Анаэробный путь получения глюкозы. Кислородная задолженность

Обновлено: 18.05.2024

Анаэробный гликолиз - сложный ферментативный процесс последовательных превращений глюкозы, протекающий в тканях человека и животных без потребления кислорода (рис.28).

Обратимое превращение пировиноградной кислоты в молочную катализируется лактатдегидрогеназой:

Суммарный результат гликолиза выражается следующим уравнением: С6Н12О6 + 2Н3РО4 + 2АДФ = 2С3Н6О3 + 2АТФ + 2Н2О

Таким образом, чистый выход АТФ при анаэробном гликолизе - 2 моль АТФ на 1 моль глюкозы. Именно благодаря анаэробному гликолизу организм человека и животных может определенный период времени осуществлять ряд физиологических функций в условиях недостаточности кислорода.

Данный процесс у бактерий называют молочнокислым броже­нием: он лежит в основе приготовления кисломолочных продуктов. Ана­эробный гликолиз протекает в цитозоле клеток, где содержатся все не­обходимые для этого ферменты, и не нуждается в митохондриальной дыхательной цепи. АТФ в процессе анаэробного гликолиза образуется за счет реакций субстратного фосфорилирования.

У дрожжей в анаэробных условиях происходит сходный процесс - спиртовое брожение, в этом случае пировиноградная кислота декарбоксилируется с образованием уксусного альдегида, который затем восста­навливается в этиловый спирт:


Рис.28. Схема анаэробного гликолиза глюкозы

10.6. Аэробный распад глюкозы

Аэробный распад глюкозы включает в себя три стадии:

1) превращение глюкозы до пировиноградной кислоты (пирувата) - аэробный гликолиз. Эта часть аналогична рассмотренному выше процессу анаэробного гликолиза, за исключением его последней стадии (превращение пирувата в молочную кислоту);

2) общий путь катаболизма;

3) митохондриальная цепь переноса электронов - процесс тканевого дыхания.

Общий путь катаболизма

Общий путь катаболизма сострит из двух этапов.

1-й этап - окислительное декарбоксилирование пировиноград­ной кислоты. Это сложный многостадийный процесс, катализируемый мультиферментной системой - пируватдегидрогеназным комплексом; локализуется в митохондриях (внутренняя мембрана и матрикс) и может быть выражен суммарной общей схемой:

СН3-СО-СООН + HS-KoA + НАД + → CH3-CO-SkoA + НАД.Н+Н + + СО2.

2-й этап - цикл Кребса (цитратный цикл, или цикл трикарбоновых и дикарбоновых кислот) (рис. 29); локализуется в митохондриях (в матриксе). В этом цикле ацетильный остаток, входящий в ацетил-КоА, образует ряд первичных доноров водорода. Далее водород при участии дегидрогеназ поступает в дыхательную цепь. В результате сопряженного действия цитратного цикла и дыхательной цепи ацетильный остаток окисляется до СО2 и Н2О. Суммарное уравнение всей последовательно­сти превращений глюкозы в ходе аэробного распада следующее:

Энергетический эффект аэробного распада - синтез 38 молекул АТФ при расщеплении 1 молекулы глюкозы. Таким образом, в энергети­ческом отношении полное окисление глюкозы до углекислого газа и воды является более эффективным процессом, чем анаэробный гликолиз. Ки­слород тормозит анаэробный гликолиз, поэтому в присутствии избытка кислорода наблюдается переход в растительных и животных тканях от анаэробного гликолиза (брожения) к дыханию (аэробный гликолиз), т.е. переключение клеток на более эффективный и экономичный путь полу­чения энергии (эффект Пастера). Роль анаэробного гликолиза в обеспе­чении организма энергией особенно велика при кратковременной интен­сивной работе, когда мощности механизма транспорта кислорода к мито­хондриям недостаточно для обеспечения аэробного гликолиза. Так, бег в течение ~ 30 секунд (на 200 м) полностью обеспечивается анаэробным гликолизом, при этом скорость анаэробного гликолиза с учащением ды­хания уменьшается, а скорость аэробного распада увеличивается. Через 4-5 мин. бега (1,5 км) - половину энергии дает анаэробный, половину аэробный процесс. Через 30 мин. (10 км бега) - энергия поставляется почти целиком аэробным процессом.

Эритроциты вообще не имеют митохондрий, и их потребность в АТФ полностью удовлетворяется за счет анаэробного гликолиза.

Анаэробные пути ресинтеза АТФ.

Анаэробные пути ресинтеза АТФ - это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 - 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат - вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощностьэтого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертываниявсего 1 - 2 сек.

Время работы с максимальной скоростью всего лишь 8 - 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

· малой время развертывания,

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент -это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг- это повышение потребления кислорода в ближайшие 4 - 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 - 10 л.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту.Этот процесс называется гликолиз.В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность -750 - 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания20-30 секунд.

Время работы с максимальной мощностью -2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

· он быстрее выходит на максимальную мощность,

· имеет более высокую величину максимальной мощности,

· не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки:

  • процесс малоэкономичен,
  • накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Для оценки гликолиза используют две биохимические методики - измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг.Лактатный кислородный долг - это повышенное потребление кислорода в ближайшие 1 - 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 - 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

РАСПАД ГЛЮКОЗЫ В АЭРОБНЫХ И АНАЭРОБНЫХ УСЛОВИЯХ

Аэробный распад протекает в условиях достаточного снабжения тканей кислородом. Он вклю­чает несколько стадий:

1. Аэробный распад глюкозы до двух молекул пирувата в гиалоплазме клеток,который можно разделить на 2 этапа:

а)подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз.

б) основной этап, сопряженный с синтезом АТФ. В результате серии реакций фосфотриозы превращаются в пируват.

2. Превращение пирувата в ацетил-КоА и окисление последнего в цикле Кребса

3. Дыхательная цепь

Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с учас­тием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Это обратимая реакция изомеризации протекает при участии глюкозофосфатизомеразы. Затем следует еще одна реакция фосфорилирования за счет АТФ, катализирует ее фосфофруктокиназа. В ходе этой реакции фруктозо-6-фосфат превращается в фруктозо-1,6-бисфосфат. Этот метаболит далее расщепляется на 2 триозофосфата: фосфоглицериноый альдегид (ФГА) и диоксиацетонфосфат (ДОАФ), реакцию катализирует альдолаза. В последующих реакциях гликолиза используется только ФГА, поэтому ДОАФ превращается с участием фермента триозофосфатизомеразы в ФГА. На этом подготовительный этап заканчивается.

Основной этап аэробного распада включает реакции, связанные с синтезом АТФ. Сна­чала происходит окисление ФГАпри участии ФГА-дегидрогеназы. Этот фермент является НАД + -зависимымым. Восстановленный НАД + затем окисляется в дыхательной цепи (перенос НАДН в митохондрии, где находится дыхательная цепь, происходит при участии челноч­ных механизмов, это связано с тем, что митохондриальная мембрана непроницаема для НАДН). Кроме того, свободная реакция окисления этой реакции концентрируется в макроэргической связи продукта реакции. Продуктом реакции является 1,3-бисфосфоглицерат. Для фосфорилирования используется Н3РО4. В следующей реакции высокоэнергетический фосфат пе­редается на АДФ с образованием АТФ. Катализирует реакцию фосфоглицераткиназа. АТФ в данной реакции образуется путем субстратного фосфорилирования. Продуктом реакции является 3-фосфоглицерат. В следующей реакции происходит перенос фосфата из 3 положения во второе с образованием 2-фосфоглицерата. Из него при отщеплении воды образуется фосфоенолпируват - макроэргическое соединение, фосфатная группа которого в следующей реакции переносится на АДФ с образованием АТФ при участии пируваткиназы (это вторая реакция субстратного фосфорилирования). Продуктом реакции является пируват.

Во второй стадии пируват превращается в ацетил-КоА, который сгорает в цикле Кребса и дыхательной цепи (третья стадия) до СО2 и Н2О.

Всего при аэробном окислении глюкозы выделяется 32 АТФ.

Анаэробный гликолиз представляет собой распад глюкозы в анаэробных условиях (условиях недостаточного снабжения кислородом), поэтому он не зависит от работы митохондриальной дыхательной цепи. АТФ в гликолизе образуется путем субстратногофосфорилирования. Конечным продуктом является лактат (рис. 5).

Все реакции анаэробного гликолиза (11 реакций) протекают в гиалоплазме. Первые 10 реак­ций до пирувата идентичны аэробному распаду. В последней реакции происходит восстановление пирувата в лактат цитозольным НАДН. Реакцию эту катализирует лактатдегидрогеназа. С помощью этой ре­акции обеспечивается регенерация НАД + из НАДН без участия дыхательной цепи в ситуациях, связанных с недостаточным снабжением клеток кислородом. Роль акцептора водорода от НАДН (подобно кислороду в дыхательной цепи) выполняет пируват. Таким образом, значение реакции восстановления пирувата заключается не в образовании лактата, а в том, что данная цитозольная реакция обеспечивает регенерацию НАД + . К тому же лактат не является конечным продуктом ме­таболизма, удаляемым из организма (лактат - тупиковый метаболит). Он выводится в кровь и утилизируется: либо превращается в глюкозу (75%), либо при доступности кислорода окисляется до СО2 и Н2О (25%).


Энергетический выход анаэробного гликолиза составляет 2 АТФ.

Недостатками анаэробного гликолиза являются: малый энергетический выход по сравнению с аэробным распадом и накопление лактата, что приводит к ацидозу, усталости.

Достоинства гликолиза: он полезен при выполнении кратковременной работы, является единственным источником энергии для эритроцитов (в них отсутствуют митохондрии), а также необходим в разных органах при дефиците кислорода (наложение жгута, падение давления, нарушение кровотока).

Регуляция. Регуляторными ферментами гликолиза являются: гексокиназа, фосфофруктокиназа и пируваткиназа. Аллостерическими ингибиторами являются АТФ и цитрат. Стимулирует гликолиз инсулин, а тормозят глюкагон, глюкокортикостероиды. Катехол­амины тормозят гликолиз в печени и активируют в мышцах.

Анаэробное окисление глюкозы


Таким образом, на первом этапе гликолиза на активирование глюкозы затрачивается 2 молекулы АТФ и образуется 2 молекулы 3-фософоглицеринового альдегида.

На второй стадии окисляются 2 молекулы 3-фосфоглицеринового альдегида до двух молекул молочной кислоты.

Значение лактатдегидрогеназной реакции (ЛДГ) состоит в том, чтобы в безкислородных условиях окислить НАДН2 в НАД и сделать возможным протекание глицеро-фосфатдегидрогеназной реакции.

Суммарное уравнение гликолиза: глюкоза + 2АДФ + 2Н3РО4 → 2лактат + 2АТФ + 2Н2О

Гликолиз протекает в цитозоле. Его регуляцию осуществляют ключевые ферменты - гексокиназа, фософофруктокиназа и пируваткиназа. Эти ферменты активируются АДФ и НАД, угнетаются АТФ и НАДН2.

Энергетическая эффективность анаэробного гликолиза сводится к разнице между числом израсходованных и образовавшихся молекул АТФ. Расходуется 2 молекулы АТФ на молекулу глюкозы в гексокиназной реакции фосфофруктокиназной реакции. Образуется 2 молекулы АТФ на одну молекулу триозы (1/2 глюкозы) в глицерокиназной реакции и пируваткиназной реакции. На молекулу глюкозы (2 триозы) образуется соответственно 4 молекулы АТФ. Общий баланс: 4 АТФ - 2 АТФ = 2 АТФ. 2 молекулы АТФ аккумулируют в себе ≈ 20 ккал, что составляет около 3% от энергии полного окисления глюкозы (686 ккал).

Несмотря на сравнительно невысокую энергетическую эффективность анаэробного гликолиза, он имеет важное биологическое значение, состоящее в том, что это единственный способ образования энергии в безкислородных условиях. Он в условиях дефицита кислорода обеспечивает выполнение интенсивной мышечной работы и начало выполнения мышечной работы.

У детей анаэробный гликолиз очень активен в тканях плода в условиях дефицита кислорода. Он остаётся активным в период новорожденности, постепенно сменяясь на аэробное окисление.

Процесс гликолиза его реакции, аэробный и анаэробный (Таблица, схема)

Гликолиз - процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты, не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета. Суть гликолиза состоит в том, что молекула глюкозы (C6H12O6) без участия кислорода распадается на две молекулы пировиноградной кислоты (СН3СОСООН). При этом окисление идет за счет отщепления от молекулы глюкозы четырех атомов водорода, связывающихся со сложным органическим веществом НАД с получением двух молекул НАД•Н. Выделяющаяся при этом энергия запасается (40% от общего количества) в виде макроэргических связей двух молекул АТФ. 60% энергии выделяется в виде тепла. При последующем окислении НАД•Н получается еще 6 молекул АТФ. Таким образом, полный энергетический выход гликолиза в анаэробных условиях составляет 8 молекул АТФ.

Аэробный процесс гликолиза (10 реакций), уравнение (с образованием пирувата):

Анаэробный процесс гликолиза (11 реакций), уравнение (с образованием лактата):

Схема процесса гликолиза и его реакции

Схема реакции процесса гликолиза

На схеме в рамках обозначены исходные субстраты и конечные продукты гликолиза, цифрами в скобках - число молекул.

ATP (АТФ) - это аденозинтрифосфорная кислота, универсальный источник энергии

ADP (АДФ) - это аденозиндифосфат, нуклеотид, участвует в энергетическом обмене

NAD (НАД) - никотинамидадениндинуклеотидфосфата

NADH (НАД•Н) - востановленная форма NAD

Таблица процесс гликолиза его реакции

Для распада и частичного окисления молекулы глюкозы требуется протекание 11 сложных последовательных реакций.

Читайте также: