Плевральная полость. Механизм вентиляции легких.

Обновлено: 17.05.2024

, bronchioli. Являются продолжением бронхов, в их стенке отсутствует хрящ. В самом начале они выстланы многорядным цилиндрическим реснитчатым эпителием, который в терминальных отделах переходит в кубический. Рис. А.

Дыхательные бронхиолы

, bronchioli respiratorii. Конечные отделы бронхиол, на стенке которых появляются отдельные альвеолы. Рис. А.

Альвеолярные ходы

, ductuli alveolares. Конечные ветви дыхательных бронхиол, на стенке которых находится большое количество альвеол. Рис. А.

Альвеолярные мешочки

Альвеолы легкого

, alveoli pulmonis. Слепые выпячивания стенки дыхательных бронхиол, альвеолярных ходов и мешочков, диаметром 0,1 - 0,9 мм. Через их тонкую стенку осуществляется газообмен. Рис. А.

ГРУДНАЯ ПОЛОСТЬ

, сavitas thoracis (thoraciса). Ограничена ребрами, грудным отделом позвоночного столба, грудиной и снизу - диафрагмой. Рис. Б, Рис. В.

Плевролегочные области

Внутригрудная фасция

, fascia endothoracica. Подвижный слой рыхлой соединительной ткани между париетальной плеврой и стенкой грудной клетки. Рис. Б.

Надплевральная мембрана [[Сибсона]]

, membrana suprapleuralis [[Sibson]]. Утолщение внутригрудной фасции в области купола плевры. Рис. Б.

Диафрагмоплевральная фасция

, fascia phrenicopleuralis. Часть внутригрудной фасции, которая расположена между париетальной плеврой и диафрагмой. Рис. Б.

Плевральная полость

, cavitas pleuralis. Капиллярное, щелевидное пространство между париетальной и висцеральной плеврой, содержащее незначительное количество серозной жидкости. Рис. Б, Рис. В.

Плевра

, pleura. Серозная оболочка, состоящая из рыхлой соединительной ткани, покрытой однослойным плоским эпителием. Представлена париетальным и висцеральным листками, переходящими один в другой у ворот легкого. Висцеральная плевра покрывает легкие; париетальная - боковые стенки грудной клетки, диафрагму и ограничивает средостение. Рис. Б.

Купол плевры

, cupula pleurae. Покрывает верхушку легкого и является границей между шеей и грудной клеткой. Рис. Б.

Висцеральная (легочная) плевра

Париетальная плевра

Медиастинальная часть (медиастинальная плевра)

Реберная часть (реберная плевра)

Диафрагмальная часть (диафрагмальная плевра)

Плевральные синусы

, recessus pleurales. Щелевидные пространства, образованные париетальной плеврой, в которые легкое заходит во время вдоха.

Реберно-диафрагмальный синус

, recessus costodiaphragmaticus. Расположен между боковой стенкой грудной полости и диафрагмой. Рис. Б.

Реберно-медиастинальный синус

, recessus costomediastinalis. Расположен в переднем отделе грудной полости между реберной и медиастинальной частями париетальной плевры. Выражен больше слева. Рис. В.

Диафрагмомедиастинальный синус

, recessus phrenicomediastinalis. Расположен в дорсальном отделе грудной клетки между диафрагмальной и медиастинальной частями париетальной плевры.

Легочная связка

, lig. pulmonale. Состоит из двух листков медиастинальной плевры, которые идут ниже корня легкого от латеральной поверхности пищевода к медиальной поверхности легкого и переходят в висцеральную плевру. Рис. Б. См. с. 149, Рис. Б, Рис. Г.

Средостение

, mediastinum. Область грудной полости, расположенная между двумя плевральными мешками. Спереди ограничена задней поверхностью грудины, сзади - передней поверхностью позвоночного столба. Рис. Б.

Верхнее средостение

, mediastinum superior. Часть средостения, расположенная выше сердца. Содержит дугу аорты с ее ветвями, плечеголовные вены, верхнюю полую вену, трахею, пищевод, блуждающие нервы, грудной проток, вилочковую железу и др. Рис. Б.

Нижнее средостение

Переднее средостение

Среднее средостение

Заднее средостение

, mediastinum posterius. Расположено между перикардом и позвоночным столбом. Содержит пищевод, блуждающие нервы, нисходящую часть аорты, грудной проток, непарную и полунепарную вены. Рис. В.

Физиология человека и животных

Вентиляция легких. Механика и динамика дыхательных движений. Внутриплевральное давление и его значение. Роль сурфактанта. Аэрогематический барьер

Вентиляция легких осуществляется вследствие разности давления между альвеолярным и атмосферным воздухом. При вдохе давление в альвеолах снижается (за счет расширения грудной клетки) и становится ниже атмосферного: воздух из атмосферы входит в воздухоносные пути. При выдохе давление в альвеолах приближается к атмосферному или даже становится выше него (при форсированном выдохе), что соответственно приводит к удалению воздуха из альвеол.

Аппарат вентиляции состоит из 2 частей:

1) грудной клетки с дыхательными мышцами и 2) легких с дыхательными путями.

Внешнее дыхание состоит из двух актов: вдоха (инспирация) и выдоха (экспирация). Различают два режима дыхания:

1) спокойное дыхание (частота 12 - 18 дыхательных движений в мин);

2) форсированное дыхание (увеличение частоты и глубины дыхания).


Спокойное дыхание. Акт вдоха совершается путем подъема ребер межреберными мышцами и опускания купола диафрагмы. Диафрагма - это наиболее сильная мышца вдоха, дает 2/3 объема вдоха. При расслаблении мышц вдоха под действием эластических сил грудной клетки и силы тяжести объем грудной клетки уменьшается, вследствие чего происходит выдох (при спокойном дыхании он происходит пассивно). Таким образом, дыхательный цикл включает вдох, выдох и паузу.

Различают грудной, брюшной и смешанный типы дыхания. Грудной (или реберный) тип дыхания обеспечивается в основном за счет работы межреберных мышц, а диафрагма смещается пассивно под действием грудного давления. При брюшном типе дыхания в результате мощного сокращения диафрагмы не только снижается давление в плевральной полости, но и одновременно повышается давление в брюшной полости. Этот тип дыхания более эффективен, так как при нем легкие сильнее вентилируются и облегчается венозный возврат крови от органов брюшной полости к сердцу. Смешанный тип дыхания наблюдается чаще всего при спокойном дыхании и обеспечивается активной работой и межреберных мышц, и диафрагмы.

Форсированное дыхание. Во вдохе участвуют вспомогательные дыхательные мышцы: большая и малая грудные, лестничные (поднимают первое и второе ребра), грудино-ключично-сосцевидная (поднимает ключицу). При этом грудная клетка расширяется больше. Выдох при форсированном дыхании тоже представляет собой активный процесс, так как в нем участвуют внутренние межреберные мышцы, которые сближают ребра, а также - косые и прямые мышцы живота.

Легкие отделены от стенок грудной клетки плевральной полостью шириной 5 - 10 мкм, образованной 2 листками плевры, один из которых прилежит к внутренней стенке грудной клетки, а другой окутывает легкие. Давление в плевральной полости меньше атмосферного на величину, обусловленную эластической тягой легких (при выдохе оно меньше атмосферного на3 ммрт. ст., при вдохе - на6 ммрт. ст.). Оно появляется после первого вдоха новорожденного, когда воздух заполняет альвеолы и проявляется сила поверхностного натяжения жидкости альвеол. Благодаря отрицательному давлению в плевральной полости, легкие всегда следуют за экскурсиями грудной клетки.


Пневмоторакс - спадение легких при попадании воздуха в плевральную полость.

Со стороны альвеол поверхность мембраны альвеолярно-капиллярной мембраны покрыта особым веществом - сурфактантом. Это вещество образует слой толщиной 0,5 мкм и составляет так называемый аэрогематический барьер, который облегчает диффузию газов. Сурфактант состоит из фосфолипидов, белков и полисахаридов, постоянно вырабатывается клетками эпителия альвеол и обновляется примерно через 30 часов.

1) снижает поверхностное натяжение альвеолярных стенок;

2) создает возможность расправления легкого при первом вдохе новорожденного;

3) препятствует спадению легких при выдохе;

4) обеспечивает эластичность и стабильность легочной ткани;

5) регулирует скорость абсорбции О2 и интенсивность испарения воды с поверхности альвеол;

ВЕНТИЛЯЦИЯ ЛЕГКИХ

Дыхание - это совокупность процессов, которые обеспечивают газообмен между клетками и окружающей средой. Пять этапов: (1) вентиляция легких (газообмен между атмосферой и альвеолярным пространством); (2) газообмен в легких (между альвеолярным пространством и кровью); транспорт газов кровью; (4) газообмен в тканях (между кровью и клетками); (5) окислительные процессы в клетках. Примечание: (1) и (2) этапы - это внешнее дыхание; (4) и (5) этапы - это внутреннее дыхание. Дыхательный аппаратсостоит из грудной клетки, воздухоносных путей и легких. Грудная клетка выполняет защитную и насосную функции. Воздухоносные пути очищают, согревают и увлажняют вдыхаемый воздух. Кроме того, они являются важной рефлексогенной зоной (защитные кашлевой и чихательный рефлексы, регуляция дыхания). Легкие: главная функция - газообмен. Негазообменные функции легких - защитная (аэрогематический барьер), выделительная, терморегуляторная, голосообразующая (речевая), а также функция выработки одних и инактивации других биологически активных веществ.

ВЕНТИЛЯЦИЯ ЛЕГКИХ

Механизм вдоха: Вдох всегда активный - (1) за счет сокращения инспираторных мышц (диафрагмы и наружных межреберных мышц) происходит (2) увеличение объема грудной клетки, (3) увеличивается объем легких, т.к. легкие пассивно следуют за грудной клеткой (за счет сил молекулярного сцепления жидкости, заполняющей плевральную полость). Примечание: плевральная полость - это узкая капиллярная щель (7-10 мкм) между листками висцеральной и париетальной плевры, заполненная плевральной жидкостью). (4) Расширение легких приводит к понижению внутриальвеолярного давления - и воздух из атмосферы входит в легкие. Примечание: при форсированном вдохе дополнительно сокращаются мышцы плечевого пояса (при фиксированных верхних конечностях).

Отрицательное давление в плевральной полости является следствием растяжения легких (а не причиной). Объяснение: у новорожденного объем легких полностью соответствует объему грудной полости. Грудная полость заполнена нерастянутыми легкими, поэтому большую часть дыхательного цикла давление в плевральной полости равно 0 (атмосферное) и становится немного отрицательным только на высоте вдоха (-1,5 мм рт.ст), когда легкие растягиваются и появляется ЭТЛ. В процессе роста объем грудной клетки увеличивается гораздо быстрее, чем объем легких. У взрослого человека легкие заполняют все грудную полость только потому, что они все время растянуты.Поэтому давление в плевральной полости всегда отрицательное (оно меньше атмосферного на величину ЭТЛ). Доказательством того, что легкие все время растянуты, служит пневмоторакс (поступление воздуха в плевральную полость, например, при нарушении герметичности грудной клетки). При пневмотораксе легкие спадаются до своего анатомического объема (за счет ЭТЛ), а грудная клетка немного расширяется. Значение отрицательного давления в плевральной полости: (1) увеличивает амплитуду движений диафрагмы во время дыхательного цикла (за счет отрицательного давления в плевральной полости и положительного давления в брюшной полости), (2) поддерживает открытый просвет мелких бронхиол и артериол (за счет эластической тяги альвеол, окружающих мелкую бронхиолу или артериолу), (3) способствует движению венозной крови (и лимфы) по направлению к сердцу (присасывающая роль грудной клетки), (4) имеет важное диагностическое значение (по величине отрицательного давления в плевральной полости судим о величине ЭТЛ). Измерение давления в плевральной полости: (1) прямой метод - прокол грудной стенки и введение в плевральную полость иглы, связанной с манометром; (2) непрямой метод - измерение давления с помощью зонда, введенного в пищевод (внутрипищеводное давление соответствует давлению в плевральной полости). В конце выдоха давление = -3-6 мм рт.ст (объем легкого уменьшился, ЭТЛ уменьшилась), а в конце вдоха давление = -6-9 мм рт.ст (объем легкого увеличился, ЭТЛ увеличилась).

ПОКАЗАТЕЛИ СОСТОЯНИЯ ДЫХАТЕЛЬНОГО АППАРАТА

(1) статические показатели (л, мл): (2) динамические показатели (л/мин)

легочные объемы (4 объема) (показатели вентиляции):

легочные емкости (4 емкости) МОД - минутный объем дыхания;

АВ - альвеолярная вентиляция;

МВЛ - максимальная вентиляция

(3) показатели бронхиальной проходимости (л/сек)

(объемная скорость движения воздуха):

объем форсированного выдоха (ОФВ1)

(1) дыхательный объем (ДО) - объем воздуха, который мы вдыхаем (и выдыхаем) во время одного спокойного вдоха (и выдоха) - 500 мл. Определяется методом спирометрии.

(2) резервный объем вдоха (РОвд) - объем воздуха, который мы можем вдохнуть после спокойного вдоха - 2000 мл. Определяется методом спирометрии.

(3) резервный объем выдоха (РОвыд) - объем воздуха, который мы можем выдохнуть после спокойного выдоха - 1500 мл. Определяется методом спирометрии.

(4) остаточный объем (ОО) - объем воздуха, который остается в легких после максимального выдоха - 1000 мл. Определяется методом разведения индикатора (гелий).

ЛЕГОЧНЫЕ ЕМКОСТИ (каждая емкость состоит из 2-х и более объемов)

(1) жизненная емкость легких (ЖЕЛ) - максимальный объем воздуха, который мы можем выдохнуть после максимально глубокого вдоха (ДО + РОвд + РОвыд) = 4-5 литров (значение: показатель общего физического развития). Определяется методом спирометрии.

(2) емкость вдоха - максимальный объем воздуха, который мы можем вдохнуть после спокойного выдоха (ДО + РОвд). Определяется методом спирометрии.

(3) функциональная остаточная емкость (ФОЕ) - объем воздуха, который остается в легких после спокойного выдоха (РОвыд + ОО) = 2500 мл (значение: показатель состояния эластической тяги легких. При снижении ЭТЛ этот показатель увеличивается). Определяется методом плетизмографии, разведения индикатора.

(4) общая емкость легких (ОЕЛ) - объем воздуха, который находится в легких после максимально глубокого вдоха (сумма всех 4-х объемов) = 5-6 литров. Определяется методом плетизмографии, разведения индикатора.

Минутный объем дыхания (МОД) - объем воздуха, который проходит через легкие за минуту. МОД = ДО (дыхательный объем) х ЧД (частота дыхания) = 6-8 л/мин

Альвеолярная вентиляция (АВ) - объем воздуха, который проходит через альвеолярное пространство за минуту и участвует в газообмене.

АВ = (ДО - ОМП) х ЧД, где ОМП - объем мертвого пространства (150 мл - объем дыхательных путей, в котором не происходит газообмен). Например, АВ = (500 - 150) х 12 = 4200 мл/мин

Максимальная вентиляция легких (МВЛ) - максимальный объем воздуха, который может пройти через легкие за минуту (при максимально возможной глубине и частоте дыхания). Показывает резервные возможности дыхательного аппарата. Достигает 180 л/мин. (Исследование проводится 10-15 сек).

ИССЛЕДОВАНИЕ БРОНХИАЛЬНОЙ ПРОХОДИМОСТИ

Пневмотахометрия - определение объемной скорости движения воздуха (л/сек) через датчик во время (а) форсированного вдоха и (б) форсированного выдоха. При увеличении сопротивления дыхательных путей пневмотахометрические показатели уменьшаются.

Определение объема форсированного выдоха за первую секунду (ОФВ1) - во время спирометрического исследования пациент должен сделать максимальный вдох, задержать дыхание на вдохе, а потом как можно быстрее выдохнуть. За первую секунду форсированного выдоха в норме он должен выдохнуть 70% от форсированной жизненной емкости легких. При увеличении сопротивления дыхательных путей этот показатель уменьшается.

Глава 2. Механические свойства легких и общие принципы проведения ИВЛ.

Основными характеристиками респираторной системы являются податливость (комплайнс) и сопротивление (резистанс). Величина податливости и сопротивления определяются давлением, потоком и объемом воздуха в легких. Рассмотрим эти понятия на примере объемного механического вдоха (рис. 2.1).

Для подачи заданного объема кислородно-воздушной смеси необходимо обеспечить определенный дыхательный поток. Его максимальная величина на вдохе называется пиковым инспираторным потоком, максимальная величина на выдохе - пиковым экспираторным потоком. При поступлении воздушного потока в легкие в них подается дыхательный объем и создается некоторое давление (Paw). В начале вдоха это давление максимальное, пиковое (Ppeak). Затем оно снижается. При наличии в конце вдоха паузы, во время которой нет движения воздуха в дыхательных путях, можно определить так называемое давление плато вдоха (Pplat). Отсутствие движения воздуха в дыхательной системе во время паузы вдоха приводит к уравниванию давления в трахее, бронхах, альвеолах. Измеряя величину Pplat датчиком давления, располагающимся у наружного конца интубационной трубки, можно оценить давление в альвеолах в конце вдоха (Palv). С точки зрения газообмена альвеолярное давление является очень важным параметром, поскольку отражает ту движущую силу, которая растягивает альвеолы и обеспечивает градиент давления между ними и легочными капиллярами. Кроме того, от величины Palv зависит венозный возврат к сердцу и вероятность повреждения альвеол. При выдохе происходит снижение Paw до того уровня положительного давления в конце выдоха (positive end expiratory pressure, РЕЕР), которое установлено врачом. Последняя величина называется внешним, или аппаратным РЕЕР. Кроме давления, измеренного возле проксимального конца интубационной трубки, клиническое значение имеет величина давления в нижней трети пищевода (Pes), отражающая колебания давления в плевральной полости.

Если у пациента имеется ограничение выдоха, что бывает, например, при хронической обструктивной болезни легких (ХОБЛ), то воздух может задерживаться в легких. Вследствие этого поступающие новые порции дыхательной смеси приводят к развитию перерастяжения (гиперинфляции) легких. Одним из критериев оценки гиперинфляции является величина непреднамеренного (внутреннего) РЕЕР. Необходимо учесть, что в этом случае истинный РЕЕР может существенно отличаться от внешнего. Подробнее эта проблема будет рассмотрена в разделе, посвященном проведению ИВЛ у больных с ХОБЛ.

Сопротивление дыхательных путей (R) рассчитывают как частное от деления разницы между Ppeak и РЕЕР на величину пикового потока.

R = (Ppeak - РЕЕР) : V’
где V’ - пиковый поток.

Податливость (С) определяется разницей давлений в легких во время вдоха и выдоха при введении в них определенного объема воздуха. Если в расчет принимается разница Pplat и РЕЕР, то податливость называется статической (Сstat).

Строго говоря, для того, чтобы измеряемое респиратором давление соответствовало Pplat, нужно создать достаточно длительную паузу вдоха (обычно не менее 0,5 с). За столь длительный промежуток времени можно достичь уравнивания давления в разных альвеолах. Если столь длительная пауза не выдерживается, то в расчетах используют величину Paw , примерно соответствующую Pplat. В связи с этим показатель податливости называется динамическим (Сdyn).

Величина, обратная податливости, называется эластичностью легких (E).

Величина динамической податливости больше статической и зависит не только от эластических свойств легких, но и от сопротивления дыхательных путей. Для клинической практики важно понимать, что чем меньше податливость и больше сопротивление, тем труднее ввести дыхательный объем в легкие больного. Следовательно, тем большее давление в дыхательной системе для этого нужно создать.

Однако энергия механического вдоха расходуется не только на растяжение легких, но и на преодоление эластичности окружающих структур: грудной клетки и живота, а также повязок и бандажей. На поступление воздуха в дыхательную систему влияют свойства:

1. эндотрахеальной (трахеостомической) трубки,
2. собственно легких,
3. грудной клетки.

Грудная клетка представляет собой мышечно-реберный каркас. Наиболее изменчивы характеристики этого каркаса в его нижней части, которая занята диафрагмой. Смещение диафрагмы в краниальном направлении вследствие повышения внутрибрюшного давления является одной из наиболее частых причин изменения механических свойств грудной клетки.

Поступление воздуха в легкие должно преодолеть силы эластичности. Несколько упрощая реальную ситуацию, можно выделить эластичность самих легких и эластичность грудной клетки. Соответственно раздельно рассматривают податливость легких и грудной клетки. Податливостью эндотрахеальной трубки в виду жесткости ее стенок обычно пренебрегают. Кроме того, воздух, поступающий в легкие, имеет определенную вязкость. Как всякая вязкая среда, воздушный поток преодолевает сопротивление тех структур, с которыми он контактирует. Поэтому различают сопротивление эндотрахеальной трубки и сопротивление дыхательных путей.

Раздельный учет 4 факторов - сопротивления эндотрахеальной трубки (Ret), сопротивления дыхательных путей (Raw), податливости легких (C L ) и податливости грудной клетки (CCW) - лежит в основе четырехкомпонентной модели легких. Использование этой модели полезно в клинической практике, поскольку позволяет рационально подбирать режимы ИВЛ. Влияние всех четырех компонентов приводит к формированию общего показателя - давления в дыхательной системе (Paw):

Величину Paw можно измерить с помощью имеющегося во всех респираторах датчика давления, располагающегося в контуре аппарата ИВЛ. Для оценки отдельных компонентов респираторной системы используют дополнительные датчики давления, вводимые в трахею и пищевод пациента. Раздельную оценку сопротивлений эндотрахеальной трубки и дыхательных путей проводят при сравнении показаний датчиков, располагающихся в контуре аппарата и непосредственно в трахее. Анализ изменений трахеального давления позволяет исключить влияние интубационной трубки и оценивать сопротивление только дыхательной системы (рис. 2.2).

Для определения C L и CCW используют информацию, получаемую также от двух датчиков: обычного, располагающегося у наружного конца интубационной трубки, и пищеводного, вводимого в нижнюю треть пищевода. Показания последнего соответствуют изменениям плеврального давления.
Как известно, в состоянии выдоха давление в альвеолах равняется атмосферному. В нормальной физиологии величину атмосферного давления принято рассматривать как референтную точку, т.е. принимать ее в качестве нуля. В связи с этим во время выдоха в плевральной полости давление, которое ниже атмосферного, считается отрицательным (обычно -5 см вод. ст.). Такая величина давления нужна для уравновешивания эластичности легких и грудной клетки
При вдохе динамика плеврального давления отражает разные физиологические процессы в зависимости от того, является ли вдох спонтанным или механическим. И при спонтанном вдохе, и при механическом происходит растяжение легких. В обоих случаях сила, которая движет воздух в легкие, создается за счет разницы давлений между альвеолами и окружающей средой.

При механическом вдохе давление окружающей среды, создаваемое респиратором, больше давления в альвеолах. Увеличение давления в альвеолах приводит к росту плеврального давления, которое становится положительным. Иными словами, плевральное давление отражает ту силу, с которой растягиваемые респиратором легкие расправляют грудную клетку. Динамика Paw, измеряемого возле наружного конца эндотрахеальной трубки при механическом вдохе, определяется силой, с которой респиратор растягивает суммарно легкие и грудную клетку.

Согласно законам физиологии, эластичность респираторной системы (Ers) равна сумме эластичностей легких (E L ) и грудной клетки (ECW):

Общая податливость респираторной системы (Crs) является результатом совместного влияния C L и CCW. Поскольку податливость - это величина, обратная эластичности, получаем следующую формулу:

Путем дальнейших арифметических действий можно рассчитать податливость грудной клетки:

Иная ситуация возникает при спонтанном вдохе. Градиент давления, движущий воздух в легкие, создается за счет работы мышц вдоха и увеличения грудной клетки в объеме. Отрицательное плевральное давление становится меньше, т.е. еще отрицательнее, что приводит к «засасыванию» воздуха в легкие. Иными словами, изменения плеврального давления при спонтанном вдохе отражают ту силу, с которой грудная клетка растягивает легкие. Из-за активного сокращения дыхательной мускулатуры во время спонтанного вдоха оценить отдельно податливость грудной клетки не представляется возможным. В связи с этим, во время самостоятельного вдоха величина давления, как во всей дыхательной системе, так и в плевральной полости зависит только от податливости легких (C L ).

Зачем нужны описанные физиологические характеристики практикующему реаниматологу? Они необходимы для объяснения современных подходов к проведению респираторной поддержки, которые основаны на четырех основных положениях (Artigas A. et al., 1998):

1. облегчение непереносимой больным работы дыхательной мускулатуры,
2. предупреждение повреждения легких во время ИВЛ,
3. обеспечение оксигенации,
4. поддержание вентиляции (выведения углекислоты).

Подчеркнем, что приведенная последовательность не является случайной. Приоритетными задачами являются первые две. Крайне желательно, чтобы решение остальных задач не вступало в противоречие с ними. Для облегчения непереносимой больным работы дыхательной мускулатуры необходимо создать максимальное соответствие его дыхательного паттерна и работы респиратора. С этой целью нужно подбирать режимы вентиляции, оптимизировать качество триггирования (отклика) респиратора на дыхательные попытки больного, а также использовать оценку состояния механики дыхания конкретного больного.

Для предупреждения повреждения легких во время проведения ИВЛ необходимо предотвращать избыточное повышение давления в альвеолах (баротравму легких), поступление избыточного объема воздуха в легких (волюмотравму) и повторение циклов закрытия-раскрытия альвеол (ателектотравму). Указанные принципы составляют основу лечебной доктрины, называемой «открытыми отдыхающими легкими» («open lung rest»). В многочисленных экспериментальных и клинических работах показано, что невнимание к этим факторам приводит к прогрессированию дисфункции легких и развитию не только дыхательной, но и полиорганной недостаточности из-за выброса из альвеолоцитов повреждающих медиаторов воспаления. Цепь описываемых событий имеет название биотравмы (Plцtz F. et al., 2004).

Для предупреждения баротравмы альвеолярное давление должно быть ограничено величиной 30 см вод. ст. Если у пациента нет проблем с податливостью грудной клетки, то величина давления плато в дыхательных путях соответствует альвеолярному давлению. Поэтому при проведении ИВЛ стараются не превышать давление плато более чем 30 см вод. ст. Для ограничения давления плато при снижении податливости легких приходится уменьшать вводимый дыхательный объем. Доказано, что даже для здоровых легких опасным является длительное применение дыхательных объемов 10-12 мл/кг идеальной массы тела больного и более.

Следует также учесть, что повреждающее действие на легкие оказывают повышенные концентрации кислорода (оксигенотравма). Наиболее вероятный механизм - активация перекисного окисления липидов. Кроме того, избыточное содержание кислорода приводит к низкому содержанию в альвеолах биологически инертного газа азота. Из-за отсутствия азота всасывание кислорода в кровь делает альвеолу безвоздушной, и она спадается. Возникающие при этом микроателектазы называются абсорбционными.

Указанные рекомендации не относятся к пациентам с заболеваниями и поражениями мозга и сердца, которые нуждаются не просто в нормальном, а в повышенном уровне оксигенации. Обеспечение гипероксии неизбежно приводит к использованию таких подходов к ИВЛ, которые повреждают легкие. В связи с этим приходится в каждом конкретном случае выбирать между тактикой предупреждения повреждения легких и обеспечением необходимых параметров газообмена. Обычно из-за опасений гипоксии и гиперкапнии в клинической практике величину дыхательного объема снижают чаще всего только до 7-8 мл/кг.

1. спонтанные вдохи увеличивают венозный возврат и насосную функцию здорового сердца (при левожелудочковой недостаточности наблюдается обратный эффект);
2. дополнительный объем дыхания улучшает оксигенацию артериальной крови и выведение углекислоты;
3. отсутствие борьбы с респиратором снимает избыточную работу мышц вдоха и выдоха, экономит кислород, поступающий в ограниченном количестве из-за поражения легких, и обеспечивает комфорт для больного;
4. во время спонтанного вдоха задние мышечные сегменты диафрагмы сокращаются сильнее, чем передние сухожильные, что улучшает вентиляцию дорсальных отделов легких. Поскольку при механическом вдохе сокращения диафрагмы отсутствуют, то давление органов брюшной полости приводит к преимущественному поступлению воздуха в немногочисленные вентральные альвеолы и спаданию дорсальных.

Отмеченные положительные эффекты сохранения спонтанного дыхания касаются только неглубоких вдохов. При значительной глубине спонтанного вдоха проявляются его негативные эффекты. Важнейшие из них следующие:

1. значительная нагрузка на дыхательные мышцы с нерациональным расходом кислорода;
2. пережатие полых вен перераздутыми легкими с нарушением венозного возврата;
3. значительное растяжение альвеол снаружи, со стороны плевральной полости, что в сочетании с раздуванием их респиратором изнутри приводит к повышению так называемого транспульмонального давления и повреждению легких.

Резюмируя сказанное, можно констатировать принципиальное изменение взглядов на респираторную поддержку в настоящее время. Отметим основные положения:

1. практически полный отказ от нетриггированной вентиляции с максимальным вниманием к сохранению спонтанного дыхания пациента;
2. особое внимание к предупреждению повреждения легких из-за нерационального выбора параметров ИВЛ;
3. отказ от стремления к нормализации газообмена и других показателей гомеостаза в пользу так называемых стресс-норм.

Кроме того, наметился пересмотр отношения к ИВЛ как к методике протезирования легких, которую нужно использовать по возможности реже и отказываться от нее, чем раньше, тем лучше. Отношение изменилось в пользу оценки ИВЛ как лечебного метода при заболеваниях и повреждениях легких, при кардиологических и кардиохирургических проблемах. В связи с этим показания к искусственной вентиляции легких и длительность ее проведения расширены во многих клинических ситуациях.

Отметим, что для проведения рациональной респираторной поддержки необходимо понимание не только физиологических особенностей больного, но и деталей реализации режимов ИВЛ в аппаратах различных классов и моделей. Современные респираторы предлагают врачу не альтернативные варианты проведения ИВЛ, а непрерывную гамму режимов. Цель использования разных режимов и алгоритмов ИВЛ - индивидуальный подход к конкретной клинической ситуации. В связи с этим, автор глубоко убежден, что способность реаниматолога разобраться в физиологии и патофизиологии дыхания, а также в деталях технологии респираторной поддержки является одним из маркеров его профессионализма.

Плевральная полость. Механизм вентиляции легких.


ЦИКЛ ЛЕКЦИЙ (ОСНОВНЫЕ ПОЛОЖЕНИЯ) «ФИЗИОЛОГИЯ И ПАТОЛОГИЯ СИСТЕМЫ ОРГАНОВ ВНЕШНЕГО ДЫХАНИЯ, ТРАНСПОРТА ГАЗОВ КРОВЬЮ И ТКАНЕВОГО ДЫХАНИЯ». (К РАЗДЕЛАМ «ФИЗИОЛОГИЯ» И «ПАТОФИЗИОЛОГИЯ» ДЫХАНИЯ») (ДЛЯ САМОСТОЯТЕЛЬНОЙ ВНЕАУДИТОРНОЙ РАБОТЫ СТУДЕНТОВ МЕДИЦИНСКИХ

1 ФГБОУ ВО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России»


1.1. Анатомо-физиологические особенности воздухоносных путей

Дыхание - это многокомпонентный процесс жизнеобеспечения всех внутренних органов, включающий внешнее дыхание, транспорт газов кровью, обмен газов между кровью и тканями, а также тканевое дыхание. В свою очередь внешнее дыхание включает газообмен между внешней средой и альвеолярным воздухом, а также альвеолярное дыхание - газообмен между альвеолярным воздухом и притекающей к легким кровью (рис.1).

Внешнее дыхание - процесс, регулируемый центральной и периферической вегетативной и соматической нервной системой, носит произвольный и непроизвольный характер, включает акт активного регулируемого вдоха (активную инспирацию), пассивную постинспирацию (расслабление вдыхательной мускулатуры) и активный регулируемый выдох (экспирацию). Вентиляция альвеол обеспечивается за счет чередования вдоха и выдоха. При вдохе в альвеолы поступает насыщенный кислородом воздух, а при выдохе удаляется из альвеол в окружающую среду воздух, насыщенный CO2 и бедный O2. Передвижение воздуха во время вдоха и выдоха по воздухоносным путям обусловлено попеременным расширением и уменьшением размеров грудной клетки за счет последовательного сокращения и расслабления дыхательных мышц грудной клетки (вдыхательных и выдыхательных), а также диафрагмы. Дыхательные мышцы грудной клетки включают инспираторную и экспираторную мускулатуру.

Диафрагма ограничивает снизу грудную полость, состоит из сухожильного центра и мышечных волокон.

Во время вдоха диафрагма уплощается в результате сокращения мышечных волокон, отходящих от внутренней поверхности грудной клетки, а купол диафрагмы сглаживается, открывается реберно-диафрагмальный синус. Участки легких, расположенные в этих синусах, хорошо вентилируются.

К инспираторным мышцам грудной клетки относятся наружные межреберные и внутренние межхрящевые мышцы. В момент вдоха нижележащее ребро поднимается к вышележащему, а грудная клетка поднимается.

Во время выдоха сокращаются экспираторные мышцы, к которым относятся внутренние межреберные. При их сокращении вышележащее ребро подтягивается к нижележащему, а грудная клетка опускается.

Для усиления дыхания в условиях нормы и патологии используется вспомогательная инспираторная и экспираторная мускулатура. К вспомогательным инспираторным мышцам относятся грудинно-ключично-сосцевидная мышца, а также большие и малые грудные, лестничные, зубчатые мышцы. К важнейшим вспомогательным экспираторным мышцам относятся мышцы живота.

В зависимости от того, связано ли расширение грудной клетки преимущественно с поднятием ребер или уплощением диафрагмы, различают реберный (грудной) и брюшной тип дыхания. Тип дыхания в значительной мере зависит от возраста. С возрастом подвижность грудной клетки уменьшается и начинает преобладать брюшной тип дыхания. Брюшное дыхание затрудняется в последние месяцы беременности. Принято считать, что у женщин преобладает грудной тип дыхания, а у мужчин - брюшной. Брюшное дыхание наиболее эффективно, так как при таком дыхании улучшается вентиляция легких и облегчается венозный возврат от брюшной полости к сердцу.

В условиях нормы легкие отделяются от грудной клетки плевральной полостью, находящейся между висцеральным и париетальным листками плевры и заполненной несжимаемой жидкостью (рис.2). Последняя обеспечивает скольжение мешков плевры друг относительно друга. В случаях развития плеврита и скопления жидкости в полости плевры с последующим образованием спаек, вентиляция легких резко затрудняется.

lekc_2.tif

Рис.2. Схема строения органов дыхания

В плевральной полости создается определенной давление, которое на высоте вдоха на 0,6 - 0,8 кПа ниже атмосферного, а в конце выдоха внутриплевральное давление на 0,3-0,5 кПа также ниже атмосферного. Таким образом, в плевральной полости давление постоянно отрицательное, ниже атмосферного. Поступление воздуха, крови или эксудата в плевральную полость называют, соответственно - пневмо-, гемо-, или гидроторакс. При этом поджатые легкие не следуют за сокращением дыхательной мускулатуры, либо их смещение происходит в меньшем объеме. Искусственный односторонний пневмоторакс иногда проводят с диагностической целью, чтобы уменьшить нагрузку на поражённые туберкулезом легкие.

1.2. Роль воздухоносных путей в обеспечении дыхания и недыхательных функций.

Дыхательные пути начинаются с полости носа, включая носоглотку, гортань, трахею, бронхи, бронхиолы и заканчиваются альвеолярными ходами и альвеолами. Внутренняя поверхность дыхательных путей покрыта слизистой оболочкой, которая выстлана мерцательным эпителием, содержит значительное количество желез, выделяющих слизь, а также различные виды рецепторов. Отдельные участки воздухоносных путей отличаются особенностями структуры и функции.

Касаясь роли носового дыхания, необходимо отметить его способность очищать, увлажнять и согревать воздух. При участии реснитчатого эпителия и слизи здесь задерживаются взвешенные в воздухе частицы размером до 4мкм. При носовом дыхании происходит обеззараживание воздуха за счет иммуноглобулинов классов A,G,M, секретируемых или пассивно диффундирующих в слизистую, а также при участии микро- и макрофагов, лизоцима, комплемента, интерферона, содержащихся в слизи.

Слизистая носа и носоглотки содержит значительное количество ирритантных рецепторов, механорецепторов, обонятельных рецепторов, рецепторов болевой чувствительности, являющихся окончаниями обонятельного, тройничного, лицевого, верхнегортанного нервов. С рецепторов слизистой оболочки носа формируются защитные рефлексы в виде чихания и усиленного слизеотделения, а также рефлексы, влияющие на функциональную активность центральной нервной системы, ряда внутренних органов.

С механорецепторов и хеморецепторов слизистой носа и носоглотки возникает афферентная импульсация в ретикулярную формацию ствола мозга, а затем в слюноотделительный, дыхательный, сосудодвигательный центры продолговатого мозга, в гипоталамус. При этом усиливаются неспецифические восходящие активирующие влияния и на кору головного мозга.

Возбуждение рецепторов слизистой носа и носоглотки резко усиливается при развитии воспалительного процесса в верхних дыхательных путях инфекционной или аллергической природы под влиянием медиаторов воспаления и аллергии: гистамина, кининов, лейкотриенов, причем возбуждение ирритантных рецепторов вызывает развитие тахипноэ, спазм дыхательных путей, кашлевой рефлекс, чихание, чувство першения.

Гортань - завершает верхний отдел дыхательных путей и переходит в трахею - начальную часть нижних дыхательных путей. Гортань обеспечивает дыхательную, защитную и речевую функции, в частности регулирует поступление воздуха в нижние дыхательные пути за счет сужения и расширения голосовой щели. Слизистая гортани содержит механорецепторы, ирритантные рецепторы, возбуждение которых при участии верхне- и нижегортанного нервов, языкоглоточного нерва регулирует частоту и глубину дыхательных движений. Кроме дыхательной функции, гортань выполняет защитную, голосовую и речевую функции.

В трахее и бронхах продолжаются процессы усиленного увлажнения, согревания и очищения воздуха. Здесь при участии слизи и мерцательного эпителия задерживаются более мелкие, взвешенные в воздухе частицы размером от 4 мкм до десятых долей мкм, а также происходит инактивация патогенных агентов за счет выделительного фагоцитоза, иммуноглобулинов, лизоцима, лактоферрина, интерферона.

Стенки трахеи и крупных бронхов содержат хрящевые кольца и не спадаются при дыхании, а мышечные волокна, образующие стенку бронха, регулируют просвет бронхов на фоне изменения нервных и гуморальных влияний, а также уровня локально образующихся медиаторов воспаления и аллергии.

Воздухоносные пути (ВП) легких представляют собой ряд дихотомически-делящихся трубок, представленных 23 генерациями В.П.. Первые 16 генераций включают бронхи, бронхиолы и терминальные бронхиолы, выполняющие проводящую функцию для воздуха. Последние 7 генераций состоят из дыхательных бронхов, альвеолярных ходов и альвеолярных мешочков, дающих начало альвеолам. Стенки проводящих воздухоносных бронхов состоят из 3-х основных слоев: внутренней слизистой оболочки, гладкомышечного слоя и внешнего соединительнотканного слоя, содержащего хрящ в больших бронхах. Эпителиальные клетки ВП несут на апикальной поверхности реснички, продвигающие слизь в направлении носоглотки. В свою очередь слизь образуется бокаловидными клетками. Реснитчатый эпителий и бокаловидные клетки формируют мукоцилиарный эскалатор, обеспечивающий очищение ВП (рис.3).

Диаметр просвета воздухоносных путей регулируется при участии холинергических нервных влияний; освобождение ацетилхолина приводит к сокращению гладких мышц воздухоносных путей. В то же время неадренергические, нехолинергические нейроны и нервные волокна за счет высвобождения субстанции Р обеспечивают сокращения гладких мышц воздухоносных путей, а при участии ВИП (вазоактивного интестинального пептида) возникает расслабление гладких мышц воздухоносных путей.

Важная роль в регуляции просвета воздухоносных путей отводится медиаторам воспаления, аллергии: гистамину, гепарину, серотонину, лейкотриенам, факторам активации тромбоцитов, хемотаксиса. В свою очередь эозинофилы в зоне воспаления являются источником таких медиаторов, как главный основной белок, катионный белок, лейкотриены В4,С4 и других, также оказывающих выраженное влияние на просвет воздухоносных путей.

Большинство медиаторов воспаления, вызывающих бронхоспастическое действие, реализуют биологические эффекты при участии специфических рецепторов.

Слизистая трахеи и бронхов является слабой рефлексогенной зоной, несмотря на наличие достаточного количества механо-, хемо- и ирритантных рецепторов. Значительная часть этих рецепторов относится к быстро-адаптирующимся или промежуточным, высокопороговым и, соответственно, низкочувствительным структурам, нефункционирующим в условиях нормы и возбуждающимся лишь при сверхпороговых раздражениях или под влиянием медиаторов воспаления и аллергии, а также при застойных явлениях в малом кругу кровообращения. Импульсация в этих рецепторах распространяется по чувствительным волокнам к центрам n. Vagus, а затем при участии ретикулярной формации ствола мозга к инспираторным и экспираторным бульбарным нейронам, определяя частоту и глубину дыхательных движений, а также развитие кашлевого рефлекса.

Читайте также: