Свойства звуковой волны. Характеристики распространения волн.

Обновлено: 12.05.2024

Механическая волна — это процесс распространения колебаний в упругой среде (твердой, жидкой, газообразной).

Для того чтобы возникала волна, необходимо наличие колеблющегося тела — источника волны. Источник волны осуществляет колебательное движение, тем самым деформируя ближайшие к нему слои среды (сжимает, растягивает, смещает).

В результате возникает сила упругости, которая действует на соседние слои среды и заставляет их совершать вынужденные колебания. Эти слои деформируют следующие слои и так далее, пока все слои не будут вовлечены в колебательное движения. Таким образом возникает механическая волна.

Необходимым условием возникновения волн является наличие у среды упругих свойств.

Виды механических волн

Виды волн по отношению к направлению колебаний частиц среды:

  1. Продольные — это волны, в которых частицы среды колеблются вдоль направления распространения волны.
  2. Поперечные — это волны, в которых частицы среды колеблются перпендикулярно направления распространения волны.

В жидкой и газообразной средах возникают только продольные волны.

В твердой среде возникают как продольные волны, так и поперечные.

Типы волн в зависимости от физической среды:

  1. Электромагнитные.
  2. Упругие.
  3. Волны в плазме.
  4. Гравитационные.
  5. Объемные.
  6. Волны на поверхности жидкости.

Это лишь некоторые примеры. В действительности существует множество классификаций волн.

Характеристики механических волн

Основные определения, обозначения, единицы измерения:

  1. Длина волны — это расстояние между двумя ближайшими точками, которые колеблются в одинаковых фазах. Обозначается λ, измеряется в метрах(м).
  2. Период — это время, за которое совершается одно полное колебание. Обозначается T, измеряется в секундах (с).
  3. Амплитуда — это максимальное смещение колеблющейся точки от равновесного положения. Обозначается A, измеряется в метрах (м).
  4. Скорость — это скорость, с которой распространяется волна. Обозначается V, измеряется в метрах, деленных на секунду (м/с).
  5. Частота — это количество полных колебаний за единицу времени. Обозначается v, измеряется в герцах (Гц).

Условия появления и существования волны

Условия появления и существования:

  1. Колебательное движение передается не мгновенно, а с опозданием. Поэтому скорость распространения волны конечна.
  2. Источник механических волн — это колеблющееся тело. При распространении волны колебания частиц среды — вынужденные, поэтому частота колебаний каждой части среды такая же, как и частота колебаний источника волны.
  3. Механические волны не распространяются в вакууме.
  4. Волновое движение не сопровождается переносом вещества.
  5. При распространении волны происходит перенос энергии.
  6. Важнейшее свойство волны — перенос энергии без переноса вещества.

Связь основных характеристик волны( формулы)

Все параметры волны связаны между собой и выражаются через следующие уравнения:

T=t/N или T=1/v, где

t — время распространения,

N — количество колебаний,

V=λ/T или V=λv, где

V — скорость волны.

Примеры решения задач

Какова скорость звуковых волн в среде, если при частоте 400 Гц длина волны λ=4 м?

Решим через применение формулы: V = λ v = 4 * 400 = 1600 м / с .

Какова длина звуковой волны ноты ля, если частота колебаний равна 440 Гц, а скорость звука в воздухе 340 м/с?

Звуковая волна (звук): что это такое, скорость, свойства, характеристики

В вестернах часто встречается персонаж-индеец, который, приложив ухо к земле, может определить, как далеко находятся его противники. Он слышит вибрацию земли, вызванную копытами лошадей. Подобным образом мы производим и воспринимаем звуки, совершая и принимая колебания молекул воздуха.

Когда вы слышите термин “звук” или “звуковая волна”, вы, конечно, понимаете, о чем идет речь. В этой статье вы узнаете, что такое звук на самом деле и как вы воспринимаете окружающий мир своими ушами.

Звук - это волна. Эти звуковые волны достигают вашего уха и позволяют вам воспринимать звуки и шумы через систему “ухо-мозг”. Как правило, существует два различия: полезный звук и звук помех. Полезный звук включает музыку или голоса во время разговора. Звук помех включает в себя, например, шум строительной площадки или шум транспорта.

В физике звук - это вибрация. Эта вибрация распространяется как механическая волна (также акустическая волна) в среде. Такой средой является, например, воздух. Но вы, вероятно, также слышали звуки под водой или сквозь стены. Звуковые волны в воздухе возникают из-за колебаний давления и плотности.

Человек издает звуковые волны

Рис. 1. Человек издает звуковые волны

Что такое звук (звуковая волна)?

Какое-то событие, например, произнесение слов, заставляет воздух вибрировать. Затем это возбуждение распространяется в виде волнового движения. Помимо воздуха, возбуждаться могут и другие упругие среды, например, вода.

Итак, звук - это колебательное двuжение частиц упругой среды, которое распространяется от источника звука в виде волн в различных средах.

Можно дать и другое определение:

Звук - это механическая волна, распространяющаяся в пространстве из-за изменения давления и плотности воздуха.

Необходимым условием распространения звуковых волн является наличие упругой среды. Если вокруг источника звука нет упругой среды, то звук распространяться не будет. Например, в вакууме механические волны не могут распространяться.

Скорость звука

Звуковая волна, как и любые другие механические волны , распространяется в пространстве не мгновенно, а с определённой скоростью. Скорость распространения звука в различных средах имеет различные значения.

Скорость звука в значительной степени зависит от среды, ее температуры и давления. В сухом воздухе при температуре 20 °C скорость звука составляет 1236 км/ч (343,2 м/с метров в секунду). В следующей таблице приведены некоторые справочные значения скорости звука в различных средах.

СредаСкорость в м/с
Воздух343
Водяной пар (при 100 °C)477
Вода1484
Вода (при 0 °C)1407
Морская вода1500

В нашей статье о скорости звука мы объяснили, как быстро распространяется звук в различных веществах. Здесь важную роль играют свойства твердых тел, жидкостей или газов.

Свойства и характеристики звука

Поскольку звук - это механическая волна, он также обладает свойствами волны, такими как частота и интенсивность. Однако среда, через которую она передается, также придает ей свои свойства.

Здесь мы рассмотрим общие свойства звука в воздухе. Как правило, их можно переносить и на другие газы и жидкости. Волны в воздухе или других газах также называются продольными волнами. Они колеблются в направлении распространения волны. Напротив, существуют поперечные волны, которые возникают, например, в некоторых твердых телах. Их колебания перпендикулярны направлению распространения.

Как возникает звук?

Звук создается источниками звука. Источник звука - это все, что заставляет воздух вибрировать. Таким источником звука может быть, например, бубен. Когда вы ударяете по бубну, вы деформируете его поверхность. Она имеет натяжение и ускоренно возвращается в исходное положение.

В общем случае, источниками звука являются тела, совершающие колебания с частотами звукового диапазона. Такие колебания совершают, например, голосовые связки человека. В результате мы слышим голоса людей. Если звук исходит от струнного музыкального инструмента, то источником звука служит колеблющаяся струна.

Частицы воздуха ускоряются, что приводит к изменению давления и плотности. Поскольку все пространство вокруг бубна заполнено воздухом, то это приводит к движению (распространению) атомов воздуха. Результирующая механическая волна достигает приемника звука, например, вашего слуха. Эта механическая волна является звуковой волной.

Как распространяется звук?

Звук распространяется, как уже указывалось в примере с бубном, через изменения давления и плотности. При ударе воздух сжимается в одной точке. Это увеличивает давление в этой области. Плотность увеличивается именно в этой точке, но уменьшается вокруг нее.

Но поскольку нет стенок, удерживающих сжатый воздух вместе, сжатые частицы снова отталкиваются друг от друга. При этом они сталкиваются с соседними атомами воздуха, которые заняли место атомов сжатого воздуха, и таким образом снова сталкивают их в другом месте. Это изменение давления воздуха и называется волной. Затем она передается на приемник.

Распространение звука в воздухе

Рис. 2. Распространение звуковой волны после стимуляции вилочным камертоном. Происходит сжатие и разрежение воздуха, что, в свою очередь, приводит к волновому движению до приемника.

Частота.

Как и любая волна, звуковые волны также имеют частоту. С его помощью вы разделяете звуковой спектр на различные категории.

  • Инфразвук. Это низкочастотный звук, который уже не воспринимается человеческим ухом. < 16 Гц (Герц)
  • Слышимый звук. Это звук, который может быть воспринят человеком. Диапазон от 16 Гц до 20 кГц (килогерц).
  • Ультразвук. Это высокочастотный звук, который не воспринимается человеческим ухом. Диапазон от 20 кГц до 1,6 ГГц (гигагерц).
  • Гиперзвук. Это звуковые волны, которые могут распространяться только в ограниченном объеме. > 1 ГГц .

В таблице 2 ниже приведены примеры верхних границ частот механических колебаний, воспринимаемых органам и чувств некоторых живых организмов.

Живые организмыВерхняя граница частот, кГц
Чайки8
Человек в возрасте 20 лет20
Человек в возрасте 50 лет 12
Дети22
Собаки60
Кошки100
Бабочки160
Дельфины200
Рис. 2. Примеры верхних границ частот механических колебаний, воспринимаемых органами чувств некоторых живых организмов

Интенсивность и уровень звука.

В разговорной речи уровень звука также означает громкость. Это относится к силе звука в определенном месте. Она физически измеряется как звуковое давление. Начиная от источника, уровень звука обычно уменьшается логарифмически. Для обозначения в математических формулах используется единица децибел (дБ).

Опыты показывают, что чем больше амплитуда колебаний ветвей камертона , тем громче звук. Постепенно звук ослабевает, так как свободные колебания ветвей камертона являются затухающими.

Интенсивность звука описывает мощность звука, проходящего через проницаемую для звуковой волны поверхность. Вы вычисляете это, измеряя, сколько звука проходит через самые маленькие участки этой поверхности, и интегрируя его по всей поверхности.

Различные типы звука

Как вы узнали в самом начале, звук делится на полезный и мешающий (не полезный). Это разделение можно уточнить, дополнительно вводя в качестве категорий тон, звон, шум и взрыв (удар).

Тон - это синусоидальное колебание, т.е. синусоидальный сигнал. Если вы, например, ударите по вилочному камертону, то получите один гармонический тон. Он показывает, является ли звук высоким, как у скрипки, или низким , как звук большого барабана. Физической величиной, характеризующей высоту тона, является частота колебаний звуковой волны. Звуку высокого тона соответствует большая частота колебаний. Отметим, что связь между высотой звука и частотой звуковой волны впервые установил Г. Галилей.

Тон звуковой волны

Рис. 3. Синусоидальный сигнал одного тона

Звон производит периодический, но несинусоидальный сигнал. Когда вы играете песню на гитаре, вы издаете такой звон.

Звон

Рис. 4. Периодический сигнал звона, например, при игре на гитаре

Шум - это непериодический и несинусоидальный сигнал. Например, шум создают машины и транспортные средства. Шумы создаются в результате накопления колебаний разных частот. Источниками шумов могут быть промышленные предприятия, бытовые приборы, различные машины. Шумы вредно влияют на здоровье человека и животных. Длительное воздействие шумов приводит к нарушению работы центральной нервной системы, вызывает головокружение, влияет на работу сердца.

Шум

Рис. 5. Сигнальная характеристика шума. Она не является ни периодической, ни синусоидальной.

В результате удара возникает сильный амплитудный максимум, который затем быстро затухает. Если вы выстрелите фейерверком в воздух или выстрелите из пистолета-пулемета, вы услышите такой удар.

Удар

Рис. 6. Сигнальная кривая взрыва (удара). Она имеет большую амплитуду в начале и быстро затухает.

Свойства звуковой волны. Характеристики распространения волн.

Перед тем, как приступить к рассмотрению темы, дадим определение такому явлению, как звук.

Звук или звуковые волны - это волны, которые способно воспринять человеческое ухо.

При этом звуковые частоты имеют диапазон: примерно от 20 Г ц до 20 к Г ц .

Инфразвук - звуковые волны, имеющие частоту менее 20 Г ц .

Ультразвук - волны звука, имеющие частоту более 20 к Г ц .

Волнам звукового диапазона свойственно распространяться как в газе, так и в жидкости (продольные волны), и в твердом теле (продольные и поперечные волны). Особенно интересно для науки заниматься изучением распространения звуковых волн в газообразной среде, что по сути есть среда нашего обитания.

Акустика - это направление физики, занимающееся изучением звуковых явлений.

Когда звук получает распространение в газе, атомы и молекулы испытывают колебания вдоль направления распространения волны, следствием чего становится изменение локальной плотности ρ и давления p .

Звуковые волны в газе зачастую называют волнами плотности или волнами давления.

В случае простых гармонических звуковых волн, получающих распространение вдоль оси O X , изменение давления p ( x , t ) имеет зависимость от координаты x и времени t , которая записывается так:

p ( x , t ) = p 0 cos ω t ± k x .

В аргументе косинуса мы видим два противоположных знака, что имеет отношение к двум направлениям распространения волны. Запишем выражение, которое покажет соотношение таких величин, как круговая частота ω , волновое число k , длина волны λ , скорость звука υ (соотношение будет таким же, как применимо для поперечных волн в струне или резиновом жгуте):

υ = λ T = ω k ; k = 2 π λ ; ω = 2 π f = 2 π T .

Одной из ключевых характеристик звука является скорость распространения.

Скорость распространения - величина, описывающая звуковую волну, задаваемая инертными и упругими свойствами среды и определяемая для продольных волн в любой однородной среде при помощи формулы:

В указанной формуле B является модулем всестороннего сжатия, ρ - средней плотностью среды.

Формула Лапласа

Первые попытки рассчитать значение скорости звука предпринял Ньютон, предположив равенство упругости воздуха атмосферному давлению p а т м . В таком случае значение скорости звука в воздушной среде - менее 300 м / с , в то время как истинная скорость звука при нормальных условиях (температура 0 ° С и давление 1 а т м ) равна 331 , 5 м / с , а скорость звука при температуре 20 ° С и давлении 1 а т м составит 343 м / с . Лишь по прошествии более ста лет было показано, почему предположение Ньютона не выполняется. Французский физик П. Лаплас указал, что ньютоновское видение равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия, и невыполнение его связано с плохой теплопроводностью воздуха и малым периодом колебаний в звуковой волне. В действительности между областями разрежения и сжатия газа появляется разность температур, существенным образом влияющая на упругие свойства. Лаплас, в свою очередь, выдвинул предположение, что сжатие и разрежение газа в звуковой волне происходят в соответствии с адиабатическим законом: в отсутствии влияния теплопроводности. В 1816 году физик вывел формулу, предназначенную для расчета скорости звуковой волны в воздухе и получившей название формулы Лапласа.

Формула Лапласа для определения скорости звука имеет запись:

Где p является значением среднего давления в газе, ρ - средней плотности, а γ есть некоторая константа, находящаяся в зависимости от свойств газа.

В нормальных условиях скорость звука, рассчитанная по формуле Лапласа, равна υ = 332 м / с .

В термодинамике имеется доказательство, что константа γ представляет собой отношение теплоемкостей при постоянном давлении C p и постоянном объеме C V .

Формула Лапласа может быть записана несколько иначе, если использовать уравнение состояния идеального газа. Таким образом, окончательный вид формулы для определения скорости звука будет такой:

В данной формуле T - абсолютная температура, M - молярная масса,
R = 8 , 314 Д ж / м о л ь · К - универсальная газовая постоянная. Скорость звука находится в сильной зависимости от свойств газа: скорость звука тем больше, чем легче газ, в котором звуковая волна получает распространение.

Для наглядности приведем некоторые примеры.

Когда звук распространяется в воздушной среде ( M = 29 · 10 - 3 к г / м о л ь ) при нормальных условиях: υ = 331 , 5 м / с ;

Когда звук распространяется в гелии ( M = 4 · 10 - 3 к г / м о л ь ) : υ = 970 м / с ;

Когда звук распространяется в водороде ( M = 2 · 10 - 3 к г / м о л ь ) : υ = 1270 м / с .

В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ = 1480 м / с (при 20 ° С ), в стали υ = 5 - 6 к м / с .

Характеристики звуковых волн

Помимо скорости распространения звук имеет и другие характеристики, связанные с восприятием его человеческими органами слуха.

Громкость звука

Рассуждая о том, как человеческое ухо воспринимает звук, в первую очередь мы говорим об уровне громкости, который зависит от потока энергии или интенсивности звуковой волны. А то, как воздействует звуковая волна на барабанную перепонку, зависит от звукового давления.

Звуковое давление - это амплитуда p 0 колебаний давления в волне

Природа отлично потрудилась, создавая такое совершенное устройство, как человеческое ухо: оно способно воспринимать звуки в обширнейшем диапазоне интенсивностей. Мы имеем возможность слышать как слабый писк комара, так и грохот вулкана.

Порог слышимости - минимальное значение величины звукового давления, при котором звук этой частоты еще воспринимается человеческим ухом.

Болевой порог - это верхняя граница диапазона слышимости человека; та величина звукового давления, при котором звук вызывает в человеческом ухе ощущение боли.

Порог слышимости представляет собой значение p 0 около 10 - 10 а т м , т. е. 10 - 5 П а : такой слабый звук характеризуется колебанием молекул воздуха в волне звука с амплитудой всего лишь 10 - 7 с м ! Болевой же порог соответствует значению p 0 порядка 10 - 4 а т м или 10 П а . Т.е., человеческое ухо способно к восприятию волн, в которых звуковое давление изменяется в миллион раз. Поскольку интенсивность звука пропорциональна квадрату звукового давления, диапазон интенсивностей оказывается порядка 10 12 !

Человеческое ухо, восприимчивое к звукам такого огромного диапазона интенсивности, допустимо сравнить с прибором, которым возможно измерить как диаметр атома, так и размеры футбольного поля.

Для общей информированности заметим, что обычным разговорам людей в комнате соответствует интенсивность звука, примерно в 10 6 раз превышающая порог слышимости, а интенсивность звука на рок-концерте находится очень близко к болевому порогу.

Высота звука

Высота звуковой волны - еще одна характеристика звука, влияющая на слуховое восприятие. Человеческие ухо воспринимает колебания в гармонической звуковой волне как музыкальный тон.

Высокий тон - это звуки с колебаниями высокой частоты.

Низкий тон - это звуки с колебаниями низкой частоты.

Звуки, которые издают музыкальные инструменты, а также звуки голоса человека значимо отличаются друг от друга по высоте тона и по диапазону частот.

К примеру, диапазон наиболее низкого мужского голоса - баса - находится в пределах примерно от
80 до 400 Г ц , а диапазон высокого женского голоса - сопрано - от 250 до 1050 Г ц .

Октава - это диапазон колебаний звука, который соответствует изменению частоты колебаний в 2 раза.

Скрипка, к примеру, звучит в диапазоне примерно трех с половиной октав ( 196 - 2340 Г ц ) ,
а пианино - семи с лишним октав ( 27 , 5 - 4186 Г ц ) .

Говоря о частоте звука, который извлекается при помощи струн любого струнного музыкального инструмента, будем иметь в виду частоту f 1 основного тона. Однако колебания струн содержат также гармоники, частоты f n которых отвечают соотношению:

f n = n f 1 , ( n = 1 , 2 , 3 , . . . ) .

Таким образом, звучащая струна способна излучать целый спектр волн с кратными частотами. Амплитуды A n этих волн имеют зависимость от способа возбуждения струны, будь то смычок или молоточек. Эти амплитуды необходимы для придания музыкальной окраски звуку (тембру).

Аналогичный процесс мы наблюдаем, когда звучат духовые музыкальные инструменте. Трубы духовых инструментов служат акустическими резонаторами - акустическими колебательными системами, имеющими способность возбуждаться (резонировать) от звуковых волн определенных частот. Определенные же условия способствуют возникновению внутри трубы стоячей звуковой волны. Рисунок 2 . 7 . 1 демонстрирует несколько видов стоячих волн (мод) в органной трубе, закрытой с одного конца и открытой с другого. Звучание духовых инструментов, так же, как и струнных, состоит из целого спектра волн с кратными частотами.

Рисунок 2 . 7 . 1 . Стоячие волны в трубе органа (закрыта лишь с одной стороны). Стрелки указывают направления движения частиц воздуха за один полупериод колебаний.

Музыкальные инструменты необходимо периодически настраивать.

Камертон - устройство для настройки музыкальных инструментов, состоящее из настроенных в резонанс деревянного акустического резонатора и соединенной с ним металлической вилки.

Удар молоточка по вилке вызывает возбуждение всей системы камертона с последующим звучанием чистого музыкального тона.

Гортань певца - по сути тоже акустический резонатор. Рисунок 2 . 7 . 2 демонстрирует спектры звуковых волн, издаваемых камертоном, струной пианино и низким женским голосом (альтом), звучащими на одной и той же ноте.

Рисунок 2 . 7 . 2 . Относительные интенсивности гармоник в спектре волну звука при звучании камертона ( 1 ) , пианино ( 2 ) и низкого женского голоса (альт) ( 3 ) на ноте «ля» контроктавы ( f 1 = 220 Г ц ) . По оси ординат отложены относительные интенсивности I I 0 .

Звуковые волны, чьи частотные спектры показаны на рисунке 2 . 7 . 2 , имеют одну и ту же высоту, но различные тембры.

Биения

Разберем также такое явление, как биения.

Биение - это явление, возникающее, когда две гармонические волны с близкими, но все же имеющими отличия частотами, накладываются друг на друга.

Биения сопровождают, к примеру, одновременное звучание двух струн, имеющих настройки практически одинаковой частоты. Человеческий орган слуха воспринимает биения как гармонический тон с громкостью, периодически изменяющейся во времени. Запишем выражения, показывающие закономерность изменения звуковых давлений p 1 и p 2 , которые осуществляют воздействие на ухо:

p 1 = A 0 cos ω 1 t и p 2 = A 0 cos ω 2 t .

Для удобства примем, что амплитуды колебаний звуковых давлений являются одинаковыми и равны p 0 = A 0 0.

Согласно принципу суперпозиции полное давление, которое вызывается обеими волнами в каждый момент времени, есть совокупность звуковых давлений, задаваемых каждой волной в тот же момент времени. Запишем выражение, показывающее суммарное воздействие волн, используя тригонометрические преобразования:

p = p 1 + p 2 = 2 A 0 cos ω 1 - ω 2 2 t cos ω 1 + ω 2 2 t = 2 A 0 cos 1 2 ∆ ω t cos ω с р t ,

где ∆ ω = ω 1 - ω 2 , а ω с р = ω 1 + ω 2 2 .

Рисунок 2 . 7 . 3 ( 1 ) отображает, каким образом давления p 1 и p 2 зависимы от времени t . В момент времени t = 0 оба колебания находятся в фазе, и их амплитуды суммируются. Поскольку частоты колебаний имеют хоть и небольшие, но отличия, через некоторое время t 1 колебания войдут в противофазу. В этот момент суммарная амплитуда станет равна нулю: колебания взаимно «погасятся». К моменту времени t 2 = 2 t 1 колебания вновь окажутся в фазе и т. д. (рисунок 2 . 7 . 3 ( 2 ) ).

Период биений Т б - это минимальное значение интервала между двумя моментами времени, которым соответствуют максимальная и минимальная амплитуда колебаний.

Формула, которая определяет медленно изменяющуюся амплитуду A результирующего колебания, имеет запись:

A = 2 A 0 cos 1 2 ∆ ω t .

Период Т б изменения амплитуды равен 2 π Δ ω . Мы можем это продемонстрировать, приняв следующее предположение: периоды колебаний давлений в звуковых волнах T 1 и T 2 являются такими, что T 1 < T 2 (т. е. ω 1 >ω 2 ). За период биений Т б наблюдается некоторое число n полных циклов колебаний первой волны и ( n - 1 ) циклов колебаний второй волны:

T б = n T 1 = ( n - 1 ) T 2 .

T б = T 1 T 2 T 2 - T 1 = 2 π ω 1 - ω 2 = 2 π ∆ ω или f б = 1 T б = 1 T 1 - 1 T 2 = f 1 - f 2 = ∆ f .

f б есть частота биений, определяемая как разность частот Δ f двух звуковых волн, которые воспринимаются ухом одновременно.

Органы слуха человека способны к восприятию звуковых биений до частот 5 - 10 Г ц . Прослушивание биений - это важный элемент техники настройки музыкальных инструментов.

Рисунок 2 . 7 . 3 . Биения, возникающие, когда накладываются две звуковые волны с близкими частотами.

Физика. 11 класс

Звуковые волны (звук) окружают человека с первых дней его жизни. Звуки позволяют людям общаться между собой, выражать эмоции, наслаждаться музыкальными шедеврами. Как это происходит? Каковы основные свойства звуковых волн?

Упругие волны, вызывающие у человека слуховые ощущения, называются звуковыми волнами или просто звуком. Человеческое ухо воспринимает в виде звуковых ощущений колебания от 16 до 20 000 Гц.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.
Звуковые волны классифицируются по частоте следующим образом (рис. 41):



Звуки (звуковые волны) приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся музыкой, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и можем безошибочно отличить пение птиц от шума городской улицы.

Что представляет собой звук и каким образом он возникает?
Рассмотрим в качестве источ­ни­ка звука барабан (рис. 42). Де­фор­мированная в результате удара мем­брана барабана будет совершать колебания с некоторой частотой. В результате этого мембрана создает попеременно сжатие и разрежение в прилегающей к ней области воздуха, и образуется продольная волна, которая распространяется в воздухе с течением времени.


Наглядную информацию о звуковой волне в некоторый момент времени дает график зависимости плотности воздуха от координаты (рис. 43). Горбы на этом графике соответствуют сжатию, а впадины — разряжению воздуха. В процессе распространения звуковой волны с течением времени изменяются такие характе­ристики среды, как плотность и давление (см. рис. 43).
Для распространения звуковых волн необходима среда с упругими свойствами. Они хорошо распространяются в упругих средах, таких как газ, жидкость, металлы, стекло, кристаллические материалы. Однако звуковые волны быстро затухают в пористых материалах (поролон, вой­лок, вата). Такие материалы используют для звукоизоляции. Лучшим изолятором звука является вакуум (пустота), так как результаты экспериментов показывают, что звуковые волны в пустоте (вакууме) не распространяются.
Основными физическими характеристиками звука являются интенсивность и спектральный состав (спектр).

Понятие интенсивность звука характеризует энергию, переносимую волной. Интенсивность звука (I) равна энергии (W), переносимой волной за единицу времени () через поверхность площадью , расположенную перпендикулярно к направлению распространения волны . Другими словами, интенсивность звука равна мощности , переносимой волнами через поверхность единичной площади (), перпендикулярно к направлению распространения волны.

В соответствии с определением единицей интенсивности в СИ является ватт на метр в квадрате ().

Диаграмма восприятия звука ухом человека приведена на рисунке 43-1.


Интенсивность звука, улавливаемого ухом человека, лежит в огромных пределах: от (порог слышимости) до (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль. Звуки еще большей интенсивности могут привести к травме.

Минимальная интенсивность, при которой ухо человека перестает воспринимать звук, называется порогом слышимости. Наиболее чувствительно наше ухо к волнам частотой примерно 3 кГц, так как при этой частоте интенсивности порядка уже достаточно, чтобы ухо восприняло звук. А для того чтобы услышать звук на частоте 50 Гц, его интенсивность должна быть примерно в 100 000 раз больше, т. е. быть порядка .

Реактивный самолет может создать звук интенсивностью порядка , мощные усилители на концерте в закрытом помещении — до , поезд метро .

В науке и технике уровни интенсивности звука определяют обычно, используя шкалу, единицей которой является бел (Б) или ее дольная единица — децибел (дБ) (одна десятая бела). Уровень интенсивности самого слабого звука, который воспринимает наше ухо, соответствует 1 бел (1Б). Она названа в честь изобретателя телефона А. Г. Белла.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на 10 дБ. Вследствие этого, звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ (см. рис. 43-1).

Поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Таким образом, для возникновения звуковых ощущений необходимо:

• наличие источника звука;
• наличие упругой среды между источником звука и ухом. При этом частота колебаний источника звука должна находиться в пределах 16—20 000 Гц;
• мощность звуковых волн должна быть достаточной для того, чтобы вызвать ощущение звука.
Еще одной основной характеристикой звука является его спектр. Спектром называется набор частот звуков различных колебаний, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.
Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.
По типу спектра звуки разделяются на музыкальные тона и шумы.
Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. Спектр гармонического колебания представляет собой одну вертикальную линию (рис. 44).
Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т. п.) — представляет собой нало­жение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр) (рис. 45).


Шумы по частотной характеристике разделяются на низкочастотные

Длительное воздействие шумов на человека приводит к повреждению центральной нервной системы, повышению кровяного и внутричерепного давления, нарушению нормальной работы сердца, головокружению. Вредное воздействие сильных шумов на человека было замечено давно (рис. 45-1).

В Китае еще 2000 лет назад в качестве наказания заключенные подвергались непрерывному воздействию звуков флейт, барабанов и крикунов, пока не падали замертво. При мощности шума 3 кВт и частоте 800 Гц нарушается способность глаза к фокусировке. Мощность шума 5—8 кВт дезорганизует работу скелетной мускулатуры, вызывает паралич, потерю памяти. Мощность шума около 200 кВт приводит к смерти. Поэтому в больших городах запрещено использование резких и громких сигналов. Значительно снижают шумы деревья, кустарники, которые их поглощают. Поэтому вдоль дорог с интенсивным автомобильным движением необходимы зеленые насаждения. Тишина значительно повышает остроту слуха.

Для определения уровня шума используют шумомеры (рис. 45-2).


Физическим характеристикам звука соответствуют его субъективные характеристики, связанные с его восприятием ухом человека. Это обусловлено тем, что восприятие звука — процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей по-разному, в зависимости от чувствительности органов слуха.

Основными физиологическими характеристиками звука являются громкость, высота и тембр.
Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 до 5000 Гц.

Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.


Для музыкального звука (созвучия) основной тон соответствует наименьшей частоте (рис. 46). Все остальные тоны называют обертонами.

Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота.
По тембру мы легко отличаем звуки скрипки и рояля, органа и флейты, голоса людей и т.д.

Таблица 3. Частота ν колебаний различных источников звука (табл. 3)

Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 4).

Таблица 4. Скорость звука в различных средах

Скорость звука в идеальных газах с ростом температуры растет пропорционально, , где Т — абсолютная температура. В воздухе скорость звука при температуре t = 0 °C и при температуре t = 20 °C. В жидкостях и металлах скорость звука, как правило, уменьшается с ростом температуры (исключение — вода).

На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.

Интервал частот музыкальных звуков, на границах которого звуки по частоте отличаются в 2 раза, называют октавой (рис. 46).

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов. Основной тон называется также первой гармоникой. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр (рис. 47).

Многие животные могут воспринимать звуки ультразвуковых частот. Например, собаки могут слышать звуки до 50 000 Гц , а летучие мыши — 100 000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и другим морским животным ориентироваться в толще воды

Отношение скорости движения объекта к скорости звука в среде, в которой перемещается объект, называется «числом Маха», названным в честь австрийского физика Эрнста Маха (1838—1916). Поэтому говорят, что объект, движущийся со скоростью звука, перемещается со скоростью в один мах. При этом все волновые поверхности звуковой волны концентрируются в одной точке (рис. 47-1, б). 14 декабря 1947 г. летательный аппарат впервые преодолел звуковой барьер (рис. 47-1, г).

Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук; navigation — навигация; range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой.

Эхолокацию используют многие животные: китообразные (дельфины), летучие мыши, птицы гуахаро, гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии.

Волны ультразвуковых частот широко используются в медицине в диагностических целях, например УЗИ-сканеры позволяют исследовать внутренние органы человека.

Ультразвуковая дефектоскопия является одним из самых распространенных методов неразрушающего контроля. Он основан на исследовании процесса распространения ультразвуковых колебаний с частотами 0,5—25 кГц в контролируемых изделиях с использованием специальной аппаратуры — ультразвукового преобразователя и дефектоскопа.

§ 6. Звуковые волны



Вопросы к параграфу


1. Какова природа звука и каковы его источники?
2. Как классифицируются звуки?
3. Какой диапазон звуковых частот воспринимает ухо человека?
4. Чему равна скорость распространения звука в воздухе?
5. Как зависит высота звука от частоты?
6. В каких пределах находятся частоты инфразвуковых и ультразвуковых волн?
7. Полет каких птиц и насекомых мы слышим, а каких нет? Используя данные таблицы 5, определите, у какого насекомого самый высокий звук.

Таблица 5. Частота колебаний крыльев насекомых и птиц в полете, Гц


8. Как по звукам, издаваемым мухой и комаром, определить, кто из них в полете чаще машет крыльями?
9. Почему бабочки летают бес­шум­но?
10. Назовите основные физические и физиологические характеристики звука.
11. Что такое порог слышимости? Болевой порог?
12. На какой частоте человеческое ухо обладает наилучшей чувствительностью?
13. Почему понижается высота звука циркулярной пилы, когда к ней прижимают доску?
14. Всегда ли отраженный звук имеет такую же высоту тона, как и падающий?
15. Почему голос становится высоким, если человек вдохнет гелий?
16. Почему, когда мы прикладываем к уху раковину, нам слышится «шум моря»?
17. Могут ли космонавты при выходе в открытый космос общаться между собой при помощи звуковой речи?

Пример решения задачи

Стальные детали проверяются ультразвуковым дефектоскопом (рис. 48). Определите толщину d детали и глубину h расположения дефекта, если после излучения ультразвукового сигнала получены два отраженных сигнала через промежутки времени τ1= 0,15 мс и τ2= 0,10 мс. Модуль скорости распространения ультразвука в детали v = .


Решение

Первый отраженный сигнал прошел путь от источника ультразвука до стенки детали и обратно, равный 2d.
Следовательно, толщина детали:

Глубину нахождения дефекта находим аналогично:

Ответ: d = 0,39 м, h = 0,26 м.

Упражнение 6

1. Расстояние между двумя железнодорожными станциями l = 10 км. Сколько времени распространяется звук от одной станции к другой по воздуху (Δt1) и по стальным рельсам (Δt2)? Температура воздуха t = 0,0 °C.
2. Дельфины испускают ультразвуковые импульсы частотой ν = 250 кГц. Определите длину волны такого ультразвука в воде (λ1) и в воздухе (λ2) при температуре t = 20 °C.
3. Определите расстояние l до преграды, если мальчик слышит эхо через промежуток времени τ = 2,0 c. Скорость звука в воздухе v = .
4. Определите глубину моря H в данном месте, если ультразвуковой импульс возвратился на судно через промежуток времени Δt = 0,20 c после посылки. Модуль скорости ультразвука в морской воде v =

5. Турист подошел к горному озеру. Он крикнул и услышал звук эха, отраженного от скалы, находящейся на противоположном берегу. Определите расстояние l до противоположного берега озера, если турист услышал эхо через промежуток времени τ = 1,5 c.
6. Мальчик видит, как тяжелый камень упал на бетонный тротуар. Некоторое время спустя он слышит два звука от удара камня: один пришел по бетону, а другой распространялся по воздуху. Промежуток времени между ними Δ t = 1,2 c. На каком расстоянии l от человека упал камень, если модуль скорости звука в бетоне v б = ?
7. Стальную деталь проверяют ультразвуковым дефектоскопом. Определите глубину h нахождения дефекта в детали и ее толщину d, если первый отраженный сигнал получен через промежуток времени τ1 = 8,0 мкс, а второй — через τ1 = 20 мкс. Определите толщину детали, если скорость звука в стали составляет v = .
8. Длина звуковой волны в первой среде втрое больше, чем во второй. Во сколько раз k изменится модуль скорости распространения звуковой волны при переходе из первой среды во вторую?
9. С башни высотой производят горизонтальный выстрел из орудия. Снаряд имеет начальную скорость, модуль которой . Через какой промежуток времени после выстрела артиллерист на башне услышит звук от разрыва снаряда на земле? Скорость распространения звука в воздухе ,

Читайте также: