Мышечная ткань. Нервная ткань. Нейроны.

Обновлено: 27.04.2024

Организм человека — сложная система, которая состоит из огромного количества клеток. Клетки любого многоклеточного организма, а человеческий организм является таковым, объединяются в ткани.

Наука, изучающая объединения и взаимодействия клеток, называется гистология.

Выдающиеся русские ученые Николай Константинович Кульчицкий, Николай Мартынович Якубович, Филипп Васильевич Овсянников заложили основы гистологических исследований в институтах и лабораториях нашего государства еще в XIX веке. Эти исследователи посвятили многие годы своей жизни изучению тканей и развитию науки.

Ткани — это группы клеток, сходных по происхождению, строению и функциям. В организме человека выделяют четыре группы тканей: эпителиальную, мышечную, соединительную и нервную.

Эпителиальная ткань состоит из эпителиальных клеток, которые отличаются по форме, размерам и функциям. Существует два вида эпителиальной ткани: покровные эпителии, которые образуют внешние и внутренние покровы тела, и железистые эпителии, составляющие железы организма.

Кровеносные и лимфатические сосуды, грудную и брюшную полости тела выстилает однослойный плоский эпителий. А вот почечные канальцы образованы однослойным кубическим эпителием.

Кожу, полость рта, пищевод покрывает многослойный плоский эпителий. Причем эпителий, образующий кожу, может твердеть и превращаться в роговой слой. Главной особенностью покровного эпителия является то, что он состоит из слоя плотно прилегающих друг к другу клеток. Эти клетки способны быстро делиться, потому молодые клетки в короткий срок приходят

на смену старым . Срок жизни покровного эпителия составляет 5-6 ч.

Однослойный эпителий слизистых оболочек выполняет защитную функцию, предотвращает повреждения внутренних оболочек.

Железистый эпителий образован клетками, которые расположены в один слой и осуществляют секреторную функцию, то есть образуют и выделяют важные для организма вещества. Эти вещества регулируют процессы жизнедеятельности, защищают поверхности органов тела, содержат пищеварительные ферменты, гормоны и биологически активные вещества. Железистым эпителием образованы все железы организма, а клетки, образующие их, носят название секреторных.

Из секреторных клеток построены железы нашего организма: надпочечники, щитовидная железа, слюнные железы, печень и поджелудочная железа.

Особое место в организме человека занимает мышечная ткань, ведь на нее приходится 45 % веса всего тела! Мышечная ткань на 80 % состоит из воды, остальные 20 % занимает белок, немного углеводов и жира.


Мышечные ткани отличаются друг от друга по своему строению и функциям, но способность к сокращению делает их сходными. Все мышечные клетки имеют форму волокна, они вытянуты и расположены в одном направлении.

Гладкая мышечная ткань состоит из одноядерных заостренных клеток. Длина этих клеток 0,5 мм, они образуют мышцы кожи, сосуды, внутренний слой желудка, кишечник, пищевод, мочевой пузырь. Основная функция гладкой мышечной ткани — сокращение. Это сокращение происходит непроизвольно, оно контролируется не самим человеком, а его вегетативной нервной системой.

По своему желанию человек может сокращать клетки поперечно-полосатой мышечной ткани. При моргании, ходьбе, поднятии руку, удержании пальцами предмета, улыбке человек мысленно и рефлекторно отдает команду мышечным клеткам. Сокращаясь и расслабляясь, они выполняют работу.

Поперечно-полосатая мышечная ткань состоит из многоядерных волокон цилиндрической формы. Длина волокон около 10 см, и все они исчерчены поперечными полосами — нитями белка миозина. Такая мышечная ткань образует скелетные мышцы.

Разновидностью поперечно-полосатой мышечной ткани является ткань, образующая сердечную мышцу. Мышечная ткань сердца состоит из клеток, которые соединяются между собой и образуют структуры, обладающие способностью автономного сокращения.

Работу этой мышцы контролирует вегетативная нервная система. Установлено, что сердечная мышца сокращается более 2,5 млн раз за 70 лет жизни человека. Это свидетельствует о том, что данная ткань обладает огромным потенциалом прочности.

Соединительные ткани в организме человека представлены клетками и хорошо развитым межклеточным веществом.

Межклеточное вещество равномерно расположено между клетками и представляет собой плотную массу с волокнами. Соединительные ткани обеспечивают обмен веществ, формирование опорных структур, объединяют ткани между собой, поддерживают постоянство внутренней среды.

Соединительные ткани организма разнообразны. Эластичная ткань рыхлая и волокнистая по структуре, ее волокна способны растягиваться. Она заполняет промежутки между органами, образует связки, окружает сосуды, нервы, мышцы.

Жировая ткань формирует слой жировой клетчатки под кожей. Ее основная функция защитная и запасающая.

Костная ткань состоит из минеральных солей, придающих твердость, и органических веществ, придающих упругость. Из костной ткани образован скелет.

Хрящевая ткань отличается от остальных соединительных тканей: ее клетки лежат в капсулах, и вокруг них много волокон. Хрящевая ткань входит в состав бронхов, образует нос, уши, межпозвонковые диски и часть суставов.

Кровь — это тоже разновидность соединительной ткани. Она перемещается по кругам кровообращения и выполняет питательные и защитные функции.

Одну из ведущих ролей в организме человека выполняет нервная ткань. Она состоит из клеток, называемых нейронами.

Клетки нервной ткани небольшие, разные по форме, но у всех есть тело и отростки. Тело нейрона содержит ядро, лежащее в цитоплазме. От него отходят короткие отростки, похожие на кроны деревьев, их называются дендритами. Самый мощный и длинный неветвящийся отросток, достигающий около метра в длину, называется аксоном, или нервным волокном. Дендритов у нейрона может быть много, а аксон только один. Концы аксонов разветвляются и заканчиваются рецепторами.

Тела нейронов образуют нервную ткань, или серое вещество головного и спинного мозга. Если тела нейронов находятся за пределами центральной нервной системы, то они образуют нервные узлы.

Скопления аксонов в нервной ткани образуют белое вещество мозга. Места контакта аксона с другими клетками называют синапсами. В них содержатся пузырьки с раздражающим веществом. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются, и жидкость вытекает. Состав жидкости определяет работу клетки.

Существует два вида синапсов. Если в синапсах одна клетка вызывает активную работу другой, то такой синапс называется возбуждающим синапсом. В тормозящих синапсах проходит другой процесс — одна клетка тормозит активность другой.

По способу передачи сигналов синапсы различают на химические, электрические и смешанные.

Как же происходит развитие ткани?

Развитие тканей начинается с деления одной клетки. В результате многократных делений образуется группа клеток. Образовавшиеся клетки постепенно распределяются по своим местам в разных частях будущего организма. Изначально все клетки похожи друг на друга, но по мере нарастания их количества, они начинают изменяться, приобретают характерные особенности и способность к выполнению тех или иных функций. Этот процесс приводит к формированию тканей разного типа.

Все ткани организма развиваются из трех исходных зародышевых листков: эктодермы, энтодермы и мезодермы. Так, например, мышцы и кровь образованы мезодермой, кишечный тракт — энтодермой, а эктодерма дает начало покровной и нервной тканям.

1. Нервная ткань. Нейрон. Синапс. Нервы

Нервная ткань отличается от других тканей нашего организма тем, что обладает особыми свойствами — возбудимостью и проводимостью . Эти свойства нервной ткани обусловлены особенностями её строения.

В состав нервной ткани входят клетки двух видов. Основные функции выполняют нейроны, а клетки-спутники (клетки нейроглии) служат опорой и обеспечивают обмен веществ.

Нервная ткань_Nerve tissue_Nervu audi.png

Функции нейронов: генерирование и передача нервных импульсов; обработка и хранение поступающей информации.

Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам.

Нейрон — основная клетка нервной ткани. Он имеет тело и отростки двух типов. В теле нейрона располагается ядро и органоиды, а по отросткам передаются нервные импульсы.

Дендриты — это отростки, по которым нервные импульсы передаются к телу нейрона. Эти отростки сильно ветвятся. У нейрона может быть несколько дендритов.

Аксон — это отросток, по которому импульсы передаются от тела клетки. Аксон обычно ветвится только на конце. У каждого нейрона всего один аксон.


Нервная клетка.png

Аксоны часто окружены оболочкой из жироподобного вещества миелина. Это вещество имеет белый цвет. Скопления миелинизированных аксонов образуют белое вещество головного и спинного мозга. Тела нервных клеток и дендриты не покрыты миелином. Они серого цвета, а их группы составляют серое вещество центральной нервной системы.

Главными элементами синапса являются мембраны двух клеток (пресинаптическая и постсинаптическая мембраны) и пространство между ними (синаптическая щель).

Нервная клетка_2.png

В аксоне пресинаптического нейрона вырабатывается медиатор — особое вещество, с помощью которого происходит передача нервного импульса.

Под действием нервного импульса медиатор выделяется в синаптическую щель. Рецепторы постсинаптической мембраны реагируют на его появление и генерируют возникновение нервного импульса в следующем нейроне. Так в синапсе происходит химическая передача возбуждения с одной клетки на другую.

Виды нейронов.png

Чувствительные ( сенсорные ) нейроны проводят информацию от органов в мозг. Тела таких нейронов находятся в нервных узлах вне центральной нервной системы.

Другая группа нейронов передаёт информацию от головного и спинного мозга к органам. Это двигательные ( моторные ) нейроны. Их тела находятся в сером веществе центральной нервной системы, а аксоны находятся за пределами ЦНС.

Третий вид нейронов осуществляет связь между чувствительными и двигательными нейронами. Это вставочные нейроны, они находятся в головном и спинном мозге.

Типы нейронов.png

Нерв — это орган, в состав которого входят пучки нервных волокон, покрытые соединительнотканной оболочкой.

Нерв.png

Нервы выполняют проводниковую функцию. Они связывают головной и спинной мозг с кожей, органами чувств и с внутренними органами.

Чувствительные нервы проводят нервные импульсы от рецепторов в мозг. В их состав входят дендриты чувствительных нейронов.

Двигательные нервы состоят из аксонов двигательных нейронов. Их функция — проведение импульсов от мозга к рабочим органам.

Смешанные нервы образованы чувствительными и двигательными волокнами и способные проводить импульсы как к ЦНС, так и от ЦНС.

Нервные сплетения представлены сетчатыми скоплениями нервных волокон разных нервов, связывающих ЦНС с внутренними органами, скелетными мышцами и кожей.

Нервная ткань

Нервная ткань - основная ткань, формирующая нервную систему и создающая условия для реализации ее многочисленных функций. Нервная ткань имеет эктодермальное происхождение, не принято делить нервную ткань на какие-либо виды тканей. Обладает двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) - клетка с одним длинным отростком - аксоном (греч. axis - ось), и одним/несколькими короткими - дендритами (греч. dendros - дерево).

Строение нейрона

Спешу сообщить, что представление, будто короткий отросток нейрона - всегда дендрит, а длинный - всегда аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.

Нейроны обладают 4 свойствами:

  • Рецепция (лат. receptio - принятие) - способны воспринимать поступающие сигналы (дендриты)
  • В ответ на сигналы способны переходить в состояние возбуждения или торможения
  • Проведение возбуждения (от дендрита к телу нейрона, затем - к концу аксона)
  • Передача сигнала другим объектам - нейрону или эффекторному органу

В физиологии эффекторным (от лат. efferes - выносящий) органом часто называют исполнительный орган или орган-мишень воздействия (мышцы, железы). Орган-эффектор выполняет те или иные «приказы» ЦНС (центральной нервной системы) или эндокринных желёз

Отростки нейронов проводят нервные импульсы и передают их другим нейронам, эффекторам, благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Тройничный нерв

Миелиновая оболочка

Нервные волокна подразделяются на миелиновые и безмиелиновые. Нервное волокно - это один или несколько отростков нейронов (могут быть как аксоны, так и дендриты) с окружающей оболочкой.

Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы (скорость проведения 1-2 м/c). Миелиновые - образуют белое вещество головного и спинного мозга, нервные волокна соматической нервной системы (5-120 м/с).

В миелиновых нервных волокнах отростки нейронов покрыты миелиновой оболочкой (на 70-75% состоит из липидов (жиров)), которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, то вместе с рукой двигалась бы нога.

Существует болезнь при которой собственные антитела уничтожают миелиновую оболочку нервных волокон головного и спинного мозга (случаются и такие сбои в работе организма). Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Рассеянный склероз, разрушенная миелиновая оболочка

Миелиновый слой представлен несколькими слоями мембраны глиальной клетки (леммоцит, шванновская клетка), которые закручиваются вокруг осевого цилиндра (отростка нейрона). Это закручивание хорошо видно на картинке, где изображен здоровый нерв, чуть выше ;)

Миелиновый слой оболочки волокна регулярно прерывается в местах стыка соседних леммоцитов - перехваты Ранвье. Миелиновая оболочка обеспечивает изолированное и более быстрое проведение возбуждения (сальтаторный тип, лат. salto - скачу, прыгаю).

Перехваты Ранвье

Нейроглия (греч. νεῦρον — волокно, нерв + γλία — клей)
  • Опорная - поддерживает нейроны в определенном положении
  • Регенераторная (лат. regeneratio - возрождение) - в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая (греч. trophe - питание) - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют
  • Электроизоляционная - леммоциты (шванновские клетки) закручиваются вокруг отростков нейронов и формируют миелиновую оболочку
  • Барьерная и защитная - изолируют нейроны от тканей внутренней среды организма
  • Некоторые глиоциты секретируют цереброспинальную (спинномозговую) жидкость - ликвор (от лат. liquor - жидкость)

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток (леммоцитов). Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Строение нейрона

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

Классификация нейронов по функции

Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они воспринимают раздражения, преобразуют их в нервные импульсы и передают в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС, участвуют в обработке информации и выработке команд.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.

Схема коленного рефлекса

Синапс

На схеме выше вы наверняка заметили новый термин - синапс (греч. sýnapsis - соединение). Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Схема синапса

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение (нервный импульс) передается другому нейрону. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к эффекторам, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Яд кураре

Нервы и нервные узлы

Собираясь вместе, отростки нейронов (нервные волокна) образуют пучки нервных волокон. Нервные пучки объединяются в нервы, которые покрыты соединительнотканной оболочкой. В случае, если тела нейронов концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервным узлом - или ганглием (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.

Плечевое сплетение

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием - миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны (двигательные нейроны).

Миастения

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Мышечная ткань. Нервная ткань. Нейроны.

На долю мышечной ткани приходится до 40% массы тела млекопитающего. Она состоит из высокоспециализированных сократимых клеток или волокон, соединенных между собой соединительной тканью. В организме имеется три типа мыши: поперечнополосатые (произвольные или скелетные), гладкие (непроизвольные) и сердечная мышца. Более подробные сведения о поперечнополосатых мышцах можно найти в гл. 18, а о сердечной мышце — в гл. 14.

Нервная ткань

Нервная ткань состоит из плотно упакованных нервных клеток (или нейронов), которые специализируются на проведении нервных импульсов. Кроме того, имеются также рецепторные клетки и шванновские клетки (см. ниже). Нервная ткань часто бывает окружена соединительной тканью, содержащей кровеносные сосуды.

Мышечная ткань. Нервная ткань. Нейроны

Нейроны

Функциональными единицами нервной системы служат нейроны. Они способны передавать нервные импульсы, что делает возможной коммуникацию между рецепторами (клетками или органами, воспринимающими раздражение) и эффекторами (тканями или органами, отвечающими на раздражение, например мышцы или железы). Нейроны, передающие импульсы в центральную нервную систему (головной и спинной мозг), называют сенсорными нейронами, тогда как моторные нейроны передают импульсы от центральной нервной системы. Нередко сенсорные нейроны бывают связаны с моторными при помощи вставочных (промежуточных) нейронов. Строение этих нейронов и их альтернативные названия представлены на рисунке.

Каждый нейрон состоит из тела клетки, содержащего ядро и основную часть других органелл клетки, и из различного числа отходящих от него нервных отростков. В теле клетки находится также вещество (или тельца) Ниссля, состоящее из рибосом и гранулярного эндоплазматического ретикулума, связанных с белковым синтезом, и аппарат Гольджи.

Нервные отростки, проводящие импульсы к телу клетки, называют дендронами. Это небольшие, относительно короткие отростки, разветвляющиеся на концах на тонкие терминальные веточки — дендриты (от греч. dendron — дерево). Нервные отростки, проводящие импульсы от тела нейрона к другим клеткам или органам, называют аксонами; они тоньше дендритов и могут достигать нескольких метров в длину.

Дистальный участок аксона распадается на многочисленные тонкие веточки со вздутиями на концах, называемыми синаптическими бляшками. Эти бляшки непосредственно не контактируют с телом соседней нервной клетки. Между синаптической бляшкой и телом соседней клетки остается узкая щель, через которую должно пройти химическое вещество — нейромедиатор, чтобы стимулировать эту нервную клетку (или эффектор). Нейромедиатор выделяется из синаптической бляшки в ответ на нервный импульс, проходящий по аксону. Такой специализированный функциональный контакт между двумя возбудимыми клетками называется синапсом.

Некоторые нервные волокна целиком покрыты жироподобной миелиновой оболочкой, играющей роль изолятора. Она образуется особыми шванновскими клетками. Наружная оболочка этих клеток растягивается и многократно обертывает нервное волокно, подобно свернутому ковру, образуя миелиновую оболочку. Эта оболочка состоит в основном из липидов; белок, содержащийся обычно в мембранах, в ней отсутствует. Цитоплазма сохраняется в области, называемой неврилеммой, которая окружает миелиновую оболочку. Эта оболочка, будучи липидной, препятствует движению ионов Na+ и К+ из клетки и в клетку. Приток и отток этих ионов необходим для проведения нервных импульсов, так что если бы оболочка была непрерывной, передача нервных импульсов была бы невозможна. Однако миелиновая оболочка прерывается через регулярные промежутки (примерно через 1 мм) перехватами Ранвье (см. рис. 6.28). Эти перехваты расположены между шванновскими клетками, так что между каждыми двумя перехватами можно видеть одно ядро шванновской клетки.

Нервные волокна, окруженные миелиновой оболочкой (например, спинномозговые нервы), называют миелинизированными, а лишенные такой оболочки, — немиелинизированными. У последних нет перехватов Ранвье и они окружены шванновскими клетками лишь частично. При некоторых болезнях, например при болезни Тея-Сакса, происходит разрушение миелино-вых оболочек.

Мышечная ткань. Нервная ткань. Нейроны

Нервы

Нервы состоят из пучков нервных волокон, окруженных соединительнотканной оболочкой — эпиневрием. Направленные внутрь выросты эпи-неврия, называемые периневрием, делят пучок нервных волокон на более мелкие пучки, а каждое отдельное волокно покрыто собственной соединительнотканной оболочкой — эндоневрием. Нервы делят на два типа в зависимости от того, в каком направлении они передают импульсы. Сенсорные, или афферентные, нервы, такие как обонятельный, зрительный, слуховой, передают импульсы в центральную нервную систему, а эфферентные, или моторные, нервы, такие как глазодвигательный, отводящий или блоковый, — от центральной нервной системы. Смешанные нервы передают импульсы в обоих направлениях (например, все спинномозговые, или спинальные, нервы).

Проведение нервных импульсов рассматривается в нашей статье.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Ткани нервной системы. Гистогенез нервной системы.

Ткани нервной системы выполняют важнейшую функцию организма — функцию реактивности, основанную на способности нервных клеток воспринимать раздражение, вырабатывать и передавать нервные импульсы. Они участвуют в получении, хранении и переработке информации из внешней и внутренней среды организма, обеспечивают регуляцию и интеграцию деятельности всех органов и систем человека.

В каждой части нервной системы клеточный состав нервной ткани и ее морфофункциональные особенности неповторимы. Нервная ткань коры большого мозга, нервная ткань спинного мозга, нейросекреторная ткань гипоталамуса, нервная ткань ствола мозга, нервная ткань вегетативных ганглиев и других частей нервной системы — все это разновидности тканей нервной системы с достаточно четкими, специфическими (органотипическими) и стойко закрепленными признаками.

Особую группу вспомогательных тканей в нервной системе образует нейроглия, или макроглия, и ее разновидности (эпендима, астроглия, олигодендроглия и др.). Кроме того, в состав органоспецифической нервной ткани входит микроглия, представленная диффероном макрофагов. Многие авторы рассматривают нейроглию как составную часть нервной ткани, употребляя при этом термин "нервная ткань" в единственном числе.

ткани нервной системы

Гистогенез нервной системы.

В нейрогистогенезе различают стадии медуллобластов, нейробласта, молодого нейрона и зрелого нейрона. Медуллобласты интенсивно делятся митозом. Стадия нейробласта характеризуется миграцией клеток, при этом необратимо блокируется способность клеток к пролиферации. В цитоплазме нейробластов определяются хорошо развитая гранулярная эпдоплазматическая сеть, комплекс Гольджи и митохондрии. Начинается синтез специфических белков нервных клеток, входящих в состав нейрофиламентов и микротрубочек. Появляется конус роста аксона.

Стадия молодого нейрона характеризуется ростом отростков, увеличением объема клетки, образованием хроматофильной субстанции и появлением первых синапсов. Дифференцировка нейробластов в нейроны происходит группами (гнездами), так что все их аксоны растут в виде пучка нервных волокон в одном направлении, образуя в дальнейшем проводящие пути и нервы.

Важной особенностью гистогенеза является запрограммированная гибель нейронов по типу апоптоза. Например, в гистогенезе спинного мозга позвоночных до 40-50% нервных клеток передних рогов гибнет после завершения пролиферативной фазы.

Самой продолжительной стадией является стадия зрелого нейрона, на протяжении которой нейрон приобретает свою окончательную форму и специфическую гистохимическую организацию. Наряду с дифференцировкой нейронов происходит все более глубокая их интеграция в составе рефлекторных дуг. Между нейронами устанавливаются многочисленные синаптические связи. Сложный характер приобретают взаимодействия между нервными и глиальными клетками.

- Вернуться в оглавление раздела "гистология"

Читайте также: