (Rho, Rac и Cdc42) в итоге передают сигнал на актиновый цитоскелет, что приводит к быстрой полимеризации актина в зонах образования ламеллоподий и филоподий (разные типы псевдоподий) или волокон натяжения, пересекающих клетку пучков актиновых нитей. Промежуточные звенья в этой системе передачи сигнала до недавнего времени не были выяснены. Теперь стало очевидным, что полимеризации актина предшествует взаимодействие его мономеров с Arp2/3-комплексом, который затем должен быть активирован какими-то белками по аналогии с ActA-белком Listeria. Начались поиски таких белков в клетках животных и дрожжей, которые вскоре увенчались успехом. Было найдено несколько гомологичных белков. Первый из открытых белков получил название WASP, поскольку был найден у больных Wiscott-Aldrich-синдромом - наследуемой болезнью человека. Для этих белков характерно сложное доменное строение: они содержат домены связывания с белками и другими регуляторными молекулами (рис. 4, а). Показано, что эти белки, в частности, могут связывать Arp2/3-комплекс, мономерный актин, профилин, G-белки, сигнальную молекулу - фосфатидилинозитол-4,5-бисфосфат. Функциональное назначение разных доменов различно. Так, на С-конце WASP-белка рядом расположены домены связывания мономерного актина и Arp2/3-комплекса. Это обеспечивает их пространственное сближение и может облегчать процесс полимеризации актина. На N-конце WASP-белка расположены домены связывания G-белков и других сигнальных молекул. Благодаря этому WASP и его аналоги могут служить посредниками при действии многих факторов и участвовать в передаче сигнала (на участке между G-белками и Arp2/3-комплексом), активирующего полимеризацию актина.

Сами белки семейства WASP, по-видимому, в свою очередь, нуждаются в активации. Так, было показано, что С-концевые фрагменты этих белков более активны в стимуляции полимеризации актина, чем целые белки. Это может означать, что белки из семейства WASP могут существовать в клетке в неактивной конформации (рис. 4, б ) и только взаимодействие сигнальных молекул (G-белки, фосфоинозитолфосфатиды) с N-концевой частью этих белков переводит их в активную конформацию.

Итак, WASP-белки и Arp2/3-комплекс составляют те центральные звенья в цепи передачи внеклеточного сигнала, вызывающего полимеризацию актина, которые до недавнего времени были белыми пятнами в наших знаниях (рис. 5). Любопытно, что, если патогенная бактерия Listeria, о которой шла речь выше, сама синтезирует мембранный белок ActA (гомолог WASP), активирующий Arp2/3-комплекс эукариотной клетки, другая патогенная бактерия, возбудитель дизентерии Shigella flexneri, продвинулась еще дальше в степени эксплуатации механизма полимеризации актина клетки хозяина: ее мембрана содержит белок, который умеет присоединять WASP-белок хозяина (а не имитировать его активность), вклиниваясь в сигнальную цепь хозяина и активируя Arp2/3-комплекс с помощью Cdc42 (G-белок). Более того, если покрыть WASP-белком микроскопические стеклянные бусинки, то они тоже сумеют собирать актин вблизи своей поверхности и перемещаться в клеточных экстрактах без участия каких-либо моторных белков, только благодаря полимеризации актина.

Для выполнения актиновым цитоскелетом множества функций в клетке необходимо, чтобы сборка и организация актиновых нитей происходили в нужное время и в нужном месте. В последние десять лет шли интенсивные исследования с использованием генетических, биохимических и цитологических подходов для выяснения путей передачи внеклеточного сигнала к местам активной полимеризации актина. За это время был открыт Arp2/3-комплекс, служащий матрицей для нуклеации нитей актина и обнаружено несколько белков, регулирующих его активность. В последние годы было предпринято много усилий, чтобы понять механизм, с помощью которого G-белки семейства Rho регулируют состояние актинового цитоскелета, и практически заполнена брешь в цепи передачи внеклеточного сигнала на цитоскелет с участием G-белков. Важные для расшифровки этого пути передачи сигнала уроки были извлечены из изучения подвижности патогенных бактерий внутри эукариотической клетки и воспроизведения этого движения в модельных системах. Очевидно, что новые детали пространственной и временной регуляции сборки и организации актинового цитоскелета будут выяснены в последующие годы.

1. Васильев Ю.М. Клетка как архитектурное чудо. 1. Живые нити // Соросовский Образовательный Журнал. 1996. ╧ 2. С. 36-43.

2. Васильев Ю.М. Клетка как архитектурное чудо. 2. Цитоскелет способный чувствовать и помнить // Там же. ╧ 4. С. 4-10.

3. Тихонов А.Н. Молекулярные моторы. 2. Молекулярные основы биологической подвижности // Там же. 1999. ╧ 6. С. 17-24.

4. Welch M.D. The World According to Arp: Regulation of Actin Nucleation by the Arp2/3 Complex // Trends Cell Biol. 1999. Vol. 9. P. 423-427.

5. Machesky L.M., Cooper J.A. Bare Bones of the Cytoskeleton // Nature. 1999. Vol. 401. P. 542-543.

Рецензент статьи О.Н. Кулаева

Нелла Леопольдовна Клячко, доктор биологических наук, ведущий научный сотрудник Института физиологии растений им. К.А. Тимирязева РАН. Область научных интересов - пространственная организация белоксинтезирующего аппарата и его взаимодействие с цитоскелетом растительной клетки. Автор более 80 научных публикаций.

мономер G-актин (глобулярный актин)- ассиметричный
(42кДа) состоит из двух доменов, по мере повышения ионной
силы агрегирует в скрученный в спираль полимер F-актин (фибриллярный
актин).

G-актин имеет участки связывания двухвалентных катионов
и нуклеотидов в физиологических условиях занятые Mg 2+
и ATP.

Полимеризация G-актина в F-актин

F-актин обладает полярностью (+) и (-) имеющих
различные свойства.

Молекула G-актина несет прочно связанную АТФ, который при
переходе в F-актин медленно гидролизуется до АДФ - проявляет
свойства АТФ-азы Полимеризация сопровождается гидролизом
АТФ, что не необходимо т.к. полимеризация идет и в присутствии
негидролизуемых аналогов АТФ

Полимеризация состоит из нескольких процессов: нуклеация,
элонгация, диссоциация,
фрагментация, стыковка.
Эти процессы протекают одновременно.

Нуклеация - соединение трех G-актинов -
инициация полимеризации.

Элонгация - наращивание цепи актина путем
присоединения G-актина к (+)-концу F-актина.

Диссоциация - укорачивание цепи. Деполимеризация
актина имеет одинаковую скорость с обоих концов

Фрагментация - в результате теплового движения
F-актин может фрагментироваться.

Стыковка - отдельные фрагменты могут соединяться
друг с другом конец в конец.

При конценрации G>F - одновременно происходит полимеризация
(+) и (-) конца.

Если G (-)-конца - тредмиллинг - движение F-актина
за счет одновременного наращивания (+)-конца и диссоциации
(-)-конца. При G ~ F - динамическое равновесие - происходит
полимеризация (+) и деполимеризация (-)-конца с затратой
энергии ATP G-актин связ с ATP и полимеризуясь гидролизует
ATP.при критических конц G-актина (+) конец удлиняется,
а (-) - укорачивается

Актиновые микрофиламенты

F-актин - фибриллярный, длина оборота спирали 37
нм, d=6-8нм.

Актинсвязывающие белки

Более 50 белков в цитоплазме связываются с актином выполняя
различные функции: регулируют объем G-актинового пула (профилин),
влияют на скорость полимеризации (виллин), стабилизируют
концы нитей (фрагин, а-актинин), сшивают филаменты др с
др или с др компонентами (виллин, α-актин, спектрин,
MARCKS, фимбрин), разрушают двойную спираль F-актина (гельзолин).
Активность этих белков регулируется Ca 2+ и протеинкиназами.

Имеется пять мест действия белков: с мономером
актина, с (+)-концом (оперенный), с (-)-концом (заостренный),
с боковой поверхностью. Актин-связывающие белки могут быть
чувствительны или нечувствительны к Ca 2+

1. Белки связывающиеся c мономером актина - подавляют нуклеацию
(профилин, фрагментин - чувствительны к Ca 2+ ).
Профилин с мономером способны надстраивать F-актин, а фрагментин
нет, блокируя и нуклеацию и элонгацию. Не чувствительные
к Ca 2+ ДНКазаI и белок связывающийся с витамином
D - функционируют вне клетки.

2. Кепирующие(+)-конец может быть блокирован кепирующими
белками - блокирование элонгации и стыковки, способствуют
нуклеации - появление укороченных филаментов (гельзолин,
виллин, фрагмин)

3. (-)-конец - инициирование нуклеации, подавление стыковки
и элонгации - увеличение числа и уменьшение длины фрагментов.
Акументин в макрофагах, бревин - сывороточный белок вызывает
быстрое снижение вязкости раствора F-актина. Оба белка не
чувствительны к Ca 2+

4. Не сшивающие - боковое связывание может как стабилизировать
так и дестабилизировать F-актин Тропомиозин (Ca-независим)
стабилизирует, северин, виллин (Ca-зависим) - связываясь
с F-актином разрезают его.

5. Сшивающие F-актин между собой с образованием геля. Такие
белки индуцируют нуклеацию. Такие белки димерны или имеют
два актин-связывающих домена. α-актин тромбоцитов,
виллин, фимбрин, актиногелин из макрофагов (Ca-независим).

кэпирующие белки - закрывают концы актиновых
филаментов, предотвращая полимеризацию-деполимеризацию,
способствуют прикреплению филамента к мембране.

фаллоидин - яд бледной поганки, связывается
с (-)-концом и ингибирует деполяризацию.

цитохалазин - токсин плесневых грибов присоединяется
к (+) концу, блокируя полимеризацию.

кэпирующие-фрагментирующие белки - фрагментируют
F-актин, вызывая переход геля в золь (гельзолин 90kD активируясь
Ca2+ 10-6M разрывает F-актин и связывается с его концами).

белки связывающие F-актин

белок M, kD рис. локализация и действие на F-актин
фасцин 55 филлоподии, ламелоподии, стресс-фибриллы, микроворсинки,
акросома
тропомиозин 2x35 стабилизирует F-актин, предотвращая фрагментацию
миозин 2x260 скольжение нитей
минимиозин 150 движение пузырьков
профилин 15 запасение G-актина
скруин 102 акросома
вилин 92 микроворсинки
дематин 48 кортикальная сеть эритроцитов
фимбрин 68 адгезион. контакты, микроворсинки связ в пучки
актинин 2x102 адгез контакты, микроворсинки связ в пучки
спектрин 2x265+2x260 кортик сеть эритроц прикрепление к ПМ
дистрофин 427 корт.сеть мыш волокон
ABP120 92 псевдоподии
филамин 2x280 псевдоподии, стрессфибриллы сшивает в сети

Структуры образуемые актином

Клеточный кортекс - сеть из актиновых филаментов
под плазматической мембраной.

Стресс-фибриллы - образуются, когда у клетки есть
возможность прикрепиться к субстрату

Актин в мышечных волокнах

Описаны основные характеристики сократительного белка актина (диаметр глобулы и молекулярная масса). Дается характеристика первичной и третичной структуры актина. Описан процесс полимеризации актина (соединения молекул глобулярного актина в фибриллу).

Актин

Основу тонкого филамента саркомера составляет сократительный белок актин, который имеет яйцевидную форму (форму глобулы). Диаметр глобулы G-актина примерно равен 55 Å[1]. Поэтому эта форма актина называется глобулярным актином (G-актин). На долю актина приходится 25% общей массы мышечного белка.

История выделения актина

Актин впервые выделен Б. Штраубом в 1948 году (Самойлов В.О., Бигдай Е.В., 2004).

Структура актина

Структура этого белка остается неизменной миллионы лет. Первичную структуру актина (полипептидную цепь) составляют 374 аминокислотных остатка. Молекулярная масса актина - 41,8 кДа.

Третичная структура актина представляет из себя глобулу с бугристой поверхностью, изрезанную щелями. Самая большая щель пролегает в середине молекулы и содержит активные центры связывания АТФ, АДФ, а также ионов кальция (Ca 2+ ) и магния (Mg 2+ ).

Полимеризация актина

На молекуле G-актина есть сайты (центры) связывания тропомиозина, тропонина и миозиновой головки. Кроме того молекула G-актина имеет две пары комплементарных (ключ-замок) сайтов прикрепления соседних молекул G-актина. Благодаря этим центрам связывания в присутствии ионов магния (Mg2+) глобулы G-актина при достаточной их концентрации самопроизвольно объединяются в фибриллы (происходит полимеризация G-актина). В результате образуется фибриллярный актин (F-актин). Контакты между глобулами G-актина обеспечиваются гидрофобными и электростатическими взаимодействиями (рис.1).

При такой спонтанной полимеризации актина на образовавшейся нити один из ее концов быстро связывается с G-актином (плюс-конец) и поэтому растет быстрее, чем противоположный (минус-конец). В результате возникает суперспираль, образованная молекулами G-актина, подобно бусинкам в ожерелье из двух ниток, закрученных одна вокруг другой.


Рис. 1. Полимеризация актина

Литература

1. Самойлов В.О., Бигдай Е.В. Клеточные и молекулярные основы биомеханики / В кн.: Математические модели и компьютерное моделирование в биомеханике: Учебное пособие.- СПб: Из-во Политехнического ун-та, 2004.- С. 29-102.

[1] Å - ангстрем устаревшая внесистемная единица измерения длины, равная 10 −10 м.

Молекулярные основы эпителиально-мезенхимального перехода и его роль в развитии и метастазировании опухоли.


Случалось ли вам когда-нибудь желать себе обладания каким-нибудь сверхъестественным умением? Например, становиться невидимым или проходить сквозь стены? Думаю, многие не раз грезили в детстве о том, какие ловкие штуки могли бы проворачивать, будь у них какая-то эдакая способность, ставящая на порядок выше нашего мира, подчинённого обыденным устоям и правилам. Вероятно, клетки нашего организма тоже не все хотят быть такими же, как большинство, и при определённых обстоятельствах обзаводятся новыми способностями, действительно отличающими их от остальных. Но чем может обернуться такая эгоистичность для целого организма? Как вариант — зарождением опухолевого очага и стремительным распространением клеток, которые уж точно больше не серая масса, а целая гетерогенная популяция, настоящие бунтари, лишённые альтруизма и любви к своим собратьям по организму. И в сегодняшнем посте речь поведём именно о том, каким образом клетки одного типа могут принимать иную форму и какое место это событие занимает в развитии и распространении опухоли.

Под эпителиально-мезенхимальной трансформацией (ЭМТ) понимается процесс, при котором покоящиеся эпителиальные клетки теряют свои межклеточные контакты и принимают мезенхимальную форму. Они приобретают способность к миграции через базальную мембрану, а значит, могут по кровеносному или лимфатическому руслу попасть в любые сколь угодно отдалённые от своего исходного местонахождения ткани, где путём обратной трансформации в эпителиальные клетки (мезенхимально-эпителиальный переход) формируют новые структуры. Физиологически этот процесс играет значимую роль при заживлении ран и в ходе эмбрионального развития организма. Так, например, ЭМТ лежит в основе формирования сердца, закладки большинства краниофациальных структур, а также скелетных мышц и периферической нервной системы. Да и вообще, ни один организм не разовьётся дальше стадии бластулы, не будь эпителиально-мезенхимального перехода. Однако в то же время данное явление находит своё место и в контексте патологической физиологии. ЭМТ способствует прогрессии опухолевых заболеваний за счёт того, что озлокачествленные эпителиальные клетки получают способность к проникновению в сосудистое русло, то есть, им открывается прямой путь к метастазированию. Также эпителиальные клетки, претерпев ЭМТ, могут быть задействованы в фибротических процессах: чрезмерная продукция белков внеклеточного матрикса фибробластоидными клетками может вести к функциональным нарушениям той или иной ткани.

Хотя уже в конце XIX в. эпителиальные и мезенхимальные клетки были известны как два основных типа клеток, а процесс перехода между этими двумя типами был описан в 1908 г., эпителиально-мезенхимальный переход как таковой был идентифицирован как самостоятельный процесс впервые лишь в 1982 г. Вскоре после этого было обнаружено, что если инкубировать эпителиальные клетки в среде, в которой были культивированы фибробласты, то эпителиоциты разобщаются и превращаются в мигрирующие мезенхимальные клетки. Поначалу фактор, определённый как ответственный за данную трансформацию, получил обозначение “scatter factor”, а позднее был назван фактором роста гепатоцитов (HGF), поскольку была обнаружена его роль в качестве митогена для клеток ткани печени, участвующего в регенерации печени. В экспериментах in vitro было указано на то, что HGF опосредует ЭМТ посредством активации тирозинкиназных рецепторов c-Met, кодируемых протоонкогеном. Помимо HGF и другие факторы роста осуществляют вклад в индукцию ЭМТ путём стимуляции тирозинкиназных рецепторов (как in vitro, так и in vivo), как, например, фактор роста фибробластов (FGF), инсулиноподобный фактор роста (IGF), эпителиальный фактор роста (EGF). Кроме того, большое значение придаётся трансформирующему фактору роста бета (TGF-β), который берёт на себя ключевую роль в инициации и поддержании ЭМТ как в процессе эмбрионального развития, так и при опухолевой прогрессии. Часто перечисленные факторы действуют синергетически, усиливая эпителиально-мезенхимальный переход.

Характеристика пусковых факторов и вовлечённых сигнальных путей имеет огромное значение, поскольку трансформационный процесс рассматривается непосредственно как терапевтическая мишень в контексте разработки лекарственных препаратов, направленных на борьбу с фиброзами и инвазивными опухолями. Целесообразным было бы ингибировать и пути сигнальной передачи, которые наряду с ЭМТ способствуют также ангиогенезу.



Рисунок 1 | Факторы, запускающие ЭМТ.

Итак, в ходе ЭМТ эпителиальные клетки теряют свою апикобазальную полярность и приобретают фибробластоподобный фенотип. Вследствие потери контактов с соседними клетками эпителиоциты высвобождаются из системы межклеточных связей в организованной эпителиальной ткани. После реструктуризации актинового цитоскелета клетки могут мигрировать через экстрацеллюлярный матрикс, что опосредовано тем, что на этой стадии клетки в состоянии синтезировать характерные мезенхимальные белки, дающие возможность устанавливать клеточно-матриксные связи. Также клетки вырабатывают матриксдеградирующие протеазы, разрушающие базальную мембрану и облегчающие тем самым инвазию трансформированных клеток в кровеносное и лимфатическое русло. Давайте остановимся теперь на каждом пункте чуть подробнее.

Плотные контакты (tight junctions), связывающие клетки в эпителиальных тканях, служат для поддержания целостности ткани, обеспечивают взаимодействие клеток друг с другом, а также выполняют барьерную функцию, принимая участие в регуляции проницаемости эпителия путём ограничения парацеллюлярного транспорта, и придают клеткам полярность благодаря своей организации преимущественно в апикальной области (zona occludens). Формируются плотные контакты за счёт трансмембранных белков окклюдинов и клаудинов, которые связываются с актиновым цитоскелетом через внутриклеточные белки, как например, ZO-1 (zona occludens protein 1). Адгезионные контакты (adherens junctions) представляют собой гомодимерные межклеточные контакты, характеризующиеся связью через классические кадгерины (находятся в зависимости от ионов кальция; типичные примеры — Е-кадгерин, N-кадгерин). Пронизывающие мембрану кадгерины связаны, опять же, с внутренней стороны с цитоскелетом посредством бета- и альфа-катенинов и винкулина или плакоглобина. Десмосомы, распределяющие силы напряжения по всему объёму ткани, противостоят разрывам и смещениям, то есть, важны для стабилизации ткани. Десмосомы соседних клеток связаны друг с другом за счёт трансмембранных десмосомальных кадгеринов (десмоколлины и десмоглеины), а также скреплены с кератиновыми волокнами с помощью цитоплазматических партнёров — плакоглобина и десмоплакина. Десмосомы и адгезионные контакты классификационно причисляются к заякоривающим соединениям, а плотные контакты — к запирающим.

Таким образом, при утрате того или иного соединения какой-либо клетки с окружающими содержание соответствующих контактных белков резко снижено. По этой причине эти белки годятся для трансформационного статуса эпителиальных клеток. Например, в качестве маркеров ЭМТ нередко используются многие из уже упомянутых белков — ZO-1, бета-катенин, Е-кадгерин, а также цитокератин. Снижение экспрессии или функциональной активности Е-кадгерина является крайне важной информацией о развитии опухоли, поскольку наблюдается в канцерогенезе множества злокачественных опухолей и связано с индукцией ЭМТ, а потому представляется и весьма существенным признаком инвазивного роста опухоли. Ослабление адгезионных контактов осуществляется как путём передислокации Е-кадгерина из цитоплазматической мембраны в цитоплазму, так и опосредованно через генетическую регуляцию. Белки типа цинкового пальца Snail и Slug препятствуют транскрипции Е-кадгерина, зацепляясь на специальном сайте связывания промотора гена Е-кадгерина (Е-бокс, Enhancer Box). Также Snail и Slug регулируют активацию TGF-β через Smad3. Кроме того, FGF и HGF оказывают влияние на межклеточные контакты через активирование Slug. Slug (но не Snail) принимает участие и в ЭМТ-ассоциированном заживлении ран, что совпадает с данными по различиям экспрессии гена Slug, полученными в исследованиях культуры иммортализованных нетуморогенных кератиноцитов линии НаСаТ и линии человеческих эпителиоцитов почек НК-2: если в культуре НаСаТ TGF-β индуцировал синтез только Slug, то в ренальных эпителиоцитах контроль был сосредоточен именно на белке Snail.

Среди прочих факторов, оказывающих влияние на экспрессию Е-кадгерина, хотелось бы упомянуть EF1 (энхансер-связывающий фактор гамма-кристаллина), SIP1, c-Fos. EF1 и SIP1 могут управлять как транскрипцией генов белков Smad, так и, аналогично белкам Snail и Slug, напрямую взаимодействовать с промотором гена Е-кадгерина и, блокируя экспрессию Е-кадгерина, провоцировать развитие инвазивного фенотипа клетки. Эктопическая экспрессия c-Fos, например, в эпителии молочной железы, может вести к трансформации. Вообще, при кратковременной активации c-Fos потеря апикально-базальной полярности могла бы быть обратима, однако в этом случае аутокринное воздействие продуцируемого TGF-β становится инструментом поддержания ЭМТ. Так, в клетках линии НаСаТ к началу ЭМТ наблюдалась опосредованная через ERK (extracellular signal-regulated kinases) стимуляция трансформирующим фактором роста бета эктопической активности c-Fos.

Также с промотором гена Е-кадгерина способен связываться белок семейства bHLH (basic helix-loop-helix) E2A. В норме Е2А транскрипционно неактивен и представлен в виде димеров с белками ингибиторами дифференцировки (ID). В культивируемых на микроносителях эпителиальных клетках ID2 и ID3 оказываются целью воздействия TGF-β и ВМР7 (bone morphogenetic protein 7, костный морфогенетический белок): TGF-β сдерживает экспрессию ID2, вследствие чего активируется Е2А, который снижает транскрипцию гена Е-кадгерина; а ВМР7 проявляет себя антагонистически, повышая экспрессию ID2 и защищая тем самым эпителиальные клетки от трансформирующих влияний.

Важным регулятором ЭМТ как in vitro, так и in vivo проявил себя также относящийся к белкам bHLH фактор транскрипции Twist, эктопическая экспрессия которого становится причиной снижения транскрипции опять же Е-кадгерина, альфа-, бета- и гамма-катенинов. Также Twist способствует активности таких мезенхимальных маркеров, как фибронектин, виментин, альфа-гладкомышечный актин (alpha-SMA), N-кадгерин. А некоторые прочие факторы транскрипции, кроме регуляции прочности адгезионных контактов, оказывают влияние и на другие характеристики ЭМТ. Так, ID2 может препятствовать синтезу alpha-SMA; SIP1 регулирует экспрессию виментина, а в некоторых типах клеток наряду с белком Snail повышает экспрессию матриксной металлопротеиназы 2 (ММР-2); Snail может влиять на ряд существенных для ЭМТ генов (было обнаружено в клетках меланомы), среди которых гены ММР-2 и малых G-белков семейства Rho (RhoA).

Разобравшись с потерей межклеточных контактов, обратимся к тому, в чём же заключается реструктуризация цитоскелета. Для эпителиальных клеток в связи с их полярностью характерен так называемый пояс актина, волокна которого участвуют в создании адгезионных и плотных контактов, являя собой мощное дополнение периферическому актину, также задействованному в поддержании межклеточных соединений. В мезенхимальных клетках актин, напротив, представлен в виде филоподий (толстые пучки актина, цилиндроподобно вытянутые в сторону передвижения клетки), ламеллоподий (тонкие сети на переднем конце клетки, инициирующие движение клетки вперёд; придают клеточной мембране характерный внешний вид) и стрессовых волокон (пучки коротких актиновых филаментов с добавлением миозиновых филаментов; простираются параллельно продольной оси тела клетки и, сокращаясь, тоже продвигают клетку вперёд), которые поддерживают миграцию клеток. Актиновые стрессовые волокна связаны со внутренней поверхностью цитоплазматической мембраны посредством интегринов и фокальных адгезионных комплексов, имеющих в своём составе структурные белки (талин, винкулин, альфа-актинин) и некоторые протеинкиназы (например, FAK — киназа фокальных контактов). Полимеризация актина находится под контролем белков семейства Rho, куда относятся, к примеру, Rho, Rac и Cdc42, которые, приобретая активированную форму, инициируют образование как актиновых стрессовых волокон, так и адгезионных комплексов: Rac опосредует формирование ламеллоподий, Cdc42 принимает участие в образовании филоподий. Таким образом, при запуске ЭМТ белки семейства Rho представляют собой наиважнейшие целевые структуры для влияния TGF-β.


Рисунок 2 | Этапы метастазирования.

После того, как произошло переформирование внутриклеточных актиновых структур, клетка может приступать к миграции сквозь джунгли внеклеточного матрикса. Для этого ей необходимо умение образовывать новые контакты между собственными интегринами и белками матрикса. Интегрины оснащены специальными участками для связывания с матриксными белками, и благодаря RGD-последовательности интегрины распознают белки матрикса. Кроме чисто механического связывания, трансмембранные интегрины могут подвергаться контролю по типу inside-out-signalling: например, внутриклеточные киназы, связываясь с внутриклеточными участками интегринов, могут изменять их внеклеточные участки для связывания с лигандами. Но и наоборот, связывание интегринов с лигандами ведёт к внутриклеточному каскаду взаимодействий, следствием которого может быть активация FAK или белков Rho.

Ещё одна важная черта, характеризующая нормальные эпителиальные клетки — связь с базальной пластинкой посредством гемидесмосом. В ходе эпителиально-мезенхимальной трансформации клетки эпителия отделяются от базальной пластинки и начинают разрушать коллаген IV, ламинин, нидоген, из которых она построена. Для этой цели клетки вырабатывают матриксные металлопротеиназы ММР-2 и ММР-9. Структура всех ММР во многом сходна. Поначалу все ММР синтезируются как неактивные предшественники — Pro-MMPs, которые затем активируются после ферментативного отщепления продомена (эти продомены почти у всех ММР представляют собой консервативные последовательности, в которых присутствует цистеин, ответственный за связывание цинка в активном центре протеазы; поэтому только в отсутствие продомена цинк беспрепятственно связывается с активным центром и активирует протеазу). Также ММР обладают субстратспецифичными связывающими мотивами, на чём основано их разделение на подгруппы.

После такого краткого пробега по основным этапам ЭМТ хотелось бы завершить пост и после прочтения предложить вам ознакомиться с замечательным переводом Медача, посвященным эпителиально-мезенхимальной пластичности и её роли как регулятора опухолевой прогрессии. Перевод читать тут: vk.cc/6AwriY

Читайте также: