Состав газовой среды бактерий. Посев аэробных бактерий. Посев анаэробных бактерий. Метод Фортнера. Метод Цейсслера. Метод Вейнберга.

Обновлено: 16.05.2024

Выделение чистых культур аэробов занимает, как правило, три дня и производится по следующей схеме:

1-й день - микроскопия мазка из исследуемого материала, ок­рашенного (обычно по Граму) - для предварительного ознакомления с микрофлорой, что может быть полезным в выборе питательной среды для посева. Затем посев материала на поверхность застывшего пита­тельного агара для получения изолированных колоний. Рассев можно произвести по методу Дригальского на три чашки Петри с питательной средой. Каплю материала наносят на первую чашку и распределяют шпателем по всей чашке. Затем этим же шпателем распределяют остав­шуюся на нем культуру на второй чашке и таким же образом - на тре­тьей. Наибольшее количество колоний вырастет на первой чашке, наи­меньшее - на третьей. В зависимости от того, сколько было микробных клеток в исследуемом материале, на одной из чашек вырастут изоли­рованные колонии.

Такого же результата можно достигнуть, произведя рассев на од­ной чашке. Для этого делят чашку на четыре сектора. Исследуемый материал засевают бактериологической петлей штрихами на первом секторе, затем, прокалив и остудив петлю, распределяют посев из пер­вого сектора во второй и таким же образом последовательно в тре­тий и четвертый сектор. Из отдельных микробных клеток после су­точного инкубирования в термостате образуются изолированные колонии.

2-й день - изучение колоний, выросших на чашках, описание их. Колонии могут быть прозрачными, полупрозрачными или непроз­рачными, они имеют различные размеры, округлые правильные или неправильные очертания, выпуклую или плоскую форму, гладкую или шероховатую поверхность, ровные или волнистые, изрезанные края. Они могут быть бесцветными или иметь белый, золотистый, красный, желтый цвет. На основании изучения этих характеристик выросшие колонии разделяются на группы. Затем из исследуемой группы отби­рают изолированную колонию, готовят мазок для микроскопического исследования с целью проверки однородности микробов в колонии. Из этой же колонии производят посев в пробирку со скошенным пита­тельным агаром.

3-й день - проверка чистоты культуры, выросшей на скошенном агаре путем микроскопии мазка. При однородности исследуемых бак­терий выделение чистой культуры можно считать законченным.

Для идентификации выделенных бактерий изучаются культуральные признаки, то есть характер роста на жидких и плотных пита­тельных средах. Например, стрептококки на сахарном бульоне образуют придонный и пристеночный осадок, на кровяном агаре - мелкие, точечные колонии; холерный вибрион образует пленку на поверхности щелочной пептонной воды, а на щелочном агаре - прозрачные коло­нии; палочка чумы на питательном агаре образует колонии в виде «кру­жевных платочков» с плотным центром и тонкими волнистыми края­ми, а в жидкой питательной среде - пленку на поверхности, а затем -нити, отходящие от нее в виде «сталактитов».

Выделение чистых культур анаэробных бактерий:

Химические методы заключаются в том, что чашки с посевами ана­эробов ставят в герметически закрытый эксикатор, куда помещают хи­мические вещества, например, пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.

Биологический метод основан на одновременном выращивании анаэробов и аэробов на плотных питательных средах в чашках Пет­ри, герметически закрытых после посева. Вначале кислород погло­щается растущими аэробами, а затем начинается рост анаэробов.

Выделение чистой культуры анаэробов начинают с накопления анаэробных бактерий путем посева на среду Китта-Тароцци. В даль­нейшем получают изолированные колонии одним из двух способов:

1) посев материала производят путем смешивания с расплавленным теплым сахарным агаром в стеклянных трубках. После застывания ага­ра в глубине его вырастают изолированные колонии, которые извле­кают путем распила трубки и пересевают на среду Китта-Тароцци (спо­соб Вейнберга);

2) посев материала производят на чашки с питательной средой и инкубируют в анаэростате. Выросшие на чашке изолированные ко­лонии пересевают на среду Китта-Тароцци.

21) Вирусы (история открытия, характеристика).

Первооткрывателем вирусов, основоположником вирусологии яв­ляется русский ученый Дмитрий Иосифович Ивановский, открывший в 1892 году вирус табачной мозаики (ВТМ)

Вирусы настолько отличаются от микроорганизмов, что выделе­ны в особое царство - царство Vira

Особенности вирусов, отличающие их от всех других живых су­ществ:

1) наличие только одного типа нуклеиновой кислоты - ДНК или РНК, в то время как клетки всех остальных живых существ содержат ДНК и РНК, взаимодействие которых необходимо для биосинтеза бел­ков,

2) отсутствие собственных белоксинтезирующих систем и клеточ­ного строения;

3) внутриклеточный паразитизм на молекулярном (генетическом) уровне.

Внеклеточная форма вируса - вирион и вирус, находящийся внут­ри клетки хозяина - это две разные формы вируса.

Вирионы разных вирусов имеют размеры от 15 до 400 наномет­ров. Нанометр - это 10 -9 метра. Наиболее мелкие вирусы - виру­сы полиомиелита - имеют вирион размером 17-25 им, средние - вирус гриппа - 80-120 нм, крупные - вирус оспы - 300-400 им.

В центре вириона располагается его геном. Это нуклеиновая кис­лота - ДНК или РНК (однонитевая или двунитевая). Плюс-однонитевая РНК несет две функции: наследственную и информационную, напри­мер у вируса полиомиелита. Минус-однонитевая РНК, как, например, у вируса гриппа, несет только наследственную функцию, и только в процессе репродукции вируса к ней достраивается плюс-нить иРНК.

Вокруг нуклеиновой кислоты симметрично располагаются белко­вые молекулы - капсомеры, составляющие капсид (лат. capsa - коробка). Различают спиральный тип симметрии, когда капсомеры уложены по всей длине молекулы нуклеиновой кислоты, и кубический, когда кап­сомеры располагаются в виде двадцатигранника (икосаэдра).

Вирионы, содержащие только нуклеиновую кислоту и белок, сос­тавляют нуклеокапсид. Это простые вирусы, например, ВТМ, вирус полиомиелита.

У вирионов сложноорга-низованных вирусов имеется еще поверхностная оболочка - суперкапсид, содержащий, кроме белков, также углево­ды, липиды, компоненты клет­ки хозяина. Строение вирио­на лежит в основе классифи­кации вирусов. По типу нук­леиновой кислоты их делят на: рибовирусы и дезоксири-бовирусы, далее по структу­ре вирионов, по месту размно­жения и по другим признакам проводится деление на семей­ства и роды.

Вследствие малых разме­ров вирусы не видны в свето­вом микроскопе. Только наи­более крупный из них - вирус оспы - можно наблюдать в виде мелких точечных образо­ваний - элементарных телец Пашена.

Размножаясь в чувствительных клетках организма, вирусы оспы, бе­шенства, гриппа образуют в них внутриклеточные включения. Их мож­но обнаружить в световом или в люминесцентном микроскопе. Обна­ружение внутриклеточных включений используется для диагностики. Например, включения Бабеша-Негри в нервных клетках об­наруживаются при бешенстве.

Морфологию вирионов изучают в электронном микроскопе. Ви­русы имеют разные формы: сферическую, нитевидную, палочковидную.

Репродукция вирусов

Вирусы не способны размножаться на питательных средах - это строгие внутриклеточные паразиты. Более того, в отличие от риккетсий и хламидий, вирусы в клетке хозяина не растут и не размножаются путем деления. Составные части вируса - нуклеиновые кислоты и бел­ковые молекулы синтезируются в клетке хозяина раздельно, в разных частях клетки - в ядре и в цитоплазме. При этом клеточные белоксинтезирующие системы подчиняются вирусному геному, его НК.

Репродукция вируса в клетке происходит в несколько фаз:

- Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

- Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

- Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

В зависимости от типа нуклеиновой кислоты этот процесс совер­шается следующим образом.

ДНК-содержащие (ДНК —> иРНК —>белок)

1. Репродукция происходит в ядрх: аденовирусы, герпес,папо-вавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

2. Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу. РНК-содержащие.

1. Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет. РНК —>белок

2. Рибовирусы с негативным геномом (минус- нитиевые): грипп,корь, паротит, орто-, парамиксовирусы.

(-)РНК —> иРНК —> белок (иРНК комплементарная (-)РНК) Этот процесс идет при участии специального вирусного фермен­та - вирионная РНК-зависимая PHK-полимераза ( в клетке такого фермента быть не может).

(-)РНК -> ДНК —> иРНК —>белок (и РНК гомологична РНК) В этом случае процесс образования ДНК на базе (-)РНК возмо­жен при участии фермента - РНК-зависимой ДНК-полимеразы (об­ратной транскриптазы или ревертазы)

- Четвертая фаза - синтез компонентов вириона. Нуклеиновая кис­лота вируса образуется путем репликации. На рибосомы клетки транс­лируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

- Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

- Шестая фаза - выход вирионов из клетки. Простые вирусы, на­пример, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Иной путь - интегративный - заключается в том, что после проник­новения вируса в клетку и "раздевания" вирус­ная нуклеиновая кисло­та интегрирует в клеточ­ный геном, то есть встраивается в опреде­ленном месте в хромосо­му клетки и затем в виде так называемого прови-руса реплицируется вме­сте с ней. Для ДНК- и РНК-содержащих виру­сов этот процесс совер­шается по-разному. В первом случае вирусная ДНК интегрирует в кле­точный геном. В случае РНК-содержащих виру­сов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента "обратной транскриптазы" образуется ДНК, которая встраи­вается в клеточный геном. Провирус несет дополнительную генетичес­кую информацию, поэтому клетка приобретает новые свойства. Виру­сы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся неко­торые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус им­мунодефицита человека, умеренные бактериофаги.

Кроме обычных вирусов, существуют прионы - белковые инфек­ционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

Методы создания бескислородных условий для культивирования анаэробов

Для создания бескислородных условий используются физические, химические и биологические методы.

1) посев в глубину плотных питательных сред (кровяной или сахарный агар):

а) посев уколом в высокий столбик агара (анаэробы вырастают в глубине посева);

б) посев в трубках Виньяля-Вейона;

2) выращивание на специальных средах на среде Китта-Тароцци (жидкая питательная среда - 0,5 % глюкоза, кусочки животных тканей, например, печени, которая связывает кислород). Перед посевом среду кипятят и быстро охлаждают. После посева заливают слоем стерильного вазелинового масла.

в) выращивание в анаэростатах - специальный сосуд, из которого удален кислород.

Анаэростат - толстостенный металлический цилиндр с хорошо притертой крышкой с резиновой прокладкой. В него ставят чашки Петри (крышкой вверх) с посевами и удаляют воздух или вытесняют инертным газом.

Химические методы - поглощение кислорода воздуха в герметически закрытом сосуде (аппарате Аристовского) химическими веществами (такими как щелочной пирогаллол или гидросульфит натрия).

Биологические методы (метод Фортнера) - совместное выращивание анаэробов и аэробов. После посева чашки Петри герметически закрывают пластилином или парафином. Вначале в чашке Петри размножаются аэробы, а когда весь кислород используется, начинают расти анаэробы.

Выделение чистой культуры аэробных и анаэробных бактерий.

Чистая культура микроорганизмов - это популяция клеток (видимый рост) одного вида , выросшая на стерильной питательной среде.

Выделение чистой культуры - бактериологический метод. Этот метод является основным методом диагностики бактериальных инфекций.

Для получения чистой культуры необходимо отделить бактериальные клетки разных видов друг от друга . Чаще всего используются механические способы отделения клеток - специальные методы посева:

а) посев шпателем по Дригальскому в три чашки Петри; на третьей чашке вырастают отдельные колонии; каждая колония - один вид, т.к. колония - потомство одной клетки;

б) посев петлей "штрихами" или "сеткой": делают посев прерывистыми штрихами; в том месте, где на агар попало большое количество микробных клеток, рост будет в виде сплошного штриха, а на штрихах с небольшим количеством клеток вырастут отдельные колонии;

Таким образом, при помощи специальных методов посева получают изолированные колонии разных видов бактерий.

Выделение чистой культуры проводят в три этапа:

Первый этап (1-ый день):

а) из материала (смесь бактерий разных видов) готовят мазок , окрашивают по Граму и микроскопируют;

б) делают посев материала (смеси бактерий) на чашку Петри с МПА штриховым методом или по методу Дригальского и ставят в термостат при 37°С на 24-48 часов.

Второй этап (2-ой день):

а) наблюдают посевы и проводят описание колоний разных видов (размер, форма, цвет, поверхность, форма края, структура, консистенция);

б) из колоний готовят мазки и окрашивают по Граму (колония должна содержать один вид бактерий);

в) делают пересев разных колоний в разные пробирки со скошенным МПА для накопления чистой культуры; выращивают в термостате при 37°С 24 часа.

Третий этап (3-ий день): проделывают работу по идентификации (определение вида) культуры и проверяют чистоту культуры. Для определения вида изучают морфологические, культуральные, тинкториальные и биохимические свойства:

а) отмечают характер роста выделенной чистой культуры на МПА (визуально она характеризуется однородным ростом);

б) готовят мазок , окрашивают по Граму и микроскопируют; если культура чистая, то обнаруживают одинаковые морфологические и тинкториальные клетки;

в) делают посев на среды Гисса и МПБ для изучения сахаролитических и протеолитических свойств чистой культуры; оставляют в термостате при 37° С на 24 часа.

По совокупности морфологических, тинкториальных, культуральных и биохимических свойств делают вывод о видовой принадлежности выделенной чистой культуры бактерий. При необходимости изучают и другие признаки (факторы вирулентности, антигенную структуру, чувствительность к фагам и др.).

В бактериологической практике установление вида возбудителя позволяет поставить диагноз заболевания, поэтому выделение и идентификация чистой культуры - это и естьбактериологический метод диагностики инфекционных заболеваний . Постановка этого метода обязательно включает и определение чувствительности выделенной чистой культуры возбудителя к антибиотикам (определение антибиотикограммы).

Выделение чистой культуры анаэробных бактерий также осуществляется в три этапа. При этом также получают чистую культуру из одной клетки и добиваются роста микроорганизмов в виде изолированных колоний с последующим ее пересевом и идентификацией.

Особенностью работы по выделению чистой культуры анаэробов является применение различных методов создания бескислородных условий (см. выше).

Три этапа:

Первый день . Делают посев (земля, гной) на среду Китта-Тароцци.

Второй день : для получения колоний делают пересев со среды Китта-Тароцци по методу Цейсслера, методу Вейнберга и методу Перетца.

Третий день : колонии пересевают в пробирку с новой средой Китта-Тароцци для накопления чистой культуры; проводят идентификацию чистой культуры анаэробов по морфологическим, культуральным, тинкториальным, биохимическим и антигенным свойствам.

Посев по методу Цейсслера. Каплю (петлю) материала со среды Китта-Тароцци последовательно засевают в три чашки Петри с кровяным агаром. Посевы ставят в анаэростат или аппарат Аристовского, которые ставят в термостат. На следующий день на третьей чашке вырастают отдельные колонии. Делают пересев этих колоний на среду Китта-Тароцци для накопления чистой культуры, изучения ее свойств и точного определения вида микроорганизмов.

Посев по методу Вейнберга. Пастеровской пипеткой переносят материал со среды Китта-Тароцци последовательно в 3-5 узких пробирок с сахарным МПА, погружая пипетку в расплавленный агар до самого дна пробирки. Пробирки быстро охлаждают под холодной водой. Агар застывает и разобщает микробные клетки в глубине агара. Из этих клеток вырастают колонии, которые пересевают в новую среду Китта-Тароцци, накапливают чистую культуру и идентифицируют.

Особенности выделения и культивирования анаэробов

1. Анаэробы культивируют на специальных питательных средах, которые должны удовлетворять следующим требованиям:

a) соответствовать сложным пищевым потребностям анаэробов и обеспечивать их быстрый рост, поэтому для культивирования анаэробов используют высокопитательные среды, содержащие пептоны (1,5 - 2%), дрожжевой экстракт (0,5%), витамин К, гемин;

б) содержать, при необходимости, стимулирующие добавки: бараньи эритроциты (5%), лошадиную сыворотку (5-10%), твин-80 (0,02%); пируват натрия (0,9%); глюкозу (0,5%); L - аргинин (0,1%);

в) иметь низкий окислительно-восстановительный потенциал, что достигается путем добавления редуцирующих веществ. Редуцирующий агент, связывая свободный кислород среды, снижает Eh среды. В качестве нетоксичных редуцирующих агентов, обеспечивающих восстановительные условия среды, используют цистеина гидрохлорид (0,025%), тиогликолят натрия (0,05%), дитиотрейтол (0,05%). В некоторые среды (Китта-Тароцци) добавляют кусочки тканей паренхиматозных органов (легкие, печень);

д) содержать селективные добавки, что обеспечивает избирательное выделение облигатно анаэробных микроорганизмов. В качестве селективных добавок используют антибиотики аминогликозидного ряда, к которым анаэробы природно устойчивы.

Для выделения облигатно анаэробных микроорганизмов используют следующие среды:

- анаэробный кровяной агар с гентамицином,

- анаэробный кровяной агар с неомицином и налидиксовой кислотой,

- анаэробный кровяной агар с канамицином и ванкомицином,

- фруктозо-циклосерин-цефокситиновую среду (для Clostridium difficile),

- тиогликолевую полужидкую среду,

- среду Китта-Тароцци (жидкая среда с кусочками мяса и вазелиновым маслом на поверхности),

- среду Вильсона-Блера (железо-сульфитный агар). Clostridium spp. растут в глубине столбика этой среды, давая колонии чёрного цвета за счёт восстановления сернокислого натрия в сульфат натрия, который, соединяясь с хлорным железом, образует чёрный осадок сернистого железа.

2. Посевы облигатно анаэробных микроорганизмов культивируют в атмосфере с содержанием кислорода не более 0,1%. Бескислородные условия для культивирования анаэробов создают с использованием анаэробных камер, микроанаэростатов, либо анаэробных пакетов.

а) Анаэробная камера (рис. 21) представляет собой герметичный прозрачный бокс, перчаточный или бесперчаточный. Анаэробные условия в нем достигаются созданием вакуума с последующим заполнением пространства камеры анаэробным газом трехкомпонентным (N2 (85%- 90%) + CO2 (5-10%) + Н2 (5%)) или двухкомпонентным (N2 + Н2). Устройство оснащено шлюзом для подачи из агрессивной кислородсодержащей среды во внутреннее пространство камеры образцов и расходных материалов. В камере также есть термостат, устройство для поддержания и контроля влажности, палладиевый катализатор для удаления остаточных количеств кислорода, прибор контроля концентрации кислорода. Анаэробная камера - дорогостоящее оборудование, им оснащаются преимущественно диагностические центры республиканского значения, рефференс-центры. Обеспечивает наивысшее качество анаэробного культивирования. Отличается вместительностью (50-200 чашек Петри), все диагностические исследования выполняются в бескислородной атмосфере.

б) Микроанаэростат (рис. 22) представляет собой цилиндрическую, герметично закрываемую металлическую или пластмассовую емкость объемом 2,5 (3-7) литров, используемую для инкубации посевов в анаэробных условиях.

Бескислородные условия в микроанаэростате создаются одним из двух способов:

1) вакуумзамещением - создают вакуум и заполняют анаэробным газом;

2) химическим связыванием кислорода. Для химического связывания кислорода используют газогенерирующие системы, которые после добавления воды генерируют Н2 и СО2. Н2 связывает в присутствии палладиевого катализатора свободный кислород с образованием воды. Генерируемый СО2 необходим для стимуляции роста анаэробов, являющихся капнофилами. В последнее время используют системы, связывающие кислород за счет окисления соединений железа. Создание бескислородных условий в микроанаэростатах контролируется индикаторной тест-полоской, импр егнированной метиленовой синью, которая обесцвечивается в случае образования бескислородной атмосферы.

Вместимость микроанаэростатов составляет 10-12 чашек Петри. Все исследования проводят в кислородсодержащей атомосфере, а затем загружают посевы в микроанаэростат, что снижает качество диагностических процедур по сравнению с анаэробной камерой. Кроме того, отсутствует возможность неограниченного наблюдения за посевами в процессе инкубации. Микроанаэростаты используют в малых лабораториях, они позволяют получить удовлетворительные результаты.

в) Анаэробный пакет представляет собой прозрачный, герметично закрываемый пластиковый пакет, рассчитанный на 1-2 чашки Петри. Анаэробные условия в нем создаются химическим связыванием кислорода с безводной реакционной системой. Создание бескислородных условий также контролируется индикаторной тест-полоской, обесцвечивающейся в бескислородной атмосфере. Анаэробные пакеты удобны для транспортировки материала, культур анаэробов, в экстренных случаях, в полевых условиях, а также в лаборатории при малой диагностической нагрузке. Прозрачность полиэтиленовых мешков позволяет легко проводить периодический контроль роста микроорганизмов. Анаэробные пакеты позволяют получить удовлетворительные результаты.

Исторические методы выделения анаэробов, некогда применявшиеся в практике анаэробной диагностики:

Метод Вейнберга. Готовили последовательные разведения материала в изотоническом растворе и высевали их в пробирки с расплавленным и остуженным до 40-45 0 С сахарным агаром или средой Вильсон-Блера. Клостридии росли в виде черных колоний в толще среды.

Метод Виньяля-Вейона. Исследуемым материалом, разведенным в расплавленной и остуженной до 40-45 0 С среде Вильсона-Блера, заполняли капилляры пастеровских пипеток, концы которых запаивали и помещали в стеклянный цилиндр с ватой на дне. Через 2-3 сут в столбике агара вырастали колонии анаэробов, которые легко изолировали, надломав капилляр выше уровня намеченной колонии. Изолированные колонии извлекали петлёй, пересевали, изучали свойства с целью идентификации.

Химический способ культивирования анаэробов в эксикаторах (метод Аристовского).Посевы исследуемого материала в чашках Петри помещали в эксикатор - стеклянные емкости с притертыми краями крышки. На дно эксикатора вносили химический поглотитель кислорода: гипосульфит натрия или пирогаллол, и углекислый натрий.

Биологический способ культивирования анаэробов (метод Фортнера),или метод совместного культивирования анаэробов и аэробов на плотных питательных средах в запаянных чашках Петри.На поверхность среды в чашках Петри (5% кровяной агар с 1-2% глюкозы), разделенной на две половины желобком,высевали на одной половинекультуру активно поглощающих кислород аэробов (S. marcescens или E. coli), на другой половине - исследуемый материал. Чашки запаивали воском или заклеивали лейкопластырем. Аэробные бактерии быстро использовали кислород в герметически закрытой чашке, что создавало условия для роста анаэробов. Метод позволял выделять некоторые Clostridium spp.

Особенности культивирования анаэробных бактерий

Важным условием, которое необходимо соблюдать на всех этапах выделения и идентификации анаэробов, является защита этих микробов от токсического действия молекулярного кислорода. Время между взятием материала и его посевом на питательные среды должно быть максимально коротким.

Анаэробные бактерии можно культивировать только на специальных бескислородных средах с низким окислительно-восстановительным потенциалом (10-150 мВ). Для контроля за степенью насыщения этих сред кислородом используют специальные редокс — индикаторы (метиленовый синий, резазурин), восстановленные формы которых бесцветны. При возрастании окислительно-восстановительного потенциала (ОВП) метиленовый синий окрашивает среды в синий, а резазурин — в розовый цвет, что указывает на непригодность таких сред для культивирования облигатных анаэробов. Для сохранения низкого ОВП питательные среды должны быть агаризированы. Добавление даже 0,05% агара повышает их вязкость и уменьшает аэрацию.

Анаэробный тип энергетического метаболизма во много раз менее продуктивный, чем аэробный, поэтому питательные среды для анаэробов должны быть богаче питательными субстратами и витаминами. В практических лабораториях для выделения анаэробов из патологического материала чаще всего используют среду для контроля стерильности крови (СКС), среду Китта-Тароцци, анаэробный кровяной агар (на основе эритрит-агара или агара Д), среду Вильсона — Блера, среду Шедлера и др. Эти свежеприготовленные питательные среды должны быть использованы для посева в течение 2-х часов.

Методы создания анаэробных условий.Создание анаэробных условий достигается с помощью физических, химических, биологических и смешанных методов.

Физические методы.Основаны на выращивании микроорганизмов в безвоздушной среде, что достигается:

1. Посевом в среды, содержащие редуцирующие и легко окисляемые вещества; В качестве редуцирующих веществ обычно используют кусочки (около 0,5 г) животных тканей (печень, мозг, почки, селезенка, кровь). Эти ткани связывают растворенный в среде кислород и адсорбируют бактерии. Чтобы уменьшить содержание кислорода в питательной среде, ее перед посевом кипятят 10-15 мин, а затем быстро охлаждают и заливают сверху небольшим количеством стерильного вазелинового масла. В качестве легко окисляемых веществ используют глюкозу, лактозу и муравьинокислый натрий. Лучшей жидкой питательной средой с редуцирующими веществами является среда Китта-Тароцци, которая используется для накопления анаэробов при первичном посеве из исследуемого материала и для поддержания роста выделенной чистой культуры анаэробов.

2. Посевом микроорганизмов в глубину плотных питательных сред. Посев микроорганизмов в глубину питательных сред производят по методам Вейнберга и Виньяль-Вейона.

3. Механическим удалением воздуха из сосудов, в которых выращиваются анаэробные микроорганизмы. Удаление воздуха производят путем его механического откачивания из специальных приборов — анаэростатов, в которые помещают чашку с посевом анаэробов. Переносной анаэростат представляет собой толстостенный металлический или пластиковый цилиндр с хорошо притертой крышкой (с резиновой прокладкой), снабжённый отводящим краном и вакуумметром. После размещения засеянных чашек или пробирок воздух из анаэростата удаляют с помощью вакуумного насоса.

4. Заменой воздуха в сосуде каким-либо индифферентным газом. Замену воздуха

индифферентным газом (азотом, водородом, аргоном, С02) можно производить в анаэростатах

вытеснения его газом из баллона.

Приборы и среды для культивированияанаэробов:

Микроанаэростат — используется для создания вакуума с дозированным содержанием

кислорода. Прибор представляет собой герметически закрывающийся сосуд, снабженный

нанометром, в который помещают посевы и откачивают воздух. Микроанаэростат помещают

Эксикатор — стеклянный лабораторный сосуд с притертой крышкой. В его донной части

имеется дополнительная емкость, куда наливается смесь пирогаллола и едкого натра или,

гидросульфита натрия и двууглекислой соды. На сетку-подставку помещают посевы и притирают

крышку с помощью вазелина. Эксикатор помещают в термостат.

Газ-пак (Generbag anaer). Для создания анаэробных условий используются газогенераторные пакеты с реагентами — GasPak, GasPak Plus (газогенераторный пакет с палладиевым катализатором) и другие.


Рис. 9. Газогенераторные пакеты

Система Generbag anaer состоит из воздухонепроницаемых емкостей, изготовленных из прозрачной пластмассы и генераторов, содержащих смесь веществ, поглощающих кислород. (рис. 9). При применении GasPak Plus необходимо увлажнить таблетку боргидрида натрия, при этом выделяется водород и в присутствии палладиевого катализатора он соединяется с кислородом с образованием СО2. Последовательность работы: вынуть генератор из пакета, поместить в нижнюю часть воздухонепроницаемого пакета (анаэростата), затем поместить чашки

(или пробирки) с посевами и закрыть пакет (анаэростат). Инкубация при 37°С.

Анаэробный бокс — прозрачная плексиглассовая камера со шлюзом, отверстиями для рук с рукавами, заканчивающимися резиновыми перчатками. В нем создаются стерильные условия, его заполняют газовой смесью и поддерживают температуру 37°С.

Среда Китта-Тароцци. Содержит мясо-пептонный бульон (МПБ), 0,5% глюкозы и 0,15% агара. На дно пробирки для адсорбции СЬ помещают кусочки вареной печени или фарша слоем 1-1,5 см и заливают 6—7 мл среды. Среду перед посевом регенерируют (прогревают 15-20 мин на водяной бане для удаления воздуха, а затем быстро охлаждают). После посева среду заливают вазелиновым маслом и помещают в термостат.

Полужидкий сахарный агар (высокий столбик). В пробирку с 6-7 мл расплавленного и охлажденного до 45 полужидкого питательного агара, содержащего 0,5-1% глюкозы, вносят исследуемый материал и перемешивают. Посевы помещают в термостат.

Химические методы.Основаны на поглощении кислорода воздуха в герметически закрытом сосуде (анаэростате, эксикаторе) такими веществами, как пирогаллол или гидросульфит натрия.

1. Применение щелочных растворов пирогаллола для поглощения кислорода в замкнутой (путем воздушной среде.

2. Можно применять гидросульфит натрия. Для связывания кислорода в 1 л объема берут 100 мл свежеприготовленного 20% раствора Na2S2O4 и 16 мл 50% КОН.

3. Использование веществ — редуцентов, к которым относятся тиогликолевая кислота или тиогликолат натрия (0,01-0,02%), аскорбиновая кислота (0,1%), различные сахара (0,1-3%), цистин и цистеин (0,03-0,05%), муравьинокислый натрий (0,25-0,75%) и др.

Применение газогенерирующих систем для создания анаэробных условий в замкнутой воздушной среде (микроанаэростатах, эксикаторах, прозрачных газонепроницаемых пластиковых пакетах). Для образования водорода и двуокиси углерода, необходимых для роста облигатных анаэробов, используют специальные таблетки, которые активируются добавлением воды. Водород, генерируемый таблетками боргидрида натрия, связывает кислород воздуха в присутствии палладиевого катализатора с образованием CO2. Углекислый газ вырабатывается при взаимодействии лимонной кислоты с бикарбонатом натрия.

Особенности культивирования анаэробных бактерий

Общие методы культивирования для анаэробных организмов

GasPak — система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода . Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.

Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор.

Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются — их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).

Особенности культивирования анаэробных бактерий

Метод Фортнера — посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую — анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) — рост аэробной резко прекращается и начинается рост анаэробной.

Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Особенности культивирования анаэробных бактерий

Метод Перетца — в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри . Метод наименее надежен из всех, но достаточно прост в применении.

Дифференциально — диагностические питательные среды

  • Среды Гисса («пестрый ряд»)
  • Среда Ресселя (Рассела)
  • Среда Плоскирева или бактоагар «Ж»
  • Висмут-сульфитный агар

Среды Гисса: К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит, сахароза и др.) и кислотно-щелочной индикатор Андреде, разливают по пробиркам, в которые помещают поплавок для улавливания газообразных продуктов, образующихся при разложении углеводородов.

Среда Ресселя (Рассела) применяется для изучения биохимических свойств энтеробактерий(шигелл, сальмонелл). Содержит питательный агар-агар , лактозу, глюкозу и индикатор (бромтимоловый синий). Цвет среды травянисто-зелёный. Обычно готовят в пробирках по 5 мл со скошенной поверхностью. Посев осуществляют уколом в глубину столбика и штрихом по скошенной поверхности.

Среда Плоскирева (бактоагар Ж) — дифференциально-диагностическая и селективная среда, поскольку подавляет рост многих микроорганизмов, и способствует росту патогенных бактерий (возбудителей брюшного тифа, паратифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные — красные. В составе среды — агар, лактоза, бриллиантовый зелёный , соли желчных кислот, минеральные соли, индикатор (нейтральный красный).

Висмут-сульфитный агар предназначен для выделения сальмонелл в чистом виде из инфицированного материала. Содержит триптический гидролизат, глюкозу, факторы роста сальмонелл, бриллиантовый зелёный и агар. Дифференциальные свойства среды основаны на способности сальмонелл продуцировать сероводород , на их устойчивости к присутствию сульфида, бриллиантового зелёного и лимоннокислого висмута. Маркируются колонии в чёрный цвет сернистого висмута (методика схожа со средой Вильсона — Блера).

Классификационное деление прокариотов

Видовое разнообразие этих безъядерных огромно: наука описала только 10000 видов, а предположительно существует более миллиона видов бактерий. Их классификация крайне сложна и осуществляется, опираясь на общность следующих признаков и свойств:

  • морфологических - форма, способ передвижения, способность к спорообразованию и другие);
  • физиологических - дыхание кислородом (аэробные) или бескислородный вариант (анаэробные бактерии), по характеру продуктов метаболизма и другие;
  • биохимических;
  • сходство генетических характеристик.

К примеру, морфологическая классификация по внешнему виду подразделяет все бактерии как:

  • палочковидные;
  • извилистые;
  • шаровидные.


Классификация физиологическая по отношению к кислороду делит все прокариоты на:

Читайте также: