Необонятельная кора эмбриона. Формирование борозд головного мозга

Обновлено: 13.05.2024

Значение, роль коры больших полушарий головного мозга человека

В статье мы рассмотрим локализацию функций, участки, анализаторы, поля, участки, области зоны коры больших полушарий головного мозга человека (мужчины, женщины). Неврологи, невропатологи, рефлексотерапевты, рефлексологи выделяют 4 основных положения, применительно к практической деятельности невропатолога, современного учения о локализации функций в коре головного мозга.

1. Очень сложная морфологическая и функциональная дифференциация коры больших полушарий головного мозга. Лобная доля больше отвечает за двигательные функции. Теменная, затылочная и височная зоны больше отвечают за чувствительные функции.

2. Динамичность и относительность локализаций функций коры головного мозга. Определенный участок коры головного мозга, обеспечивая какую-то одну функцию, в то же время в разнообразных сочетаниях с другими ее полями может участвовать в осуществлении различных корковых функций и образовывать новые кортикальные связи. Это имеет значение в процессах компенсации при таких состояниях, как поражение коры головного мозга, нарушение коры головного мозга, смерть или повреждение коры головного мозга, отмирание, незрелость коры головного мозга.

3. Формирование специальных корковых областей в процессе практической деятельности.

Функция творит центр

По Ивану Петровичу Павлову: «Функция творит центр!» В раннем детстве границы корковых центров диффузны и менее дифференцированы, и лишь по мере приобретения жизненного опыта происходит постепенная концентрация функциональных зон, в связи с чем у детей первых лет жизни слабо выражены очаговые корковые симптомы и чаще преобладает общемозговая симптоматика.

4. Существенные различия в локализации более простых и более сложных функций. Чем проще функция, тем она точнее локализована. И наоборот, наиболее сложные функции обусловлены интегративной деятельностью всего головного мозга, поэтому понятие «корковый центр» (отдел коры головного мозга, поля коры головного мозга, участки коры головного мозга, части коры головного мозга) в большинстве случаев относительное и условное. К простым корковым функциям относятся чувствительная функция, двигательная функция, зрительная функция, слуховая функция, вестибулярная функция, обонятельная функция, вкусовая функция. К сложным корковым функциям относятся речь, письмо, чтение, счет, праксис, гнозис, мышление, память.

Локализация функций и симптомов

Проводя топическую диагностику рефлексотерапевт, невролог, невропатолог, микроневропатолог, детский невролог, взрослый невролог определяет не только локализацию поражения корковых центров, но и локализацию симптомов. Простые корковые функции связаны с проекционными пластинками коры (пятой и четвертой), имеющими непосредственную связь с периферией и являющимися корковыми отделами анализаторов. Сложные корковые функции связаны с ассоциативными слоями коры (вторым и третьим). Последние слои соединены горизонтальными волокнами с другими участками коры головного мозга в пределах одного полушария и не имеют прямого выхода на периферию. Большое значение в обеспечении сложных корковых функций имеют также комиссуральные связи между полушариями, проходящими через мозолистое тело.

Простые корковые функции обычно представлены в обоих полушариях головного мозга. Сложные корковые функции чаще имеют асимметричное представительство в правом или левом полушарии головного мозга. Итак, какие бывают поля, участки, области, типы коры головного мозга, отделы, анализаторы, части коры головного мозга?

Двигательная кора головного мозга, двигательные центры головного мозга, двигательные анализатор, моторный

Главным корковым отделом двигательного анализатора, его первичным полем, является предцентральная извилина, в верхних отделах которой находится проекционная область мышц стопы, голени, бедра, в средней части - туловища и руки, в нижней трети - лица. Двигательная иннервация построена по соматотопическому принципу. На этом уровне осуществляются тонкие дифференцированные движения. Кроме того, имеются дополнительные двигательные зоны - это вторичные поля двигательного анализатора и третичные поля двигательного анализатора. Дополнительные двигательные зоны обеспечивают сложные автоматизированные двигательные акты. Например, в парацентральной дольке находятся корковые центры тазовых органов. В задних отделах верхней лобной извилины находится переднее адверсивное поле. Заднее адверсивное поле располагается на границе верхней теменной дольки и затылочной области. Задние отделы средней лобной извилины отвечают за сочетанный поворот головы и глаз в противоположную сторону. Задние отделы нижней лобной извилины осуществляет движения типа орального автоматизма - глотание, жевание, лизание.

Чувствительная кора головного мозга, чувствительные центры головного мозга, чувствительный анализатор

Главным корковым отделом поверхностных и глубоких видов чувствительности является постцентральная извилина, где также имеется соматотопическое представительство участков периферии, аналогичное вышеуказанному. К поверхностной чувствительности относятся температурная чувствительность, болевая чувствительность, тактильная чувствительность.

Стереогноз, стереогнозис

Сложные виды чувствительности локализованы в коре полушарий головного мозга на уровне верхней теменной дольки, где отсутствует соматотопика. К сложным видам чувствительности относятся стереогностическая чувствительность (стереогноз, стереогнозис), двумерно-пространственная чувствительность, чувство локализации и дискриминации. Зрительная проекционная зона (зрительная зона коры) занимает область шпорной борозды - внутренняя поверхность затылочной доли. Слуховая проекционная зона (слуховая зона коры) занимает центр верхней височной извилины и извилину Гешля. Вестибулярная проекционная зона находится рядом со слуховой. Обонятельная проекционная зона локализуется на внутренней поверхности височной доли, в извилине гиппокампа. Вкусовая проекционная зона находится рядом с последней, а также в области покрышки и островка Reili.

Теперь остановимся на локализации сложных корковых функций.

Обычно сложные корковые функции локализуются в левом полушарии головного мозга у правшей и в правом полушарии головного мозга у левшей.

Речевой анализатор, центр Вернике, центр Брока, функция речи - сенсорный центр

Функцию речи обеспечивает сенсорный центр (центр Вернике), который располагается в заднем отделе верхней височной извилины. При поражении центра Вернике наблюдается сенсорная афазия. Также функцию речи обеспечивает двигательный центр (центр Брока), который располагается в области задних отделов нижней лобной извилины. При поражении центра Брока наблюдается моторная афазия. При патологии на стыке височной и затылочной долей формируется амнестическая афазия и семантическая афазия. Речевые зоны коры головного мозга.

Лексический анализатор, центр лексии, функция чтения

Функции чтения обеспечивает лексический центр (центр лексии). Центр лексии располагается в угловой извилине.

Графический анализатор, центр графии, функция письма

Функции письма обеспечивает графический центр (центр графии). Центр графии располагается в заднем отделе средней лобной извилины.

Счетный анализатор, центр калькуляции, функция счета

Функции счета обеспечивает счетный центр (центр калькуляции). Центр калькуляции располагается на стыке теменно-затылочной области.

Праксис, праксический анализатор, центр праксиса

Праксис - это способность к выполнению целенаправленных двигательных актов. Праксис формируется в процессе жизнедеятельности человека, начиная с грудного возраста, и обеспечивается сложной функциональной системой мозга с участием корковых полей теменной доли (нижняя теменная долька) и лобной доли, особенно левого полушария у правшей. Для нормального праксиса необходимы сохранность кинестетической и кинетической основы движений, зрительно-пространственной ориентировки, процессов программирования и контроля целенаправленных действий. Поражение праксической системы на том или ином уровне проявляется таким видом патологии, как апраксия. Термин «праксис» происходит от греческого слова «praxis», которое означает «действие». Апраксия - это нарушение целенаправленного действия при отсутствии параличей мышц и сохранности составляющих его элементарных движений.

Гностический центр, центр гнозиса

В правом полушарии у правшей, в левом полушарии головного мозга у левшей представлены многие гностические функции. При поражении преимущественно правой теменной доли может возникать анозогнозия, аутопагнозия, конструктивная апраксия. С центром гнозиса также связаны музыкальный слух, ориентация в пространстве, центр смеха.

Память, мышление

Наиболее сложные корковые функции - это память и мышление. Эти функции не имеют четкой локализации.

Память, функция памяти

В реализации функции памяти участвуют различные участки. Лобные доли обеспечивают активную целенаправленную мнестическую деятельность. Задние гностические отделы коры связаны с частными формами памяти - зрительной, слуховой, тактильно-кинестической. Речевые зоны коры осуществляют процесс кодирования поступающей информации в словесные логико-грамматические системы и словесные системы. Медиобазальные отделы височной доли, в частности гиппокамп, переводят текущие впечатления в долговременную память. Ретикулярная формация обеспечивает оптимальный тонус коры, заряжая ее энергией.

Мышление, функция мышления

Функция мышления - это результат интегративной деятельности всего головного мозга, особенно лобных долей, которые участвуют в организации целенаправленной сознательной деятельности человека, мужчины, женщины. Происходят программирование, регуляция и контроль. При этом у правшей левое полушарие является основой преимущественно абстрактного словесного мышления, а правое полушарие связано главным образом с конкретным образным мышлением.

Развитие корковых функций начинается с первых месяцев жизни ребенка, достигает своего совершенства к 20 годам.

Зоны коры головного мозга

В последующих статьях мы остановимся на актуальных вопросах неврологии: зоны коры головного мозга, зоны больших полушарий, зрительная, зона коры, слуховая зона коры, моторные двигательные и чувствительные сенсорные зоны, ассоциативные, проекционные зоны, моторные и функциональные зоны, речевые зоны, первичные зоны коры головного мозга, ассоциативные, функциональные зоны, фронтальная кора, соматосенсорная зона, опухоль коры, отсутствие коры, локализация высших психических функций, проблема локализации, мозговая локализация, концепция динамической локализации функций, методы исследования, диагностики.

Кора головного мозга лечение

Особенности эмбрионального развития головного мозга

Головной мозг развивается из переднего, расширенного отдела мозговой трубки. Развитие проходит несколько стадий. У 3-х недельного эмбриона наблюдается стадия двух мозговых пузырей — переднего и заднего. Передний пузырь по темпам роста обгоняет хорду и оказывается впереди нее. Задний расположен над хордой. В возрасте 4-5 недель формируется третий мозговой пузырь. Далее первый и третий мозговые пузыри разделяются каждый на два, в результате формируется 5 пузырей. Из первого мозгового пузыря развивается парный конечный мозг (telen-cephalon), из второго — промежуточный мозг (diencephalon), из третьего — средний мозг (mesencephalon), из четвертого — задний мозг (meten-cephalon), из пятого — продолговатый мозг (myelencephalon). Одновременно с образованием 5 пузырей мозговая трубка изгибается в сагиттальном направлении. В области среднего мозга образуется изгиб в дорсальном направлении — .теменной изгиб. На границе с зачатком спинного мозга — другой изгиб идет также в дорсальном направлении — затылочный, в области заднего мозга образуется мозговой изгиб, идущий в вентральном направлении.

На четвертой неделе эмбриогенеза из стенки промежуточного мозга образуются выпячивания в виде мешков, которые в дальнейшем приобретает форму бокалов — это глазные бокалы. Они приходят в контакт с эктодермой и индуцируют в ней хрусталиковые плакоды. Глазные бокалы сохраняют связь с промежуточным мозгом в виде глазных стебельков.

В дальнейшем стебельки превращаются в зрительные нервы. Из внутреннего слоя бокала развивается сетчатка глаза с рецепторными клетками. Из наружного — сосудистая оболочка и склера. Таким образом, зрительный рецепторный аппарат является как бы вынесенным на периферию отделом мозга.

Подобное выпячивание стенки переднего мозгового пузыря дает начало обонятельному тракту и обонятельной луковице.

Гетерохронность созревания нейронных систем мозга

Последовательность созревания нейронных систем головного мозга в эмбриогенезе определяется не только закономерностями филогенеза, но, в значительной мере, обусловлена этапностью становления функциональных систем (рис. V. 1). В первую очередь, созревают те структуры, которые должны подготовить плод к рождению, т. е. к жизни в новых условиях, вне организма матери.

В созревании нейронных систем головного мозга можно выделить несколько этапов.

Первый этап. Наиболее рано созревают единичные нейроны переднего отдела среднего мозга и клетки мезенцефалического ядра тройничного (V) нерва. Волокна этих клеток раньше других прорастают в

Рис. V. 1. Реконструкция нервной системы эмбриона человека длиной 10 мм.

направлении древней коры и далее — к неокортексу. Благодаря их влиянию, неокортекс вовлекается в осуществление приспособительных процессов. Мезенцефалические нейроны участвуют в поддержании относительного постоянства внутренней среды, в первую очередь, газового состава крови и вовлечены в механизмы общей регуляции обменных процессов. Клетки мезенцефалического ядра тройничного нерва (V) связаны также с мышцами, участвующими в акте сосания и входят в функциональную систему, связанную с формированием сосательного рефлекса.

Второй этап. Под воздействием клеток, созревающих на первом этапе, развиваются нижележащие структуры ствола мозга клеток, созревающих на первом этапе. Это — отдельные группы нейронов ретикулярной формации продолговатого мозга, заднего отдела моста и нейроны двигательных ядер черепномозговых нервов. (V, VII, IX, X, XI, XII), обеспечивающие координацию трех важнейших функциональных систем: сосания, глотания и дыхания. Вся эта система нейронов отличается ускоренными темпами созревания. Они достаточно быстро обгоняют нейроны, созревающие на первом этапе, по степени зрелости.

На втором этапе проявляют активность раносозревающие нейроны вестибулярных ядер, локализированных на дне ромбовидной ямки. Вестибулярная система развивается у человека ускоренными темпами. Уже к 6-7 месяцам эмбриональной жизни она достигает степени развития, характерной для взрослого человека.

Третий этап. Созревание нейронных ансамблей гипоталамических и таламических ядер также идет гетерохронно и определяется включением их в различные функциональные системы. Например, ускоренно развиваются ядра таламуса, задействованные в системе терморегуляции.

В таламусе позднее всех созревают нейроны передних ядер, однако темп их созревания резко подскакивает к рождению. Это связано с их участием в интеграции обонятельных импульсов и импульсов других модальностей, определяющих выживание в новых условиях среды.

Четвертый этап. Созревание сначала ретикулярных нейронов, затем — остальных клеток палеокортекса, архикортекса и базальной области переднего мозга. Они участвуют в регуляции обонятельных реакций, поддержании гомеостаза и др. Древняя и старая кора, занимающие очень небольшую площадь поверхности полушария у человека, к рождению оказываются уже полностью сформированными.

Пятый этап. Созревание нейронных ансамблей гиппокампа и лимбической коры. Это происходит в конце эмбриогенеза, а развитие лимбической коры продолжается и в раннем детстве. Лимбическая система принимает участие в организации и регуляции эмоций и мотиваций. У ребенка это прежде всего пищевая и питьевая мотивации и др.

В той же последовательности, в которой созревают отделы головного мозга, происходит и миелинизация соответствующих им волоконных систем. Нейроны раносозревающих систем и структур мозга посылают свои отростки в другие участки, как правило, в оральном направлении и как бы индуцируют последующий этап развития.

Развитие неокортекса имеет свои особенности, но и оно идет по принципу гетерохронии. Так, согласно филогенетическому принципу, наиболее рано в эволюции появляется древняя кора, затем — старая, и только после этого — новая кора. В эмбриогенезе у человека новая кора закладывается раньше старой и древней коры, но последние развиваются быстрыми темпами и достигают максимальной площади и дифференцировки уже к середине эмбриогенеза. Затем они начинают смещаться на медиальную и базальную поверхность и частично редуцируются. Инсулярная область, которая занята неокортексом лишь частично, быстро начинает свое развитие и созревает уже к концу пренатального периода.

Наиболее быстро созревают те области новой коры, которые связаны с филогенетически более старыми вегетативными функциями, например, лимбическая область. Затем созревают области, формирующие так называемые проекционные поля различных сенсорных систем, куда приходят сенсорные сигналы от органов чувств. Так, затылочная область закладывается у эмбриона в 6 лунных месяцев, полное же ее созревание завершается к 7 годам жизни.

Несколько позже созревают ассоциативные поля. Самыми последними созревают наиболее филогенетически молодые и функционально самые сложные поля, которые связаны с осуществлением специфически человеческих функций высокого порядка — абстрактного мышления, членораздельной речи, гнозиса, праксиса и т. д. Таковыми являются, например, рече-двигательные поля 44 и 45. Кора лобной области закладывается у 5-месячного плода, полное созревание затягивается до 12 лет жизни. Поля 44 и 45 требуют для своего развития более длительного времени даже при высоких темпах созревания. Они продолжают рост и развитие в течение первых лет жизни, в юношеском возрасте и даже у взрослых. Количество нервных клеток при этом не нарастает, но увеличивается количество отростков и степень их разветвлений, количество шипиков на дендритах, количество синапсов, происходит миелинизация нервных волокон и сплетений. Развитию новых областей коры способствуют учебные воспитательные и образовательные программы, учитывающие особенности функциональной организации мозга ребенка.

В результате неравномерного роста участков коры в процессе онтогенеза (как пре-, так и постнатального), в одних областях наблюдается как бы оттеснение определенных отделов в глубь борозд за счет наплыва над ними соседних, функционально более важных. Примером этого является постепенное погружение островка в глубь сильвиевой щели за счет мощного разрастания соседних отделов коры, развивающихся с появлением и совершенствованием членораздельной речи ребенка — лобной и височной покрышки — соответственно рече-двигательный и рече-слуховой центры. Восходящая и горизонтальная передние ветви сильвиевой щели образуются из наплыва триангулярной извилины и развиваются у человека на самых поздних стадиях пренатального периода, но это может происходить и постнатально, довольно в зрелом возрасте.

В других областях неравномерность разрастания коры проявляется в закономерностях обратного порядка: глубокая борозда как бы разворачивается, и на поверхность выходят новые отделы коры, ранее скрытые в глубине. Именно так на поздних стадиях пренатального онтогенеза исчезает поперечно затылочная борозда, а на поверхность выходят теменно затылочные извилины — корковые отделы, связанные с осуществлением более сложных, зрительногностических функций; проекционные же зрительные поля отодвигаются на медиальную поверхность полушария.

К моменту рождения ребенка разные отделы его мозга развиты неодинаково. Более дифференцированы структуры спинного мозга, ретикулярная формация и некоторые ядра продолговатого мозга (ядра тройничного, блуждающего, подъязычного нервов, вестибулярные ядра), среднего мозга (красное ядро, черная субстанция), отдельные ядра гипоталамуса и лимбической системы. Относительно далеки от окончательного созревания нейронные комплексы филогенетически более молодых областей коры — височной, нижнетеменной, лобной, а также стриопал-лидарной системы, зрительных бугров, многих ядер гипоталамуса и мозжечка.

В слуховой системе к рождению формируется слуховой аппарат, способный воспринимать раздражения.

Наряду с обонятельным, слуховой аппарат является ведущим уже с первых месяцев жизни. Центральные же слуховые пути и корковые зоны слуха созревают позднее.

К моменту рождения полностью созревает аппарат, который обеспечивает сосательный рефлекс. Он образован ветвями тройничного (V пара), лицевого (VII пара), язычно-глоточного (IX пара) и блуждающего (X пара) нервов. Все волокна к рождению миелинизированы.

Зрительный аппарат к моменту рождения развивается частично. Зрительные центральные пути к рождению миелинизированы, периферические же (зрительный нерв) миелинизируются после рождения. Способность видеть окружающий мир — это результат научения. Он определяется условно-рефлекторным взаимодействием зрения и осязания. Руки — первый объект собственного тела, который попадает в поле зрения ребенка. Интересно, что такое положение руки, которое позволяет глазу видеть ее, формируется задолго до рождения, у эмбриона 6-7 недель (см. рис. VIII. 1).

В результате миелинизации зрительного, вестибулярного и слухового нервов у 3-месячного ребенка отмечается точная установка головы и глаз к источнику света и звука. Ребенок 6 месяцев начинает манипулировать предметами под контролем зрения.

Последовательно созревают и структуры мозга, обеспечивающие совершенствование двигательных реакций. На 6-7-й неделе у эмбриона созревает красное ядро среднего мозга, играющего важную роль в организации мышечного тонуса и в осуществлении установочных рефлексов при согласовании позы в соответствии с поворотом туловища, рук, головы. К 6-7 месяцам пренатальной жизни созревают высшие подкорковые двигательные ядра — полосатые тела. К ним переходит роль регулятора тонуса при разных положениях и непроизвольных движениях.

Движения новорожденного неточны, недифференцированы. Они обеспечиваются влияниями, идущими от полосатых тел. В первые годы жизни ребенка от коры прорастают волокна к полосатым телам, и деятельность полосатых тел начинает регулироваться корой. Движения становятся более точными, дифференцированными .

Таким образом, экстрапирамидная система становится под контроль пирамидной. Процесс миелинизации центральных и периферических путей функциональной системы движения наиболее интенсивно происходит до 2 лет. В этот период ребенок начинает ходить.

Возраст от рождения до 2 лет — это особый период, в течение которого ребенок овладевает также уникальной способностью к членораздельной речи. Развитие речи ребенка происходит только при непосредственном общении с окружающими людьми, о процессе обучения. Аппарат, регулирующий речь, включает в себя сложную иннервацию различных органов головы, гортани, губ, языка, миелинирующиеся проводящие пути в ЦНС, а также сформировавшийся специфически человеческий комплекс речевых полей коры 3 центров — рече-двигательного, рече-слухового, рече-зрительного, объединенных системой пучков ассоциативных волокон в единую морфофункциональную систему речи. Речь человека — это специфически человеческая форма высшей нервной деятельности.

Масса мозга: возрастная, индивидуальная и половая изменчивость

Масса мозга в эмбриогенезе изменяется неравномерно. У 2-месячного плода она равна ~ 3 г. За период до 3 месяцев масса мозга увеличивается в ~ 6 раз и составляет 17 г, к 6 лунным месяцам — еще в 8 раз: -130 г. У новорожденного масса мозга достигает: 370 г — у мальчиков и 360 г — у девочек. К 9 месяцам происходит ее удвоение: 400 г. К 3 годам масса мозга увеличивается втрое. К 7 годам она достигает 1260 г — у мальчиков и 1190 г — у девочек. Максимальная масса мозга достигается в 3-м десятилетии жизни. В старших возрастах она снижается.

Масса мозга взрослого мужчины — 1150-1700 г. На протяжении всей жизни масса мозга мужчин выше, чем у женщин. Масса мозга обладает заметной индивидуальной вариабельностью, но не может служить показателем уровня развития умственных способностей человека. Известно, например, что у И.С. Тургенева масса мозга была равна 2012 г, Кювье — 1829, Байрона — 1807, Шиллера — 1785, Бехтерева — 1720, И.П. Павлова — 1653, Д.И. Менделеева — 1571, А. Франса — 1017 г.

Для оценки степени развития мозга был введен «индекс церебрализации» (степень развития мозга при исключенном влиянии массы тела). По этому индексу человек резко отличается от животных. Весьма существенно, что на протяжении онтогенеза у человека можно выделить особый период в развитии, который отличается максимальным «индексом церебрализации». Этот период соответствует периоду раннего детства, от 1 года до 4-х лет. После этого периода индекс снижается. Изменения индекса церебрализации подтверждается нейрогистологическими данными. Так, например, количество синапсов на единице площади теменной коры после рождения резко увеличивается только до 1 года, затем несколько уменьшается до 4-х лет и резко падает после 10 лет жизни ребенка. Это свидетельствует о том, что именно период раннего детства является временем огромного количества возможностей, заложенных в нервной ткани мозга. От их реализации во многом зависит дальнейшее развитие умственных способностей человека.

В заключение глав о развитии мозга человека следует еще раз подчеркнуть, что важнейшей специфически человеческой особенностью является уникальная гетерохрония закладки неокортекса, при которой развитие и окончательное созревание структур мозга, связанных с осуществлением функций высшего порядка, совершаются в течение достаточно длительного времени после рождения. Возможно, это и явилось тем величайшим ароморфозом, который определил выделение человеческой ветви в процессе антропогенеза, так как «ввел» процесс научения и воспитания в формирование человеческой личности.

В этот день:

Дни рождения 1928 Родился Владимир Иванович Матющенко — доктор исторических наук, специалист по археологии Западной Сибири от палеолита до эпохи средневековья. Исследователь таких известных памятников как Ростовка, Сидоровка, Еловский могильник, Самусь.

Развитие нервной системы


Уже не первый день голубым пламенем горит дискуссия о том, “происходит ли в мозге взрослого порядочного человека нейрогенез?”. Так, в исследовании, опубликованном в Nature, заявляется, что, вопреки данным множества научных открытий последних 20 лет, в мозге взрослого человека не образуются новые нейроны (об этом подробно уже написал Медач). Если это действительно так, то мечты о том, что нейрогенез поможет в лечении заболеваний мозга, останутся несбыточными. Однако если с нейрогенезом всё пока неоднозначно, то с развитием нервной системы всё более-менее понятно, к тому же имеет важное клиничсекое значение, в т.ч. для психиатрии. По этому поводу у нас есть хороший материал на данную тему.

Онтогенез делится на пренатальный и постнатальный периоды. Нервная система начинает закладываться уже со второй недели пренатального периода. Из внешнего зародышевого листка - эктодермы - формируется утолщение - первичная полоска. Под ней, между эктодермой и энтодермой мигрирует тяж клеток и образует нотохорд, который служит временным скелетом для зародыша. Эктодерма, окружающая нотохорд, утолщается и формирует нервную пластинку. Далее, клетки нервной пластинки делятся, образуя нервную бороздку и нервные валики. Со временем валики смыкаются над бороздкой, образуя нервную трубку - это процесс нейруляции.

Одновременно происходит погружение нервной трубки вовнутрь зародыша и формирование и нервных гребней по бокам вдоль нее. На головном конце нервной трубки образуются три первичных мозговых пузыря, из которых впоследствии формируется головной мозг, на каудальном же конце нервная трубка соединяется со спинным мозгом. Нервный гребень в последствии дает начало образованию периферической нервной системе. Ткани, образующие нервную бороздку, и, в последствии, нервную трубку, состоят из нейробластов и спонгиобластов, из первых образуются нейроны, из вторых — клетки глии.


На четвертой неделе беременности передний и задний первичные пузыри перешнуровываются, образуя в целом уже пять пузырей. Из заднего образуется продолговатый мозг, из четвертого — варолиев мост и мозжечок, из третьего - средний мозг, из второго — зрительные бугры, гипоталамическая область, паллидум (бледный шар), из переднего - полушария головного мозга и неостриатум (полосатое тело).

По завершении нейруляции часть клеток нервного гребня мигрируют в брюшную полость, формируя вегетативные узлы и мозговое вещество надпочечников. Другие клетки образуют ганглиозную пластинку, делящуюся на ганглиозные валики. Они дают начало спинальным ганглиям, периферическим ганглионарным нейронам симпатической нервной системы, шванновским клеткам, а также клеткам, образующим внутренние листки оболочек мозга. Клетки ганглиозных валиков дифференцируются сначала в биполярные, а затем в псевдоуниполярные чувствительные нервные клетки, центральный отросток которых уходит в ЦНС, а периферический — к рецепторам других тканей и органов, образуя афферентную часть периферической соматической нервной системы.


С пятого месяца пренатального развития начинается миелинизация нейронов, которая завершается в 5-7 лет.

Эмбриогенез головного мозга

Вскоре после формирования трех первичных пузырей начинают развиваться глаза.

В передней (ростральной) части мозговой трубки образуются два первичных мозговых пузыря - архэнцефалон и дейтерэнцефалон. В начале четвертой недели у зародыша дейтерэнцефалон делится на средний (mesencephalon) и ромбовидный (rhombencephalon) пузыри, а архэнцефалон превращается на этой (трехпузырной) стадии в передний мозговой пузырь (prosencephalon). В нижней части переднего мозга отрастают обонятельные лопасти, дающие начало обонятельному эпителию, луковицам и трактам. Из дорзолатеральных стенок образуется сетчатка, зрительные нервы и тракты.

На шестой неделе эмбрионального развития передний и ромбовидный пузыри делятся каждый на два.

Передний пузырь — конечный мозг — разделяется продольной щелью на два полушария, так же разделяется и полость, образуя желудочки. Из-за неравномерного разрастания мозгового вещества образуются извилины. Каждое полушарие делится на четыре доли, желудочки делятся также на 4 части: центральный отдел и три рога желудочка. Серое вещество, распложенное на периферии, образует кору полушарий, а в основании полушарий - подкорковые ядра.

1. olfactory 2. optic 3. oculomotor 4. trochlear 5. trigeminal sensory 6. trigeminal motor 7. abducens 8. facial 9. vestibulocochlear 10. glossopharyngeal 11. vagus 12. cranial accessory 13. spinal accessory 14. hypoglossal 15. cervical I, II, III and IV

Задняя часть переднего пузыря является теперь промежуточным мозгом. Боковые стенки его преобразуются в зоительные бугры - таламус. В вентральной бласти (гипоталамус) образуется выпячивание - воронка, из ее нижнего конца происходит нейрогипофиз.

Третий мозговой пузырь превращается в средний мозг. Его полость превращается в Сильвиев водопровод, который соединяет III и IV желудочки. Из дорзальной стенки развивается четверохолмие, из вентральной — ножки среднего мозга.

Ромбовидный мозг делится на задний и добавочный. Из заднего формируется мозжечок, а из добавочного - продолговатый мозг. Полость превращается в IV желудочек, который сообщается с Сильвиевым водопроводом и с центральным каналом спинного мозга.

Из клеток, расположенных в боковых частях мозговой трубки, образуется спинной мозг. Развивается он быстро и у трехмесячного зародыша почти сформирован. Полость мозговой трубки превращается в канал спинного мозга. Проходящая по боковым стенкам спинного мозга и стволового отдела головного мозга парная пограничная борозда (sulcus limitons) делит мозговую трубку на основную (вентральную) и крыловидную (дорзальную) пластинки. Из основной пластинки формируются моторные структуры (передние рога спинного мозга, двигательные ядра черепно-мозговых нервов). Над пограничной бороздой из крыловидной пластинки развиваются сенсорные структуры (задние рога спинного мозга, сенсорные ядра ствола мозга), в пределах самой пограничной борозды — центры вегетативной нервной системы.

Весь передний мозг развивается из крыловидной пластинки, поэтому в нем есть только сенсорные структуры.

После рождения ребенка начинается постнатальный онтогенез нервной системы. Головной мозг новорожденного весит 300—400 г. После рождения прекращается образование новых нейронов. К восьмому месяцу после рождения вес мозга удваивается, а к 4—5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

  1. Анатомия человека учебное пособие Часть II. Южноукраинский национальный педагогический университет им. К.Д. Ушинского
  2. Воронова Н. В., Климова Н. М., Менджерицкий А. М. = Анатомия центральной нервной системы: Уч. пос. д. вуз. — М.: 2005. — 128 с
  3. Сепп Е.К. История развития нервной системы позвоночных. — М.: Медгиз, 1958.
  4. Кондрашев А.В., О.А. Каплунова. Анатомия нервной системы. М., 2010.
  5. В.В. Жуков, Е.В. Пономарева. Анатомия нервной системы: Учебное пособие / Калинингр. ун-т. - Калининград, 1998. - 68 с.
Дорогой читатель, в благодарность ты можешь материально поддержать наш проект или конкретно автора данной статьи, написав его фамилию в сопроводительном письме денежного перевода. Или можно просто щёлкнуть по рекламе в любом месте сайта 🙂
Такая поддержка являются пока единственным способом развития нашего проекта.

Сбербанк - 5469 5500 1827 1533 ЯндексДеньги - 410011063875586 Сбербанк - 5469 5500 1827 1533 ЯндексДеньги - 410011063875586 Сбербанк - 5469 5500 1827 1533 ЯндексДеньги - 410011063875586

Структурное и функциональное развитие мозга


Период от рождения и до 2 лет является очень важным возрастом, во время которого устанавливаются поведенческие паттерны и когнитивные возможности ребёнка. В это время увеличиваются в размерах корковые нейроны, с большой скоростью растёт число синапсов, во много раз возрастает количество олигодендроглиоцитов. Вместе с этим, в это же время возможно проявление «индикаторов» риска для развития таких психических расстройств, как аутизм и шизофрения. Не смотря на всё важность данного периода в онтогенезе, мы мало, что знаем о нём.

В марте 2018 года в журнале Nature была опубликована статья американских исследователей John H. Gilmore, Rebecca C. Knickmeyer, Wei Gao о развитии головного мозга у детей в период с рождения и до 2 лет, в которой они при помощи анализа описательных исследований проследили его структурные и функциональные изменения, их роль в развитии психических расстройств, а также попытались установить возможные признаки будущих отклонений в нервно-психической сфере.

Структурное развитие головного мозга

Все наши знания о строении головного мозга базируются на множестве посмертных исследований, которые в большинстве случаев ограничены поперечным дизайном. Согласно данным работам, объём головного мозга ребёнка в возрасте 2 - 3 недель составляет около 35% от объёма головного мозга взрослого. К концу второго года жизни данная цифра увеличивается до 80%. После этого рост головного мозга становится более равномерным.


Нейроонтогенез человека на клеточном уровне

Сразу же после рождения значительно увеличиваются объёмы серого и белого веществ. Но, в отличие от белого, которое растёт постепенно и практически до 30 лет, серое вещество увеличивается быстрее и замедляет свой рост уже к подростковому возрасту.

Корковый слой достигает пика своего роста к 1 - 2 годам, а затем его рост прекращается. Особенно быстро растут извилина Гешля, Роландова борозда, передняя центральная извилина. Площадь поверхности мозга расширяется вплоть до 8 - 12 лет. Её рост также гетерогенен по областям: кора латеральной лобной, латеральной теменной и затылочной долей мозга развиваются быстрее, чем орбитальная часть лобной доли и центральная доля. В целом рисунок извилин головного мозга, примерно, одинаков как у новорожденных, так и у взрослых.


Структурное развитие мозга в раннем детстве: созревание миелина

Мозолистое тело, нижний и верхний продольные пучки есть у детей уже при рождении. Это говорит о том, что большая часть «проводящего» мозга формируется ещё в пренатальный период.

С рождения начинается миелинизация нервных волокон, распространяясь с мозжечка, моста и внутренней капсулы и продолжаясь от валика мозолистого тела, зрительных путей до затылочных, теменных долей и передней части лобной и височной долей.


Оценочные траектории структурных параметров головного мозга в течение развитии. FA - фракционная анизотропия

Нервные сети

Не меньший интерес представляет развитие нервных сетей, так как их структурные и функциональные нарушения ведут к различным нервно-психическим заболеваниям. Согласно множеству исследований, нервные центры появляются ещё до рождения. Это показано путём проведения МРТ недоношенным детям в сравнении с обследованиями здоровых детей. Первыми появляются сенсомоторные, зрительные и слуховые центры. Они располагаются в тех же зонах мозга, что и у взрослых.

Языковой центр у взрослых располагается более латерально и окружён нижней лобной и верхней височной извилинами. Иерархия областей головного мозга также закладывается с рождения.

Влияние пола, наследственности и социальной среды

В настоящее время имеются исследования, указывающие на то, что разница в структуре и функциональной активности головного мозга, зависящая от пола, имеется с рождения. Например, при рождении мозг мужчин на 6% больше, чем у женщин. Медиальная часть височной доли коры головного мозга и Роландова борозда также больше у мужчин, в то время как у женщин преобладают моторные и зрительный центры. Мозг мужчин увеличивается более быстро, чем у женщин. После двухлетнего возраста процесс гирификации более выражен у мужчин (но не в период от 0 до года). Нервные волокна некоторых мозговых структур быстрее подвергаются миелинизации у женщин, чем у мужчин (например, мозолистое тело). В раннем возрасте нервные сети примерно одинаковы у обоих полов. Но затем в процессе развития связи между амигдалой и средней височной извилиной, постцентральной извилиной и гиппокампом сильнее у женщин. У мужчин в свою очередь преобладают связи между амигдалой и зонами, ответственными за страх. Все эти различия способствуют последующей дифференциации в выработке гормонов, в поведенческих паттернах.

Изучая головной мозг со стороны его структурных особенностей в зависимости от пола, мы можем приблизится к пониманию половых особенностей психических расстройтв. Как и пол, наследственность также играет роль в общем объёме мозговой ткани, развитии корковых структур, распределении серого и белого веществ. Некоторые исследования отмечают генетические влияния на структуру и функциональные особенности головного мозга. Особенно обращают на себя внимания гены, контролирующие процесс транскрипции, регуляторы хроматина, РНК-связывающий белок.

Есть исследования, доказывающие, что социо-экономические факторы играют не последнюю роль в структурном развитии головного мозга. Мозг детей, чьи семьи имеют небольшой доход, подвергающихся родительской депривации, имеет меньший объём серого вещества в коре, гиппокампе, амигдале. При этом различий в белом веществе не обнаруживается. С возрастом влияние социо-экономических факторов становится ещё заметнее.

Также обнаружено влияние стресса, депрессии и тревоги матери во время беременности на последующее развитие мозга её ребёнка. В частности, повышенный уровень кортизола у матери коррелирует с большим размером амигдалы у семилетних девочек.

Депрессия матери, вероятно, приводит к уменьшению коркового слоя у ребёнка. У детей, чьи матери испытывали тревогу во время беременности, в период с рождения до полугода рост гиппокампа происходит медленнее. Существуют исследования, подтверждающие влияние алкоголя и наркотических веществ на развитие головного мозга. Так, приём кокаина во время беременности ведёт к нарушению связи между амигдалой и срединной префронтальной корой, между таламусом и фронтальной корой.

Предикторы риска нервно-психических заболеваний

Некоторые исследования ещё в раннем детстве обнаруживают нарушения развития головного мозга, являющиеся предикторами развития нервно-психических заболеваний,. Например, изменения в объёме серого и белого веществ ведёт к отставанию в росте всех структур головного мозга.

В настоящее время есть исследования, демонстрирующие, что у новорождённых мальчиков, имеющих родственников, страдающих шизофренией, головной мозг содержит больше серого вещества по сравнению с контрольной группой. У детей с риском развития аутизма до шести месяцев проявление фракционной анизотропии на МРТ выше, чем в норме; после 6 месяцев данный показатель снижается, и к году достигает меньшего уровня, чем в популяции.

Сильная связь между амигдалой, передней инсулой и вентральным стриатумом, возможно, является предиктором развития тревожных расстройств. Существует исследование, показавшее небольшое, но тем не менее статистически значимую зависимость между миелинизацией нервных волокон в лобной и височной долях и речевым развитием в возрасте от 3 месяцев до 4 лет, а также между общей миелинизацией головного мозга и уровнем когнитивного развития в этот же возрастной период.

Тенденции

Описательные исследования показали нам, что головной мозг с момента рождения до года претерпевает множество изменений: быстрый рост серого вещества, миелинизация, развитие мозговых структур, гирификация. После двух лет процесс развития замедляется.

Благодаря описательным исследованиям нам удалось проследить влияние наследственности, генных факторов, социальной среды, индивидуальных особенностей на развитие мозга, удалось обнаружить предикторы риска нервно-психических расстройств. Возможно, подобные исследования дадут нам в будущем возможность обнаруживать биомаркёры этих заболеваний задолго до того, как они проявятся клинически. Это даст нам возможность более мягко вмешаться в развитие головного мозга, что в последующем приведёт к более благоприятным исходам нервно-психических заболеваний.

Подготовила : Вирт К.О.

Источники : Gilmore J.H. et al. Imaging structural and functional brain development in early childhood. Nat Rev Neurosci. 2018 Feb 16;19(3):123-137. doi: 10.1038/nrn.2018.1.

Дорогой читатель, в благодарность ты можешь материально поддержать наш проект или конкретно автора данной статьи, написав его фамилию в сопроводительном письме денежного перевода.

Аномалии развития головного мозга ( Пороки развития головного мозга )

Аномалии развития головного мозга — это результат происходящих во внутриутробном периоде нарушений формирования отдельных церебральных структур или головного мозга в целом. Зачастую имеют неспецифическую клиническую симптоматику: преимущественно эпилептический синдром, задержку психического и умственного развития. Тяжесть клиники напрямую коррелирует со степенью поражения головного мозга. Диагностируются антенатально при проведении акушерского УЗИ, после рождения — при помощи ЭЭГ, нейросонографии и МРТ головного мозга. Лечение симптоматическое: противоэпилептическое, дегидратационное, метаболическое, психокоррегирующее.

МКБ-10

Аномалии развития головного мозга

Общие сведения

Причины

Наиболее весомой причиной сбоев внутриутробного развития является влияние на организм беременной и на плод, различных вредоносных факторов, обладающих тератогенным действием. Возникновение аномалии в результате моногенного наследования встречается лишь в 1% случаев. Наиболее влиятельной причиной пороков головного мозга считается экзогенный фактор. Тератогенным эффектом обладают многие активные химические соединения, радиоактивное загрязнение, отдельные биологические факторы. Немаловажное значение здесь имеет проблема загрязнения среды обитания людей, обуславливающая поступление в организм беременной токсических химических веществ.

Различные эмбриотоксические воздействия могут быть связаны с образом жизни самой беременной: например, с курением, алкоголизмом, наркоманией. Дисметаболические нарушения у беременной, такие как сахарный диабет, гипертиреоз и пр., могут также стать причиной церебральных аномалий плода. Тератогенным действием обладают и многие медикаменты, которые может принимать женщина в ранние сроки беременность, не подозревая о происходящих в ее организме процессах. Мощный тератогенный эффект оказывают инфекции, перенесенные беременной, или внутриутробные инфекции плода. Наиболее опасны цитомегалия, листериоз, краснуха, токсоплазмоз.

Патогенез

Дифференцировка нейробластов (зародышевых нервных клеток) приводит к образованию нейронов, формирующих серое вещество, и глиальных клеток, составляющих белое вещество. Серое вещество отвечает за высшие процессы нервной деятельности. В белом веществе проходят различные проводящие пути, связывающие церебральные структуры в единый функционирующий механизм. Рожденный в срок новорожденный имеет такое же число нейронов, как и взрослый человек. Но развитие его мозга продолжается, особенно интенсивно в первые 3 мес. жизни. Происходит увеличение глиальных клеток, разветвление нейрональных отростков и их миелинизация.

Сбои могут произойти на различных этапах формирования головного мозга. Если они возникают в первые 6 мес. беременности, то способны приводить к снижению числа сформированных нейронов, различным нарушениям в дифференцировке, гипоплазии различных отделов мозга. В более поздние сроки может возникать поражение и гибель нормально сформировавшегося церебрального вещества.

Виды аномалий мозга

Анэнцефалия — отсутствие головного мозга и акрания (отсутствие костей черепа). Место головного мозга занято соединительнотканными разрастаниями и кистозными полостями. Может быть покрыто кожей или обнажено. Патология несовместима с жизнью.

Энцефалоцеле — пролабирование церебральных тканей и оболочек через дефект костей черепа, обусловленный его незаращением. Как правило, формируется по средней линии, но бывает и асимметричным. Небольшое энцефалоцеле может имитировать кефалогематому. В таких случаях определить диагноз помогает рентгенография черепа. Прогноз зависит от размеров и содержимого энцефалоцеле. При небольших размерах выпячивания и наличии в его полости эктопированной нервной ткани эффективно хирургическое удаление энцефалоцеле.

Микроцефалия — уменьшение объема и массы головного мозга, обусловленное задержкой его развития. Встречается с частотой 1 случай на 5 тыс. новорожденных. Сопровождается уменьшенной окружностью головы и диспропорциональным соотношением лицевого/мозгового черепа с преобладанием первого. На долю микроцефалии приходится около 11% всех случаев олигофрении. При выраженной микроцефалии возможна идиотия. Зачастую наблюдается не только ЗПР, но и отставание в физическом развитии.

Макроцефалия — увеличение объема головного мозга и его массы. Гораздо менее распространена, чем микроцефалия. Макроцефалия обычно сочетается с нарушениями архитектоники мозга, очаговой гетеротопией белого вещества. Основное клиническое проявление — умственная отсталость. Может наблюдаться судорожный синдром. Встречается частичная макроцефалия с увеличением лишь одного из полушарий. Как правило, она сопровождается асимметрией мозгового отдела черепа.

Кистозная церебральная дисплазия — характеризуется множественными кистозными полостями головного мозга, обычно соединенными с желудочковой системой. Кисты могут иметь различный размер. Иногда локализуются только в одном полушарии. Множественные кисты головного мозга проявляются эпилепсией, устойчивой к антиконвульсантной терапии. Единичные кисты в зависимости от размера могут иметь субклиническое течение или сопровождаться внутричерепной гипертензией; зачастую отмечается их постепенное рассасывание.

Голопрозэнцефалия — отсутствие разделения полушарий, в результате чего они представлены единой полусферой. Боковые желудочки сформированы в единую полость. Сопровождается грубыми дисплазиями лицевого черепа и соматическими пороками. Отмечается мертворождение или гибель в первые сутки.

Агирия (гладкий мозг, лиссэнцефалия) — отставание развития извилин и тяжелое нарушение архитектоники коры. Клинически проявляется выраженным расстройством психического и моторного развития, парезами и различными формами судорог (в т. ч. синдромом Веста и синдромом Леннокса-Гасто). Обычно заканчивается летальным исходом на первом году жизни.

Пахигирия — укрупнение основных извилин при отсутствии третичных и вторичных. Сопровождается укорочением и выпрямлением борозд, нарушением архитектоники церебральной коры.

Микрополигирия — поверхность коры мозга представлена множеством мелких извилин. Кора имеет до 4-х слоев, тогда как в норме кора насчитывает 6 слоев. Может быть локальной или диффузной. Последняя, полимикрогирия, характеризуется плегией мимических, жевательных и глоточных мышц, эпилепсией с дебютом на 1-ом году жизни, олигофренией.

Гипоплазия/аплазия мозолистого тела. Часто встречается в виде синдрома Айкарди, описанного только у девочек. Характерны миоклонические пароксизмы и сгибательные спазмы, врожденные офтальмические пороки (колобомы, эктазия склеры, микрофтальм), множественные хориоретинальные дистрофические очаги, обнаруживаемые при офтальмоскопии.

Фокальная корковая дисплазия (ФКД) — наличие в коре головного мозга патологических участков с гигантскими нейронами и аномальными астроцитами. Излюбленное расположение — височные и лобные зоны мозга. Отличительной особенностью эпиприступов при ФКД является наличие кратковременных сложных пароксизмов с быстрой генерализацией, сопровождающихся в своей начальной фазе демонстративными двигательными феноменами в виде жестов, топтания на одном месте и т. п.

Гетеротопии — скопления нейронов, на этапе нейронной миграции задержавшихся на пути своего следования к коре. Гетеротопионы могут быть единичными и множественными, иметь узловую и ленточную форму. Их главное отличие от туберозного склероза — отсутствие способности накапливать контраст. Эти аномалии развития головного мозга проявляются эписиндромом и олигофренией, выраженность которых прямо коррелирует с числом и размером гетеротопионов. При одиночной гетеротопии эпиприступы, как правило, дебютируют после 10-летнего возраста.

Диагностика

Тяжелые аномалии развития головного мозга зачастую могут быть диагностированы при визуальном осмотре. В остальных случаях заподозрить церебральную аномалию позволяет ЗПР, гипотония мышц в неонатальном периоде, возникновение судорожного синдрома у детей первого года жизни. Исключить травматический или гипоксический характер поражения головного мозга можно при отсутствии в анамнезе данных о родовой травме новорожденного, гипоксии плода или асфиксии новорожденного. Пренатальная диагностика пороков развития плода осуществляется путем скринингового УЗИ при беременности. УЗИ в I триместре беременности позволяет предупредить рождение ребенка с тяжелой церебральной аномалией.

Одним из методов выявления пороков головного мозга у грудничков является нейросонография через родничок. Намного более точные данные у детей любого возраста и у взрослых получают при помощи МРТ головного мозга. МРТ позволяет определить характер и локализацию аномалии, размеры кист, гетеротопий и других аномальных участков, провести дифференциальную диагностику с гипоксическими, травматическими, опухолевыми, инфекционными поражениями мозга. Диагностика судорожного синдрома и подбор антиконвульсантной терапии осуществляется при помощи ЭЭГ, а также пролонгированного ЭЭГ-видеомониторинга. При наличии семейных случаев церебральных аномалий может быть полезна консультация генетика с проведением генеалогического исследования и ДНК-анализа. С целью выявления сочетанных аномалий проводится обследование соматических органов: УЗИ сердца, УЗИ брюшной полости, рентгенография органов грудной полости, УЗИ почек и пр.

Лечение аномалий мозга

Терапия пороков развития головного мозга преимущественно симптоматическая, осуществляется детским неврологом, неонатологом, педиатром, эпилептологом. При наличии судорожного синдрома проводится антиконвульсантная терапия (карбамазепин, леветирацетам, вальпроаты, нитразепам, ламотриджин и др.). Поскольку эпилепсия у детей, сопровождающая аномалии развития головного мозга, обычно резистентна к противосудорожной монотерапии, назначают комбинацию из 2 препаратов (например, леветирацетам с ламотриджином). При гидроцефалии осуществляют дегидратационную терапию, по показаниям прибегают к шунтирующим операциям. С целью улучшения метаболизма нормально функционирующих мозговых тканей, в какой-то степени компенсирующих имеющийся врожденный дефект, возможно проведение курсового нейрометаболического лечения с назначением глицина, витаминов гр. В и пр. Ноотропные препараты используются в лечении только при отсутствии эписиндрома.

При умеренных и относительно легких церебральных аномалиях рекомендована нейропсихологическая коррекция, занятия ребенка с психологом, комплексное психологическое сопровождение ребенка, детская арт-терапия, обучение детей старшего возраста в специализированных школах. Указанные методики помогают привить навыки самообслуживания, уменьшить степень выраженности олигофрении и по возможности социально адаптировать детей с церебральными пороками.

Прогноз и профилактика

Прогноз во многом определяется тяжестью церебральной аномалии. Неблагоприятным симптомом выступает ранее начало эпилепсии и ее резистентность к осуществляемой терапии. Осложняет прогноз наличие сочетанной врожденной соматической патологии. Эффективной мерой профилактики служит исключение эмбриотоксических и тератогенных влияний на женщину в период беременности. При планировании беременности будущим родителям следует избавиться от вредных привычек, пройти генетическое консультирование, обследование на наличие хронических инфекций.

Читайте также: