Соляная кислота. Механизм секреции соляной кислоты. Образование соляной кислоты в желудке.

Обновлено: 14.05.2024

Кислотность желудочного сока связана с наличием в нем различных неорганических (HCl, кислые фосфаты) и органических (оксо-, окси-, амино-, нуклеиновые, жирные кислоты и т.д.) кислот. В связи с этим выделяют понятие общая кислотность желудочного сока. Основная причина кислотности желудочного сока связана с наличием в нем соляной кислоты. Соляная кислота в желудочном соке находится в свободном и в связанном (с белками и продуктами их переваривания) состоянии.

Согласно карбоангидразной теории, источником Н + для HCl является Н2СО3, которая об­разуется в обкладочных клетках желудка из СО2 и Н2О под действи­ем карбоангидразы: Н2О + СО2 → Н2СО3

Н2СО3 диссоциирует на бикарбонат, который выделяется в плазму крови в обмен на С1 - , и Н + , который активно переносится Н + /К + -АТФ-азой в просвет желуд­ка в обмен на К + .

При этом в просвете желудка кон­центрация Н + увели­чивается в 10 6 раз, концентрация НС1 достигает 0,16 М, а значения рН снижается до 1,0-2,0. При максимальной активности обкладочные клетки могут продуцировать до 23 ммоль HCl в час. Синтез HCl - аэробный процесс, требующий большого количества АТФ, поэтому при гипоксии он снижается.

Вода выходит из клеток в просвет желудка по осмотическому градиенту

Функции НС1:

  • Вызывает денатурацию и набухание белков пищи, что увеличивает доступность их пептид­ных связей для действия протеаз;
  • Обладает бактери­цидным действием и препятствует попаданию патогенных бактерий в кишечник;
  • Регуляция активности протеолитических ферментов (активирует пепсиноген и со­здаёт оптимум рН для протеолитических ферментов);
  • Стимулирует работу кишечника и поджелудочной железы.

Ферменты желудка

Пепсиноген неактивный фермент, синтезируется в главных клетках, состоит из одной поли­пептидной цепи с молекулярной массой 40 кД.

В просвете желудка под действием НС1 от N-конца пепсиногена отщепляется пептид в 42 аминокислотных остатка, который содержит почти все положительно заряженные аминокислоты, име­ющиеся в пепсиногене. При этом пепсиноген превращается в актив­ный пепсин, он состоит преимущественно из от­рицательно заряженных аминокислот, которые участвуют в формировании активного центра. Образовавшиеся под действием НС1 активные молекулы пепсина быстро активируют осталь­ные молекулы пепсиногена аутокатализом.

Пепсин - эндопептидаза, с молекулярной массой 32,7 кД и с оп­тимумом рН=1,0-2,5. Пепсин гидролизует внутренние пептидные связи в белке с образованием коротких пептидов: хорошо - между ароматическими аминокислотами (фенилаланин, триптофан, ти­розин) и хуже -между лейцином и дикарбоновыми аминокислотами.

Гастриксин - эндопептидаза, с оп­тимумом рН=3,2-3,5. Образуется из пепсиногена, гидролизует внутренние пептидные связи в белке с образованием коротких пептидов.

Реннин (химозин) - эндопептидаза, с оп­тимумом рН=4,5, вызывает створаживание молока в присутствии ионов кальция. Есть только у детей грудного возраста. Основной белок моло­ка — казеин, представляющий смесь несколь­ких белков, различающихся по аминокислот­ному составу и электрофоретической подвиж­ности. Реннин катализирует отщепление от казеина гликопептида, в результате чего обра­зуется параказеин. Параказеин присоединяет ионы Са 2+ , образуя нерастворимый сгусток, чем предотвращает быстрый выход молока из же­лудка. Белки успевают расщепиться под дей­ствием пепсина. В желудке взрослых людей реннина нет, молоко у них створаживается под действием НС1 и пепсина.

Пепсин, реннин и гастриксин имеют сходство по первичной структуре, что указывает на их проис­хождение от общего гена-предшественника.

Муцин - мукопротеид образующий слизь. Существует в 2 формах: нерастворимая фракция - покрывает поверхность слизистой оболочки и изолирует эпителий от пищеварительного процесса (механическая и химическая защита); растворимая фракция - образует коллоидную систему, в которой растворены компоненты желудочного сока. Обладает буферными свойствами, способна нейтрализовать кислотность или щелочность.

Фактор Касла - гастромукопротеид, содержит пептид, отщепляющийся оп пепсиногена (секрет главных клеток) и мукоид (секрет добавочных клеток). Фактор Касла связывает «внешний фактор» - витамин В12, предотвра­щает его разрушение и способствует всасыванию.

Лизоцим - белок, обеспечивающий бактерицидные свойства желудочного сока.

Нарушения переваривания белков в желудке

При заболеваниях желудка в желудочном соке часто происходит изменение содержание соляной кислоты, реже - снижение активности пищеварительных ферментов, что приводит к нарушению процессов переваривания белков.

Для диагностики заболеваний желудка определяют кислотность желудочного сока, содержание в нем свободной и связанной HCl, пепсина, фактора Касла и наличие патологических компонентов: молочной кислоты и крови.

5.1.Переваривание белков в желудке

Желудок выполняет несколько функций: защитную (обезвреживание пищи: HCl, лизоцим), переваривание (механическая и химическая обработка пищи: HCl, ферменты), всасывание, эндокринную (образование гастрина и гистамина) и экскреторную (выделение мочевины, мочевой кислоты, аммиака, креатинина, солей тяжелых металлов, йода, лекарственных веществ).

Основная пищеварительная функция желуд­ка - переваривание белка. Для пищеварения слизистая оболочка желудкавыделяет сложный по составу сок, который представляет собой бесцветную, слегка опалесцирующую жидкость с величиной рН=1,5-2,0 (1,6-1,8) и относительной плотностью 1005. В сутки выделяется 2-2,5 литра сока. Основной компонент желудочного сока вода (99,5%) в которой растворены органические и неорганические вещества.

Состав желудочного сока

Неорганические вещества

Органические вещества

Пепсины (8 видов)

Ренин (только у грудных детей)

Азот мочевины и аммиака

Желудочный сок синтезируется железами, находящимися в слизистой оболочке желудка. Различают три вида желез: кардиальные, фундальные (собственные железы желудка) и пиллорические (железы привратника). Железы состоят из главных, париетальных (обкладочных), добавочных клеток и мукоцитов.

Главные клетки вырабатывают пепсиногены (пепсин, гастриксин, реннин), обкладочные (париетальные) — соляную кислоту, добавочные и мукоциты — мукоидный секрет. Фундальные железы содержат все три типа клеток.

Кислотность желудочного сока

Кислотность желудочного сока связана с наличием в нем различных неорганических (HCl, кислые фосфаты) и органических (оксо-, окси-, амино-, нуклеиновые, жирные кислоты и т.д.) кислот. В связи с этим выделяют понятие общая кислотность желудочного сока.Основная причина кислотности желудочного сока связана с наличием в нем соляной кислоты. Соляная кислота в желудочном соке находится в свободном и в связанном (с белками и продуктами их переваривания) состоянии.

Механизм образования соляной кислоты

Соляная кислота продуцируется обкладочными (париетальными) клетками слизистой желудка, которые составляют 20% от общей массы слизистой. В обкладочных клетках до 44% объема занимают митохондрии, вокруг которых скапливаются гранулы гликогена и капли жира (запасы энергетических субстратов). Процесс синтеза соляной кислоты запускается через нейрогуморальные механизмы регуляции, опосредованные медиаторами и гормонами - ацетилхолином, гистамином, гастрином. Ацетилхолин действует на париетальные клетки прямо и опосредованно. Прямой путь действия ацетилхолина осуществляется за счет взаимодействия медиатора с рецепторами на базолатеральной мембране клетки. Непрямой путь действия ацетилхолина связан с воздействием на специализированные клетки слизистой желудка, вырабатывающие гастрин и гистамин. Гастринпродуцирующие клетки локализованы в основном в пилорической части желудка. Рецепторы для гастрина локализованы на гистаминпродуцирующих и обкладочных клетках. Гистаминпродуцирующие клетки локализованы в фундальной части желудка и содержат рецепторы к гастрину. При действии гастрина повышается активность декарбоксилазы гистидина, превращающей его в гистамин. Секреция гистамина стимулируется кальцием (Са 2+ ).

Ацетилхолин и гастрин взаимодействуют со специфическими рецепторами и запускают внутриклеточный фосфолипазный механизмрегуляции активности ферментов (активируется мембранная фосфолипаза, разрушающая фосфолипиды в обкладачных клетках до диацилглицерида (ДАГ) и инозитолтрифосфата (ИТФ), что увеличивает содержание кальция в клетке). Гистамин через рецепторы запускаетаденилатциклазный механизмрегуляции внутриклеточных ферментов, стимулируя образование в клетке цАМФ. В результате повышения в клетке перечисленных вторичных посредников (ДАГ, ИТФ, Са++, цАМФ) запускается секреторный механизм париетальных клеток. Это происходит вследствие активации протеинкиназы, которая фосфорилирует, активируя тем самым следующие ферменты:

Гликогенфосфорилазу - активируется распад гликогена,

Триацилглицеридлипазу - активируется распад липидов,

Фосфофруктокиназу, изоцитратдегидрогеназу, сукцинатдегидрогеназу - активируется

аэробный распад глюкозы,

Дегидрогеназы пентозного цикла - активируется наработка НАДФН,

Трансдегидрогеназы - перенос протонов от НАДФН к НАД,

Карбоангидразу - диссоциация угольной кислоты.

В результате усиления катаболизма углеводов и липидов в обкладочных клетках накапливается АТФ, НАДН, ФАДН - компоненты необходимые для образования соляной кислоты. Водород с НАДН, ФАДН поступает в дыхательную цепь митохондрий и вследствие транспорта в ней протонов и электронов создается на внутренней мембране митохондрий электрохимический потенциал - ∆μН. Митохондрии обкладочных клеток могут работать в двух режимах:

1) Электрохимический потенциал ∆μН может использоваться протонной АТФ-синтетазой для синтеза АТФ,

2) В фазу стимуляции секреции, ∆μН обеспечивает работу Н + /К + -АТФазы. Эта АТФаза представляет собой гликопротеид, пронизывающий всю толщу секреторной мембраны. Условиями для ее работы является наличие АТФ и К + . Клетки, секретирующие соляную кислоту, используя энергию гидролиза АТФ выкачивают из клетки Н + в обмен на входящий внутрь клетки К + . Калий из клетки выходит совместно сCI - в результате электронейтрального совместного К + /СI - -транспорта. В свою очередь, хлор поступает в клетку в обмен на бикарбонаты (НСО3 - ) при помощи анионтранспортного белка. Бикарбонаты в клетке образуются в результате диссоциации угольной кислоты (Н2СО3) на Н + и НСО3 - , которая образуется из поступающего в клетку СО2 под действием фермента карбоангидразы. Вышедшие в полость желудка Н + иCI - образуют НСl.

СХЕМА механизма образования НСl в желудке

Сl - →│ → Сl - Сl - → │ → Сl -

кровь │ ↑ │ просвет желудка

Таким образом, слияние наружной мембраны митохондрий с секреторной мембраной клетки приводит к формированию митохондриального комплекса. В таких комплексах протоны, генерируемые окислительной цепью митохондрий могут непосредственно акцептироваться системой Н + /К + -АТФазы секреторной мембраны и транспортироваться из клетки.

Согласно карбоангидразной теории, источником Н + для HCl является Н2СО3, которая об­разуется в обкладочных клетках желудка из СО2 и Н2О под действи­ем карбоангидразы: Н2О + СО2 → Н2СО3 . Н2СО3 диссоциирует на бикарбонат, который выделяется в плазму крови в обмен на С1 - , и Н + , который активно переносится Н + /К + -АТФ-азой в просвет желуд­ка в обмен на К + .При этом в просвете желудка кон­центрация Н + увели­чивается в 10 6 раз, концентрация НС1 достигает 0,16 М, а значения рН снижается до 1,0-2,0. При максимальной активности обкладочные клетки могут продуцировать до 23 ммоль HCl в час. Синтез HCl - аэробный процесс, требующий большого количества АТФ, поэтому при гипоксии он снижается.Вода выходит из клеток в просвет желудка по осмотическому градиенту.

8. Соляная кислота, механизм секреции, роль в пищеварении.

ТЫ, да, ТЫ, потребитель, что нужно для соляной кислоты? ПРАВИЛЬНО СОЛЬ и КИСЛОТА, МУАХАХАХА.

А если точнее, ион водорода и ион хлора.

Ион водорода получается в результат диссоциации угольной кислоты, потом бикарбонат меняется на хлор из крови. Компоненты есть, теперь их надо выделить в просвет желудка.

Водород - через мембранную Н/К-АТФ-азой.

Хлор через ХЛОРИДНЫЙ канал.

Роль в пищеварении - обеспечивает денатурацию белков и рабочую рН для работы пепсина.

Роль соляной кислоты: 1) денатурирование белков 2) активация проферментов 3) создание оптимума рН для пепсина 4) регулирует работу привратника 5) способствует выработке секретина 6) бектерицидные свойства.

9. Кислотность желудочного сока, виды, определение по методу Михаэлиса, клиническое значение.

Кислотность желудочного сока выражается в титрационных единицах (ТЕ) - количество 0.1 М NaOH в 1 мл, затраченное на титрование 100 мл по определённому индикатору. При определении кислотности сока различают: общую кислотность, связанную НСl и свободную НСl.

- Общая кислотность желудочного сока - совокупность всех кислотореагирующих веществ желудочного сока, собираемый в течение 1 ч. Значение в норме 40-60 ТЕ.

- Связанная соляная кислота - связанная с белками и продуктами их переваривания. 20-30 ТЕ.

- Свободная соляная кислота - не связанная с компонентами желудочного сока. 20-40 ТЕ.

В норме рН 1,5-2,0.

Титрируем желудочный сок по всем видам кислотности. И определяем их значение.

В желудочном соке присутствуют органические кислоты и кислые фосфаты - это кислореагирующие продукты. Они вместе с общей соляной кислотой дают общую кислотность желудочного сока, которая определя-ется методом титрования 0,1н гидроксидом натрия. При титровании всех видов кислотности желудочного сока в одной пробе используется два ин-дикатора: фенолфталеин (одноцветный индикатор с зоной перехода 8,0-10,2), и парадиметиламидоазобензол (двухцветный с зоной перехода 2,9-4,0).

Диагностическое значение: Общая кислотность желудочного сока может как повышаться (гипера-цидное состояние), так и снижаться (гипоацидное), вплоть до исчезнове-ния (анацидное состояние). Гиперацидное состояние вызывается в основ-ном избытком свободной соляной кислоты, т.е. возникает гиперхлоргид-рия. Снижение HCI в желудочном соке — это гипохлоргидрия, отсутствие - ахлоргидрия. Изменение кислотности желудочного сока имеет место при язвенной болезни, гастритах, при раке, злокачественном малокровии.

10. Диагностическое значение биохимического анализа желудочного и

дуоденального соков.

Желудочный сок — сложный по составу пищеварительный сок, вырабатываемый различными клетками слизистой оболочки желудка. Желудочный сок содержит соляную кислоту и ряд минеральных солей, а также различные ферменты, главнейшими из которых являются пепсин, расщепляющий белки, химозин (сычужный фермент), створаживающий молоко, липаза, расщепляющая жиры. Составной частью желудочного сока является также слизь, играющая важную роль в защите слизистой оболочки желудка от раздражающих веществ, попавших в него; при высокой кислотности желудочного сока слизь нейтрализует ее.Кроме соляной кислоты, ферментов, солей и слизи, в желудочном соке содержится также особое вещество - внутренний фактор Касла. Это вещество необходимо для всасывания витамина В12 в тонких кишках, что обеспечивает нормальное созревание красных кровяных телец в костном мозге. При отсутствии фактора Касла в желудочном соке, что обычно связано с заболеванием желудка, а иногда с его оперативным удалением, развивается тяжелая форма малокровия. Анализ желудочного сока является очень важным методом исследования больных с заболеваниями желудка, кишечника, печени, желчного пузыря, крови и пр

Низкая кислотность - симптом гастрита. Повышенная кислотность - изжога, диарея, симптом язвы.

В соке нет пепсина и соляной кислоты ( желудочная ахилия) при атрофических гастритах, часто сопровождается пернициозной анемией, так как недостаток фактора Касла.

Лопина О.Д., Котлобай А.А., Рубцов А.М. Молекулярные механизмы регуляции секреции соляной кислоты слизистой оболочки желудка // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. - 1997. - №6. - с. 15-19.

Секреция соляной кислоты слизистой оболочкой желудка обеспечивается париетальными (обкладочными) клетками, находящимися в эпителиальном слое желудочных желез фундального отдела. Характерной особенностью этих клеток является присутствие специальных структур, так называемых внутриклеточных канальцев, образованных выпячиваниями апикальной мембраны. Поверхность канальцев, как и поверхность апикальной мембраны, покрыта многочисленными микроворсинками. Благодаря наличию внутриклеточных канальцев и микроворсинок значительно увеличивается поверхность, через которую осуществляется секреция соляной кислоты.

Активация секреции соляной кислоты происходит под действием секретогенов: гистамина, гастрина и ацетилхолина. Она сопровождается существенными морфологическими изменениями париетальных клеток: наблюдается значительное увеличение размеров внутриклеточных канальцев и длины микроворсинок, что приводит к увеличению поверхности мембраны, обеспечивающей секрецию. Кроме того, в активированных париетальных клетках внутриклеточные канальцы открываются в люминальное пространство, что обеспечивает доступ выделяющейся соляной кислоты в просвет желудка.

Рис. 1. Транспортные системы париетальной клетки, обеспечивающие секрецию соляной кислоты (схема).

Рис. 1. Транспортные системы париетальной клетки, обеспечивающие секрецию соляной кислоты (схема).

В проникновении соляной кислоты через апикальную мембрану участвует многокомпонентная транспортная система (рис. 1). Основным элементом этой системы является протонный насос, обеспечивающий АТФ-зависимый обмен внутриклеточных Н + на внеклеточные К + [7]. Оба иона переносятся против электрохимического градиента. Из клетки К + выходят по градиенту, по-видимому, через специальный канал, причем выход этого катиона сопровождается выходом из клетки Cl - . Таким образом, суммарным результатом работы этой транспортной системы являются секреция соляной кислоты в люминальное пространство и циклическое перемещение ионов калия из клетки наружу и в обратном направлении. Cl - входят в клетку через базолатеральную мембрану. В транспорте этого аниона принимает участие НСО3 - , /Cl - -анионный обменник. Необходимые для такого обмена НСО3 - - образуются в клетке в результате работы специального фермента карбоангидразы, обеспечивающего синтез Н2СО3 из углекислого газа, который появляется в клетке в результате метаболических процессов, и воды. Н + , образующийся при диссоциации Н2СО3, секретируется протонным насосом в люминальное пространство. Карбоангидраза локализована в клетке в непосредственной близости от системы внутриклеточных канальцев. При интенсивной работе насоса, когда начинает ощущаться нехватка Н + внутри клетки, в процесс включаются также встроенные в базолатеральную мембрану катионобменники (К + /Н + или Na + /Н + ), обменивающие внеклеточные Н + на внутриклеточные К + или Na + . Таким образом, присутствие дополнительных переносчиков, находящихся на базолатеральной мембране, обеспечивает трансэпителиальный транспорт Cl - и частично Н + .

Роль протонного насоса в системе, обеспечивающей секрецию соляной кислоты, выполняет Н + , К + -АТФаза - фермент, относящийся к семейству АТФаз Р-типа [7]. Ближайшим "родственником" этого фермента является Na + , К + -АТФаза, которая вместе с Н + , К + -АТФазой образует отдельное подсемейство. Кроме эпителиальных клеток желудка, Н + , К + -АТФаза (по-видимому, ее изозим) встречается также в эпителиальных клетках почечных канальцев и в эпителии некоторых отделов кишечника.

Н + , К + -АТФаза локализована в апикальной мембране, тогда как Na+, К+-АТФаза сосредоточена исключительно в базолатеральной мембране. Как и Na + , К + -АТФаза, Н + , К + -АТФаза состоит из субъединиц двух типов: a-субъединицы - полипептида с молекулярной массой около 100 кДа (1033 аминокислотных остатка), выполняющего каталитическую функцию, и b-субъединицы - гликопротеида с невыясненной до конца функцией, молекулярная масса которого составляет 50 - 60 кДа (291 аминокислотный остаток; остальная часть молекулы, примерно 1/3 часть по массе, представлена углеводными фрагментами). В настоящее время определена аминокислотная последовательность как a- [9], так b-субъединиц [10], а также установлено расположение полипептидных цепей этих белков в мембране (рис. 2, А). Полипептидная цепь a-субъединицы несколько раз пересекает мембрану, образуя 5 трансмембранных петель. N- и С-концы a-субъединицы находятся в цитоплазме. Большая часть полипептидной цепи (около 800 аминокислот) образует большой цитоплазматический домен, в котором расположен активный центр фермента, где и происходит гидролиз АТФ. Катионы перемещаются через мембрану по каналу, который формируется трансмембранными петлями. N-конец b-субъединицы находится внутри цитоплазмы, ее полипептидная цепь пересекает мембрану только один раз. Большая часть р-субъединицы располагается с внеклеточной стороны мембраны. На ней расположены участки, подвергающиеся гликозилированию.

Рис. 2. Схема укладки a- и b-субъединиц Н<sup></p>
<p>+</sup>, К<sup>+</sup>-АТФазы в липидном бислое (А) и схема, иллюстрирующая каталитический цикл Н<sup>+</sup>, К<sup>+</sup>-АТФазы (Б).

Рис. 2. Схема укладки a- и b-субъединиц Н + , К + -АТФазы в липидном бислое (А) и схема, иллюстрирующая каталитический цикл Н + , К + -АТФазы (Б).

АТФазы Р-типа осуществляют гидролиз АТФ до АДФ и неорганического фосфата. Высвобождающаяся в процессе гидролиза энергия используется для переноса катионов через мембрану против электро- химического градиента. Характерной особенностью АТФаз Р-типа является образование в процессе каталитического цикла фосфорилированного интермедиата (фосфорилированию подвергается остаток аспарагиновой кислоты, расположенный на a-субьединице; в Н + , Н + , К + -АТФазе это Asp-385). Вторая особенность этого семейства АТФаз заключается в том, что в процессе гидролиза АТФ фермент пребывает в двух основных конформациях - Е1 и Е2, которые различаются по сродству к переносимым катионам. Конформация Е1 имеет высокое сродство к Н+, а конформация Е2 - к катионам К + . Схема гидролиза АТФ Н + , К + -АТФазой представлена на рис. 2, Б. В конформации Е1 со специфическими центрами, расположенными на цитоплазматической поверхности мембраны, связывается H + , после чего происходит фосфорилирование Asp-385, расположенного в активном центре фермента (образование Е1-Р). После фосфорилирования закрываются створки канала, находящиеся на цитоплазматической стороне мембраны. Затем протоны перемещаются через мембрану, что приводит к изменению конформации фермента (переход Е1-Р в Е2-Р). В этом состоянии открываются створки канала с люминальной (внеклеточной) стороны. После этого протоны высвобождаются из катионсвязывающих участков фермента, а К+ связываются с катионсвязывающими центрами на люминальной поверхности мембраны. Связывание К + с Е2-Р-формой фермента активирует гидролиз ацилфосфатной связи и высвобождение неорганического фосфата. Вслед за этим закрываются створки канала с внеклеточной стороны и ионы калия с внеклеточной поверхности мембраны перемещаются на цитоплазматическую. Связывание АТФ приводит к тому, что происходит изменение конформации фермента (из Е2 переходит в Е1) и К + высвобождаются в цитоплазму, после чего цикл может повториться. Обмен Н + на К + , осуществляемый Н + , К + -АТФазой, является электронейтральным. Возникающая в результате работы протонного насоса разница в концентрации Н + по разные стороны апикальной мембраны составляет 106. Это самый большой градиент концентраций, создаваемый известными в настоящее время системами активного транспорта.

Активность Н + , К + -АТФазы специфически подавляется омепразолом и другими соединениями (лансопразол, пантопразол), являющимися замешенными производными бензимидазола. Эти соединения, накапливаясь в кислых компартментах, главным образом во внутриклеточных канальцах париетальных клеток, связывают Н+ и превращаются в собственно ингибитор, который ковалентно (необратимо) взаимодействует с SH-группами белка, расположенными на люминальной поверхности апикальной мембраны [8]. Восстановление активности Н + , К + -АТФазы после обработки омепразолом происходит главным образом по мере синтеза новых молекул фермента, поэтому длительность вызванного им ингибирования зависит от скорости обновления фермента (половина молекул Н + , К + -АТФазы человека обновляется за 30-48 ч). Кроме того, известны нековалентные (обратимые) ингибиторы Н + , К + -АТФазы [6]. Среди них наиболее изучен имидазопиридин SCH- 28080. Это соединение взаимодействует с К-связывающим участком фермента. Длительность действия этих соединений на Н + , К + -АТФазу зависит главным образом от продолжительности жизни самого соединения, а не фермента.

Кроме Н + , К + -АТФазы, в секреции соляной кислоты участвуют компоненты, обеспечивающие транспорт К+ по градиенту концентраций и сопряженный с ним выход Cl - против градиента концентраций. Транспорт Cl - осуществляется через специальный хлорный канал. В настоящее время этот канал идентифицирован [5]. Он представляет собой белок с молекулярной массой около 100 кДа (898 аминокислот) и по структуре похож на каналы семейства СlС-2, которые присутствуют в мозге и сердце (гомология между хлорным каналом из слизистой оболочки желудка кролика и СlС-2 хлорным каналом из мозга крысы составляет 93%). Проводимость канала равна 7pS при концентрации CsC1 150 мМ с обеих сторон мембраны. Через канал, кроме Cl - , могут проходить и другие анионы. Селективность канала для анионов уменьшается в ряду I - , Cl - , Br - , NO3. Канал является потенциал- и рН-зависимым. Изменение потенциала от 0 до - 80 мВ приводит к 10-кратному увеличению проводимости канала. При потенциале - 80 мВ и внутриклеточном рН 7,4 снижение рН вне клетки до 3,0 дополнительно увеличивает проводимость канала в 5-6 раз.

К + покидают клетку, по-видимому, через специальный калиевый канал. Установлено, что секрецию соляной кислоты тормозит тетраэтиламмоний, который известен как ингибитор калиевых каналов. Однако в отличие от Cl-канала, структура которого хорошо изучена, калиевый канал идентифицирован только в электрофизиологических экспериментах.

Для выяснения молекулярных механизмов, обеспечивающих активацию секреции соляной кислоты, необходимо выяснить последовательность процессов, происходящих после связывания молекулы секретогена с рецептором, расположенным на поверхности париетальной клетки. В течение многих лет было известно, что париетальная клетка содержит как минимум рецепторы двух типов: гистаминовые H2-рецепторы и мускариновые M3,-рецепторы для ацетилхолина. До недавнего времени не было данных о рецепторе для гастрина. Считалось, что гастриновые рецепторы находятся на энтерохромаффинных клетках, которые после связывания гастрина высвобождают гистамин. Выделяющийся из энтерохромаффинных клеток гистамин связывается с H2-рецепторами париетальных клеток, обеспечивая стимуляцию секреции. Однако недавно было показано, что и париетальные клетки содержат гастриновые рецепторы [11]. Рецептор для гастрина относится к типу В-рецепторов для холецистокинина (ССК-В). Рецепторы этого типа, как и находящиеся на поверхности париетальных клеток М,-рецепторы, обеспечивают свое действие через О-белки, активирующие фосфолипазу С. Этот фермент гидролизует фосфоинозитиды, находящиеся в липидном слое мембраны. По-видимому, образующийся в результате гидролиза инозитолтрифосфат вызывает выход Са 2+ из внутриклеточных депо (эндоплазматический ретикулум), в результате чего внутриклеточная концентрация Са 2+ увеличивается. Второй продукт этой реакции диацилглицерол вместе с Са 2+ активирует Са, фосфолипидозависимую протеинкиназу (протеинкиназа С), которая в свою очередь фосфорилирует белки мишени, влияя на их функциональную активность. Таким образом, в результате активации париетальных клеток под действием как гастрина, так и ацетилхолина могут происходить увеличение внутриклеточной концентрации Са2+ и фосфорилирование белков-мишеней под действием протеинкиназы С. Однако вся цепь событий для париетальной клетки не прослежена. Известно лишь, что активация секреции соляной кислоты париетальными клетками под действием гастрина и ацетилхолина приводит к повышению концентрации вторичного мессенджера цГМФ. Возможные начальные этапы процесса активации секреции париетальными клетками представлены на рис. 3.

Наиболее изучена активация секреции соляной кислоты под действием гистамина. Связываясь с H2- рецептором, этот секретоген через О-белки активирует аденилатциклазу, в результате чего повышается внутриклеточный уровень цАМФ [1]. Вслед за этим происходит повышение внутриклеточной концентрации Са 2+ : он входит в клетку через плазматическую мембрану. Париетальные клетки содержат цАМФ-зависимые протеинкиназы (протеинкиназы А) двух типов - I и II. Установлено, что мишенями для цАМФ-зависимых протеинкиназ является большое количество как цитоплазматических, так и мембранных белков. Одной из идентифицированных мишеней протеинкиназы А является Cl-канал. В системе in vitro установлено, что фосфолирование канала этой протеинкиназой приводит к увеличению его проводимости. В экспериментах с мембранными везикулами, полученными из стимулированных гистамином и несекретирующих (обработанных антагонистом H2-рецептора циметидином) париетальных клеток, было показано, что скорость секреции соляной кислоты в несекретирующих клетках лимитируется не активностью Н + , К + -АТФазы, а проницаемостью Cl-канала. Таким образом, фосфорилирование Cl-канала протеинкиназой А устраняет лимитирующую стадию в процессе секреции соляной кислоты.

Рис. 3. Рецепторы, через которые осуществляется активация секреции в париетальной клетке (схема) и возможные механизмы активации

Рис. 3. Рецепторы, через которые осуществляется активация секреции в париетальной клетке (схема) и возможные механизмы активации

В несекретирующих париетальных клетках большая часть Н + , К + -АТФазы является неактивной и сосредоточена в везикулах, расположенных в цитоплазме неподалеку от апикальной поверхности мембраны (так называемые тубуловезикулы). Активация секреции сопряжена в первую очередь с перемещением этих везикул к поверхности апикальной мембраны или мембраны канальцев и с их слиянием с этими мембранами. Этот процесс сопровождается увеличением количества молекул Н + , К + -АТФазы на единицу поверхности мембраны. Активное участие в этом процессе принимает цитоскелет париетальной клетки: обработка клеток цитохалазинами А и Е, которые блокируют удлинение микрофиламентов, предотвращает активацию секреции. Известно, что около 4% белка париетальной клетки представлено актином и около 60% актина находится в полимеризованной F-форме [3]. Нити полимеризованного актина, сшитые друг с другом специальными белками цитоскелета, располагаются внутри микроворсинок апикальной поверхности мембраны, формируя своеобразный скелет. Другие белки цитоскелета сшивают нити актина с белками, встроенными в мембрану. Активация секреции сопряжена с перемещением актина к поверхности апикальной мембраны, а миозина - ближе к центру клетки. По-видимому, среди фосфорилируемых протеинкиназой А белков париетальных клеток немало белков цитоскелета. В частности, среди мишеней протеинкиназы А идентифицирован периферический белок мембраны эзрин с молекулярной массой 80 кДа, который участвует в связывании актиновых микрофиламентов с мембраной [4].

При стимуляции клетки гистамином наблюдается перераспределение белков между цитоплазмой и мембраной. Удалось обнаружить белки, которые при активации секреции перемещаются из цитозоля в мембрану и специфически взаимодействуют с Н + , К + -АТФазой. Известно, что Н + , К + -АТФаза, как и другие АТФазы P-типа, ингибируется мелитгиномпептидом из яда пчелы, состоящим из 26 аминокислот. Имеющиеся в настоящее время данные позволяют предполагать, что мелиттин имитирует определенную детерминанту, участвующую в белок-белковых взаимодействиях в клетке. При использовании антител на мелиттин в цитозоле несекретирующих париетальных клеток был обнаружен белок с молекулярной массой 67 кДа. Этот белок взаимодействует с антителами на мелиттин и, следовательно, содержит участки, по структуре похожие на мелиттин. При стимуляции париетальных клеток гистамином мелиттиноподобный белок перемещается из цитозоля в мембрану [2]. Белок был получен в чистом виде, и в экспериментах in vitro установлено, что он специфически взаимодействует с Н + , К + -АТФазой. Однако пока неизвестно, что является сигналом для перемещения мелиттиноподобных белков при стимуляции, а также какова их функция. Не исключено, что они также являются белками цитоскелета, осуществляющими взаимодействие Н + , К + -АТФазы с микрофиламентами. Полученная в последние годы информация позволяет считать, что белки, обеспечивающие связывание мембранных белков с цитоскелетом, зачастую не только являются структурным элементом, но и участвуют в передаче сигнала. Таким образом, мелиттиноподобный белок, перемещающийся в мембрану при стимуляции секреции, может оказаться и активатором Н + , К + -АТФазы.

Завершая обзор экспериментальных данных, можно сделать следующее заключение: несмотря на то что представление о молекулярных механизмах активации секреции соляной кислоты значительно расширилось, детальное изучение этого процесса лишь начинается и в ближайшее время можно ожидать появления новых интересных фактов.


Молекулярные механизмы регуляции секреции соляной кислоты слизистой оболочки желудка.
О.Д. Лопина, А.А. Котлобай, А.М. Рубцов.
(Кафедра биохимии биологического факультета Московского государственного университета им. М.В. Ломоносова).
Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 1997, №6, с. 15-19.

Регуляция секреции соляной кислоты


Предполагается, что существует сильное обяза­тельное взаимодействие между рецепторами гистамина и гастрина и более слабое, необязательное, - между ре­цепторами гистамина и ацетилхолина.


Антагонисты H2‑рецепторов блокируют рецепторы гистамина (по [28])

Ацетилхолин, гистамин и гастрин относят к числу медиа­торов, играющих роль первых посредников в индукции секреции HCl.[89]

При взаимодействии гормонов или эффекторных веществ со специфическими рецепто­рами, локализованными на поверхности клеток, образуется второй посредник — цАМФ или ионы Са 2+ (кальмодулин), индуцирующий специфичес­кую активность клетки. [90]

Предполагают, что в результате действия гастрина и ацетилхолина с рецепторами повышается внутриклеточная концентрация Ca 2+ , гистамина — увеличение образования цАМФ [91] .


Ca 2+ и цАМФ в качестве «вторых посредников» стимулируют секрецию HCl.[92]


Непосредственно стимулируют секрецию соляной кис­лоты обкладочными клетками холинергические волокна блуждаю­щих нервов, медиатор которых — ацетилхолин (AX) — возбужда­ет М-холинорецепторы базолатеральных мембран гландулоцитов. Эффекты АХ и его аналогов блокируются атропином. Непрямая стимуляция клеток блуждающими нервами опосредуется также гастрином и гистамином. [93]

Гастрин [94] высвобождается из G-клеток, основное количество которых находится в слизистой оболочке пилорической части же­лудка. [95] После хирургического удаления пилорической части желудочная секреция резко снижается. [96]

Высвобождение гастрина уси­ливается импульсами блуждающего нерва, а также местным меха­ническим и химическим раздражением пилорической части желудка.

Хими­ческими стимуляторами G-клеток являются продукты переварива­ния белков — пептиды и некоторые аминокислоты, экстрактивные вещества мяса и овощей. Если рН в антральной части желудка по­нижается, что обусловлено повышением секреции соляной кислоты железами желудка, то высвобождение гастрина уменьшается, а при рН 1,0 прекращается и объем секреции резко понижается.

Таким образом, гастрин принимает участие в саморегуляции желу­дочной секреции в зависимости от величины рН содержимого антрального отдела. Гастрин в наибольшей мере стимулирует па­риетальные гландулоциты желудочных желез и увеличивает выде­ление соляной кислоты.

Мощным химическим возбудителем секреции желудочных желез является гистамин. Под влиянием гистамина образуется желудочный сок, богатый соляной кислотой и бедный ферментами. [97]

Гистамин образуется в ECL-клетках слизистой обо­лочки желудка. [98]

Высвобождение гистамина обеспечивается гастрином. [99]

Гистамин стимулирует гландулоциты, влияя на Н2‑рецепторы их мембран и вызывая выделение большого количества сока высо­кой кислотности, но бедного пепсином. [100]

Стимулирующие эффекты гастрина и гистамина зависят от сохранности иннервации желудочных желез блуждающими нерва­ми: после хирургической и фармакологической ваготомии секре­торные эффекты этих гуморальных стимуляторов понижаются. [101]

Желудочную секрецию возбуждают также всосавшиеся в кровь продукты переваривания белков. [102]

Торможение секреции соляной кислоты вызывают секретин, ХЦК, глюкагон, ЖИП, ВИП, нейротензин, полипептид УУ, соматостатин, тиролиберин, энтерогастрон, АДГ, кальцитонин, окситоцин, простагландин ПГЕ2, бульбогастрон, кологастрон, серотонин (см. приложение 302161835 табл. 9.2). [103]

Высвобождение некоторых из них в соответст­вующих эндокринных клетках слизистой оболочки кишечника кон­тролируется свойствами химуса. В частности, торможение желу­дочной секреции жирной пищей в большой мере обусловлено влия­нием на железы желудка ХЦК. Повышение кислотности содержи­мого двенадцатиперстной кишки тормозит выделение соляной кис­лоты железами желудка. Торможение секреции осуществляется рефлекторно, а также вследствие образования гормонов двенадца­типерстной кишки. [104]

Механизм стимуляции и торможения секреции соляной кисло­ты различными нейротрансмиттерами и гормонами неодинаков. Так, АХ усиливает секрецию кислоты обкладочными клетками путем активации мембранной Na + , К + -АТФазы, увеличения транспорта ионов Са 2+ и эффектов повышенного внутриклеточного содержания цГМФ, высвобождения гастрина и потенцирования его влияния. [105]

Гастрин усиливает секрецию соляной кислоты посредством гистамина, а также путем действия на мембранные рецепторы гастрина и усиления внутриклеточного транспорта ионов Са 2+ . Гистамин стимулирует секрецию обкладочных клеток через их мембранные Н2‑рецепторы и систему аденилатциклаза (АЦ) — цАМФ. [106]

[НД10]

Стимуляторами секреции пепсиногена главными клетками яв­ляются холинергические волокна блуждающих нервов, гастрин, гистамин, симпатические волокна, оканчивающиеся на р-адрено-рецепторах, секретин и ХЦК. Усиление секреции пепсиногенов глав­ными клетками желудочных желез осуществляется несколькими ме­ханизмами. Среди них увеличение переноса ионов Ca 2+ в клетку и стимуляция Na + , К + ‑АТФазы; усиление внутриклеточного пере­мещения гранул зимогена, активация мембранной фосфорилазы, что усиливает их прохождение через апикальные мембраны, активация системы цГМФ и цАМФ.[107]

Эти механизмы в неодинаковой мере активируются или тормо­зятся различными нейротрансмиттерами и гормонами, непосредственными и опосредованными влияниями их на главные клетки и секрецию пепсиногена. Показано, что гистамин и гастрин влияют на него опосредованно — усиливают секрецию соляной кислоты, а снижение рН содержимого желудка через местный холинергический рефлекс усиливает секрецию главных клеток. Описано и пря­мое стимулирующее влияние на них гастрина. В высоких дозах гистамин тормозит их секрецию. ХЦК, секретин и β‑адреномиметики непосредственно стимулируют секрецию главных клеток, но тормозят секрецию обкладочных, что свидетельствует о существо­вании на них разных рецепторов регуляторных пептидов. [108]

Стимуляция секреции слизи мукоцитами осуществляется холинергическими волокнами блуждающих нервов. Гастрин и гиста­мин умеренно стимулируют мукоциты, видимо, в связи с удале­нием слизи с их мембран при выраженной секреции кислого желу­дочного сока. Ряд ингибиторов секреции соляной кислоты — серо-тонин, соматостатин, адреналин, дофамин, энкефалин, простаглан­дин ПГE2 — усиливает секрецию слизи. Полагают, что ПГE2 уси­ливает секрецию слизи названными веществами. [109]

При приеме пищи и пищеварении в усиленно секретирующих железах желудка кровоток возрастает, что обеспечивается дей­ствием холинергических нервных механизмов, пептидов пищевари­тельного тракта и местных вазодилататоров. В слизистой оболочке кровоток нарастает интенсивнее, чем в подслизистой основе и мы­шечном слое желудочной стенки. [110]

Фазы желудочной секреции [111]

Нервные, гуморальные факторы и паракринные механизмы тонко регулируют секрецию желез же­лудка, обеспечивают выделение определенного количества сока, кислото- и ферментовыделение в зависимости от количества и ка­чества принятой пищи, эффективности ее переваривания в желуд­ке и тонкой кишке. Происходящую при этом секрецию принято делить на три фазы. [112]

Начальная секреция желудка возникает рефлекторно в ответ на раздражение дистантных рецепторов, возбуждаемых видом и запахом пищи, всей обстановкой, связанной с ее приемом (условнорефлекторные раздражения). [113]

Кроме того, секреция желудка возбуждается рефлекторно в ответ на раздражение принимаемой пищей рецепторов полости рта и глотки (безусловнорефлекторные раздражения). Эти рефлексы обеспечивают пусковые влияния на железы желудка. Желудочную секрецию, обусловленную этими сложными рефлекторными влияниями, принято называть пер­вой, или мозговой, фазой секреции (см. рис. 9.8). [114]

Желудочный сок, выделяемый в начале акта еды, а также под влиянием условнорефлекторных раздражителей, был назван И.П.Павловым «аппе­титным», заранее подготавливающим желудок к приему пищи. [115]

Механизмы первой фазы секреции желудка были изучены в опытах на эзофаготомированных собаках с фистулой желудка. При кормлении такой собаки пища выпадает из пищевода и не поступает в желудок, однако через 5—10 мин после начала мнимо­го кормления начинает выделяться желудочный сок. Аналогичные данные были получены при исследовании людей, страдающих су­жением пищевода и подвергшихся вследствие этого операции на­ложения фистулы желудка. Жевание пищи вызывало у людей вы­деление желудочного сока. [116]

Рефлекторные влияния на желудочные железы передаются че­рез блуждающие нервы. После их перерезки у эзофаготомиррванной собаки ни мнимое кормление, ни вид и запах пищи не вызы­вают секреции. Если раздражать периферические концы перере­занных блуждающих нервов, то отмечается выделение желудочно­го сока с высоким содержанием в нем соляной кислоты и пепсина. [117]

В стимуляцию желудочных желез в первую фазу включен и гастриновый механизм. Доказательством этого служит увеличение содержания гастрина в крови людей при мнимом кормлении. Пос­ле удаления пилорической части желудка, где продуцируется гастрин, секреция в первую фазу понижается. [118]

Секреция в мозговую фазу зависит от возбудимости пищевого центра и может легко тормозиться при раздражении различных внешних и внутренних рецепторов. Так, плохая сервировка стола, неопрятность места приема пищи снижают и тормозят желудоч­ную секрецию. Оптимальные условия приема пищи положительно влияют на желудочную секрецию. Прием в начале еды сильных пищевых раздражителей повышает желудочную секрецию в первую фазу. [119]

На секрецию первой фазы наслаивается секреция второй фазы, которая называется желудочной, так как обуслов­лена влиянием пищевого содержимого в период его нахождения в желудке. Наличие этой фазы секреции доказывается тем, что вкладывание пищи в желудок через фистулу, вливание через нее или зонд растворов в желудок, раздражение его механорецепторов вызывают отделение желудочного сока. Объем секреции при этом в 2—3 раза меньше, чем при естественном приеме пищи. Это под­черкивает большое значение пусковых рефлекторных влияний, осуществляемых преимущественно в первую фазу на желудочные железы. Во вторую фазу железы желудка испытывают в основном корригирующие влияния. Эти влияния путем усиления и ослабления деятельности желез обеспечивают соответствие секреции количеству и свойствам пищевого желудочного содержимого, т. е. осуществля­ют коррекцию секреторной деятельности желудка. [120]

При поступлении пищи в желудок начинается желудочная фаза секреции. Если вкладывать мясо через фистулу в желудок, то через 30 мин появляется секреция желудочного сока. Это результат как механических, так и химических раздражений. Среди химических факторов наиболее важен гормон — гастрин, кото­рый образуется в стенке привратниковой части желудка в виде неактивного прогастрина. [121]

Сокоотделение при механическом раздражении желудка воз­буждается рефлекторно с механорецепторов слизистой оболочки и мышечного слоя стенки желудка. Секреция резко уменьшается после перерезки блуждающих нервов. Кроме того, механическое раздражение желудка, особенно его пилорической части, приводит к высвобождению из G-клеток гастрина. [122]

Повышение кислотности содержимого антральной части желуд­ка тормозит высвобождение гастрина и снижает желудочную сек­рецию. В фундальной части желудка кислотность его содержимого рефлекторно усиливает секрецию, особенно выделение пепсиногена. Определенное значение в реализации желудочной фазы секре­ции имеет гистамин, значительное количество которого образуется в слизистой оболочке желудка. [123]

Мясной бульон, капустный сок, продукты гидролиза белков при введении в тонкую кишку вызывают выделение желудочного сока. Нервные влияния с рецепторов кишечника на железы желудка обеспечивают секрецию в третью, кишечную, фазу. Воз­буждающие и тормозные влияния из двенадцатиперстной и тощей кишки на железы желудка осуществляются с помощью нервных и гуморальных механизмов, корригирующих секрецию. Нервные влия­ния передаются с механо- и хеморецепторов кишечника. Стимуля­ция желудочных желез в кишечную фазу является прежде всего ре­зультатом поступления в двенадцатиперстную кишку недостаточно физически и химически обработанного содержимого желудка. В стимуляции желудочной секреции принимают участие всосав­шиеся в кровь продукты гидролиза питательных веществ, особенно белков. Эти вещества могут возбуждать железы желудка опосре­дованно через гастрин и гистамин, а также непосредственно дей­ствуя на желудочные железы. [124]

Торможение желудочной секреции в ее кишечную фазу вызы­вается рядом веществ в составе кишечного содержимого, которые по убывающей силе тормозного действия расположены в следую­щем порядке: продукты гидролиза жира, полипептиды, амино­кислоты, продукты гидролиза крахмала, Н + (рН ниже 3 оказывает сильное тормозное действие). [125]

Высвобождение в двенадцатиперстной кишке секретина и ХЦК под влиянием поступившего в кишечник содержимого желудка и образовавшихся продуктов гидролиза питательных веществ тор­мозит секрецию соляной кислоты, но усиливает секрецию пепсиногена. Желудочную секрецию тормозят и другие кишечные гормоны из группы гастронов и глюкагон, а также серотонин. [126]

Студопедия рекомендует:

Менеджмент: сущность, функции и принципы 1. Понятие, цели и задачи менеджмента 2. Функции и принципы менеджмента Понятие, цели и задачи менеджмента В современном мире термин.
Конституционные обязанности граждан Российской Федерации Конституционные обязанности - это установленные государством и закрепленные в Конституции Российской Федерации виды общественно.
ОБРАЗЦЫ ВВОДНЫХ ФРАЗ ТЕКСТА ДЕЛОВОГО ПИСЬМА Благодарим за письмо от . В ответ сообщаем . В дополнение к нашему письму от . с.г. сообщаем.
Культура эпохи Возрождения Возрождение или Ренессанс (Ринашименто), - одна из самых ярких эпох в развитии европейской культуры с середины XIV по первое.
Причины, цели, задачи, сущность, этапы опричнины. Итоги правления Ивана Грозного. 1565 - 1584 гг. Цель опричнины - ликвидировать пережитки феодальной раздробленности; завершить политическую централизацию.

Читайте также: