Мышцы. Строение мышц. Виды мышц и мышечных волокон.

Обновлено: 02.05.2024

Поднимите руку. Теперь сожмите кулак. Сделайте шаг. Правда, легко? Человек выполняет привычные действия практически не задумываясь. Около 700 мышц (от 639 до 850, согласно различным способам подсчета) позволяют человеку покорять Эверест, спускаться на морские глубины, рисовать, строить дома, петь и наблюдать за облаками.

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Определение мышц

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Мышцы. Вид спереди

Мышцы. Вид сзади

Мышцы тела человека можно поделить на:

Как видно из названия, скелетный тип мускулатуры крепится к костям скелета. Второе название — поперечно-полосатая (за счет поперечной исчерченности), которая видна при микроскопии.К этой группе относятся мышцы головы, конечностей и туловища. Движения их произвольные, т.е. человек может ими управлять. Эта группа мышц человека обеспечивает передвижение в пространстве, именно их с помощью тренировок можно развить или «накачать».

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

Интересно узнать, что первое мышечное сокращение происходит уже на четвертой неделе жизни эмбриона - это первый удар сердца. С этого момента и до самой смерти человека сердце не останавливается ни на минуту. Единственная причина остановки сердца в течение жизни — операция на открытом сердце, но тогда за этот важный орган работает АИК (аппарат искусственного кровообращения).

Биология. Многообразие живых организмов. 7 класс. Учебник-навигатор + CD

Учебник-навигатор является основным модулем инновационного учебно-методического комплекта «Навигатор». Простая и удобная система навигации связывает текст учебника с информационным полем прилагающегося мультимедийного пособия (диска): все термины и понятия, встречающиеся в учебнике, подразделяются на основной и дополнительный материал с помощью цветовой индикации. Методический аппарат учебника составляют вопросы для самопроверки, вопросы повышенного уровня сложности (в том числе устанавливающие межпредметные связи), а также система заданий с использованием других компонентов УМК — как печатных, так и электронных, что способствует эффективному усвоению учебного материала.

Строение мышц человека

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно - это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой - прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости - садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна - не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм. Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина. При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Название мышц человека

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

Типы мышц и мышечных волокон

В организме взрослого мужчины мышцы составляют более 40% общей массы тела, у пожилых людей - около 30%, у детей - около 25%. У женщин того же возраста масса мышц обычно ниже, чем у мужчин, с чем и связаны половые различия в проявлении мышечной силы и уровня физической работоспособности. У спортсменов, специализирующихся в силовых видах спорта, мышечная масса может достигать 50-55%, а у культуристов - 60-70% общей массы тела.

Мышцы благодаря сократительной функции обеспечивают процессы движения. При сокращении мышц постоянно используется химическая энергия АТФ, которую они преобразуют в кинетическую (механическую) энергию. Проявление различных двигательных качеств человека, особенно силы и скорости, зависит от морфологического строения мышц, особенностей протекания биохимических процессов в них, а также от регуляторного воздействия нервной системы, т. е. от функционирования мышц.

Для понимания биохимических процессов, обеспечивающих сократительную функцию мышц, необходимо рассмотреть структурную организацию и химический состав мышечных волокон.

В организме человека существует три типа мышц: скелетные, сердечные (миокард) и гладкие. Различаются они морфологическими, биохимическими и функциональными особенностями, а также путями развития. При микроскопическом исследовании в скелетных и сердечной мышцах обнаруживается исчерченность, поэтому их называют поперечно-полосатыми мышцами. В гладких мышцах такая исчерченность отсутствует. Функционально сердечная мышца отличается от скелетных мышц и занимает промежуточное положение между гладкими и скелетными мышцами. Сердечная мышца сокращается ритмично с последовательно изменяющимися циклами сокращения (систола) и расслабления (диастола) независимо от воли человека, т.е. непроизвольно. Ее сокращение регулируется гормонами, например катехоламинами.

Сокращение гладких мышц инициируется нервными импульсами, некоторыми гормонами и не зависит от воли человека, так как их тонус не контролируется нашим сознанием. Гладкие мышцы включают мышцы внутренних органов, системы пищеварения, стенок кровеносных сосудов, а также кожи и матки, обеспечивая их сокращение и расслабление.

Скелетные мышцы прикреплены в основном к костям, что и обусловило их название. Сокращение скелетных мышц инициируется нервными импульсами и подчиняется сознательному контролю, т. е. осуществляется произвольно.

Для понимания биохимии мышечной деятельности наибольший интерес представляет функционирование скелетных мышц. Отдельная мышца руки или иной части тела окружена оболочкой соединительной ткани и имеет сложное морфологическое строение. Каждая мышца состоит из пучка мышечных волокон, которые содержат многочисленные сократительные нити - миофибриллы (рис. 1).

Мышечное волокно является структурной единицей скелетных мышц, представляя собой большую многоядерную клетку, а точнее - бесклеточное образование - симпласт, так как в процессе развития мышечная клетка образуется путем слияния множества эмбриональных отдельных клеток - миобластов.


Рис. 1. Структурная организация скелетных мышц человека

Клетка окружена плазматической мембраной - сарколеммой, которая покрыта сетью коллагеновых волокон, придающих ей прочность и эластичность. Длина отдельных мышечных клеток может достигать 10 см (портняжная мышца) и даже 50 см, толщина - до 0,1 мм. К мышечному волокну подходят окончания двигательных нервов, а также множество кровеносных сосудов.

Двигательный нерв, или мотонейрон имеет разветвленные аксоны и может иннервировать несколько мышечных волокон, которые вместе представляют функциональную единицу мышцы, называемую нейромоторной, или двигательной единицей (рис.2). Такая единица работает как единое целое, т.е. сокращаются все входящие в нее мышечные волокна. Отдельная мышца состоит из многих двигательных единиц, которые могут не одновременно подключаться к мышечному сокращению. Сила и скорость сокращения мышцы зависит от количества участвующих в сокращении двигательных единиц, а также от частоты нервных импульсов.

Мышечные клетки не способны к делению, поэтому разрушенные мышечные волокна не могут восстановиться простым удвоением. В случае повреждения, что наблюдается при напряженной мышечной деятельности, самовозобновление мышечного волокна происходит из маленькой клетки - сателлита, которая находится в неактивном состоянии в тесном контакте со зрелыми мышечными волокнами. При нарушении структуры мышечного волокна она активируется и начинает пролиферировать, что приводит к образованию нового мышечного волокна.


Рис. 2. Схема двигательной единицы мышцы

В мышце количество мышечных волокон может достигать нескольких тысяч. У разных людей в одних и тех же мышцах может быть различное количество волокон, что влияет на их силовые способности, процессы адаптации к мышечной работе. Чем больше в мышцах волокон, тем большая возможность проявления максимальной силы мышц.

Типы мышечных волокон и их вовлечение в мышечную деятельность

В скелетных мышцах различают несколько типов мышечных волокон, отличающихся сократительными и метаболическими свойствами. К основным типам волокон относятся медленносокращающиеся (МС), или красные и быстросокращающиеся (БС), или белые (табл. 1).

Морфологическая, метаболическая и функциональная характеристики
мышечных волокон

Характеристика Тип волокон
МС БСа БСб
Включение в работу Малой интенсивности, на выносливость Большой интенсивности, кратковременную
Количество волокон на мотонейроне 10-180 300-800 300-800
Порог возбуждения мотонейронов Низкий Высокий Высокий
Размеры двигательного нейрона Малые Большие Большие
Размеры и количество миофибрилл Малые Большие Большие
Сеть капилляров Большая Средняя Низкая
Развитие саркоплазматического ретикулума Низкое Высокое Высокое
Наличие митохондрий Много Много Мало
Запасы белка миоглобина Большие Средние Малые
Запасы углеводов (гликогена) Большие Большие Большие
Активность ферментов:
АТФ-азы миозина Низкая Высокая Высокая
митохондрий Высокая Высокая Низкая
гликолиза Низкая Высокая Высокая
Скорость сокращения Малая (110 мс) Большая (50 мс) Большая (50 мс)
Развитие силы Низкое Высокое Умеренное
Утомляемость Слабая Сильная Сильная
Выносливость Высокая Низкая Низкая
Способность накапливать кислородный долг Практически отсутствует Высокая Высокая
Содержание отдельных типов волокон в мышцах нижних конечностей человека, %:
Нетренированного
бегуна-марафонца
бегуна-спринтера

Медленносокращающиеся и быстросокращающиеся волокна имеют разную скорость возбуждения, сокращения и утомления. Так, скорость сокращения МС-волокон составляет более 110 мс, а БС-волокон - 50 мс.

Отдельные типы волокон отличаются также механизмами энергообразования. Как следует из табл. 1, медленносокращающиеся волокна, которые имеют малую скорость сокращения, располагают большим количеством митохондрий, ферментов биологического окисления углеводов и жиров, белка миоглобина, который запасает кислород, а также большой сетью капилляров, обеспечивающих достаточное поступление кислорода в мышцы, и большими запасами гликогена. Все это свидетельствует о том, что в МС-волокнах преобладают аэробные механизмы энергообразования, которые обеспечивают выполнение длительной работы на выносливость. Мотонейрон, иннервирующий МС-волокна, имеет небольшое тело клетки и управляет относительно небольшим количеством мышечных волокон (10-180).

Быстросокращающиеся мышечные волокна характеризуются большим количеством миофибрилл, высокой АТФ-азной активностью миозина и ферментов гликолиза, наличием значительных запасов гликогена. Они имеют слаборазвитую капиллярную сеть и небольшое количество кислородсвязывающего белка - миоглобина. В связи с этим ресинтез АТФ в таких типах волокон осуществляется за счет анаэробных механизмов энергообразования - креатинфосфатной реакции и гликолиза. Наличие указанных выше биохимических особенностей обеспечивает высокую скорость сокращения и быстрое утомление этого типа мышечных волокон. БС-волокна приспособлены к скоростной интенсивной работе относительно небольшой продолжительности. Их мотонейроны имеют большое тело клеток и сильно разветвленные аксоны, поэтому иннервируют от 300 до 800 мышечных волокон.

Среди БС-волокон различают два подтипа; БСа, или тип IIа и БСб, или тип IIб. Они отличаются в основном механизмами энергообразования. БСа-волокна имеют высокую анаэробную гликолитическую и аэробную способность ресинтеза АТФ. Их еще называют «быстрые окислительно-гликолитические волокна». Используются они при интенсивной работе на выносливость, например при беге на 1000 м или плавании на 400 м. БСб-волокна имеют только высокие анаэробные способности ресинтеза АТФ, поэтому подключаются главным образом к кратковременной мышечной деятельности взрывного характера, например при беге на 100 м или плавании на 50 м. Последовательность включения (рекруитирование) мышечных волокон в работу регулируется нервной системой и зависит от интенсивности нагрузок. При физической работе небольшой интенсивности - около 20-25% уровня максимальной силы мышечных сокращений - в работу вовлекаются в основном МС-волокна. При более интенсивной работе - 25-40% уровня максимальной силы сокращений - включаются БС-волокна типа «а». Если интенсивность работы превышает 40% максимальной, вовлекаются БС-волокна типа «б». Однако даже при максимальной интенсивности в работу вовлекаются не все имеющиеся волокна: у нетренированных людей - не более 55-65% имеющихся мышечных волокон, у высокотренированных спортсменов силовых видов спорта в работу могут вовлекаться 80-90% двигательных единиц.

Подключение мышечных волокон к работе зависит от силы стимуляции мотонейроном. Минимальная величина стимуляции, при которой волокно сокращается максимально, называется порогом возбуждения (раздражения). Минимальный порог возбуждения име­ют МС-волокна (10-15 Гц); у БС-волокон порог возбуждения в 2 раза выше, чем у МС-волокон. Все типы мышц вовлекаются в работу при высокой частоте раздражения - около 45-55 Гц. Это важно учитывать при построении методики силовой подготовки спортсменов.

Количество МС- и БС-волокон в мышцах человека в среднем составляет 55 и 35% соответственно (см. табл. 1). Среди БС-во­локон большее количество составляют БСа (~30-35%), меньшее - БCб (~10-15%).

У сильнейших бегунов на длинные дистанции в икроножных мышцах ног содержится более 80% МС-волокон, а у спринтеров - всего 23%. Существует тесная корреляция между содержанием БС-волокон и скоростными способностями мышц. Количество отдельных типов мышечных волокон генетически закреплено, поэтому плохо поддается изменению при тренировке. Однако при специфической тренировке их объем значительно увеличивается. Экспериментальные данные последних лет свидетельствуют о возможности изменения количества типов волокон при длительных тренировках: превращение волокон БСа в БСб или в МС.

Типы мышечных волокон

Описаны различные типы (виды) мышечных волокон, а также гистологические и гистохимические методы их классификации. Дана характеристика различных типов мышечных волокон, описаны их функции, а также расположение в скелетной мышце.

Типы мышечных волокон

Типы (виды) мышечных волокон

Классификации мышечных волокон

В настоящее время общепринято считать, что у человека скелетные мышцы состоят из волокон различных типов. Существуют различные классификации типов мышечных волокон. Различают волокна: красные и белые, медленные и быстрые, тонические и фазические. В середине ХХ века для разделения мышечных волокон на разные типы использовались гистологические методы (А.В. Самсонова с соавт., 2012). Из скелетных мышц посредством биопсии извлекался кусочек мышечной ткани, быстро замораживался и разрезался на тонкие слои. Затем производилось исследование мышечной ткани под микроскопом. Первоначально критерием разделения мышечных волокон на медленные и быстрые являлось количество и расположение митохондрий. Затем предпочтение стали отдавать такому показателю как толщина Z-дисков. Было найдено, что у медленных волокон Z-диски существенно толще, чем у быстрых. В качестве еще одного критерия разделения мышечных волокон на типы использовалась толщина М-диска. При продольных срезах расслабленной скелетной мышцы видно, что медленные мышечные волокна содержат пять М-линий, имеющих одинаковую плотность. Промежуточные мышечные волокна - три линии средней плотности, ясно видимые и две линии, имеющие небольшую плотность. В быстрых мышечных волокнах имеются три линии средней плотности и две внешние, едва различимые.

В настоящее время чаще всего используется классификация M.Brook, K.Kaiser (1970), которая основывается на гистохимических методах.

Известно, что миофибриллы состоят из саркомеров, а те, в свою очередь - из толстых и тонких филаментов. Основу толстых филаментов составляет белок миозин, а основу тонких - белок актин.

Гистохимические методы основаны на определении активности фермента АТФ-азы миозина. Этот фермент расположен на головках молекул миозина. Фермент АТФ-аза осуществляет высвобождение энергии, необходимой для осуществления сокращения мышечного волокна. Степень активности АТФ-азы варьирует в широких пределах. Установлено, что степень активности АТФ-азы миозина связана с типом миозина, содержащемся в мышечном волокне. В медленных мышечных волокнах активность АТФ-азы низкая, а в быстрых - высокая. Именно высокая активность АТФ-азы миозина способствует высокой скорости сокращения мышечных волокон.

На основе классификации по активности АТФ-азы миозина различают мышечные волокна типа I, типа IIA и типа IIB.

Характеристики различных типов (видов) мышечных волокон

Медленные и быстрые мышечные волокна различаются метаболизмом, что проявляется в активности ферментов и количестве митохондрий. Медленные мышечные волокна окружены большим числом крупных митохондрий с набором ферментов, катализирующих распад углеводов и жирных кислот. Поскольку этот процесс требует притока большого количества кислорода, вполне естественно, что сеть капилляров, окружающая медленные мышечные волокна более развита и снабжение кислородом, доставленным с током крови, в этих волокнах происходит более интенсивно. В этих волокнах крайне ограничен запас углеводов в виде гликогена и низка активность ферментов гликолиза (М.И. Калинский, В.А. Рогозкин, 1989).

Быстрые волокна типа IIA и IIB характеризуются высокой активностью АТФ-азы миозина, поэтому скорость их сокращения практически в два раза выше, чем у медленных. С высокой скоростью сокращения связан хорошо развитый саркоплазматический ретикулум, который характерен для быстрых мышечных волокон, так как он содержит ионы кальция, необходимые для сокращения мышечного волокна.

Волокна типа IIA имеют набор ферментов для полного окисления углеводов и жирных кислот, такой же, как и в медленных волокнах и к тому же они располагают ферментами гликолиза, то есть способностью расщеплять углеводы до молочной кислоты. Быстрые мышечные волокна типа IIB способны к коротким периодам сократительной активности. Они имеют набор ферментов гликолиза с высокой активностью и небольшое количество митохондрий с окислительными ферментами. Быстрые мышечные волокна типа IIA и IIB имеют большие запасы гликогена, который сразу используется в качестве источника энергии при сокращении скелетной мышцы (табл.1).

Таблица 1 Характеристики мышечных волокон различных типов

ХарактеристикаI типIIА типIIВ тип
Название мышечных волоконКрасные, медленные, устойчивые к утомлению, окислительныеПромежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитическиеБелые, быстрые, быстроутомляемые, гликолитические, анаэробные
Размер мотонейронамалыйБольшойБольшой
Активность АТФ-азы миозинанизкаяВысокаяВысокая
Саркоплазматический ретикулумСлабо развитСреднее развитиеХорошо развит
Плотность капилляровВысокаяВысокаяНизкая
Количество миоглобинаМногоСреднеМало
Количество митохондрийМногоСреднеМало
Размеры митохондрийОчень большиеСредниеНебольшие
Активность ферментов митохондрийБольшаяБольшаяНизкая
Сопротивление утомлениюВысокоеСреднееОчень низкое
Запасы гликогенаНизкиеБольшиеБольшие
Гликолитическая способностьНизкаяБольшаяБольшая
Скорость сокращенияНизкаяВысокаяВысокая
Площадь поперечного сечения мышечного волокнаНебольшаяБольшаяБольшая
Максимальная силаНебольшаяБольшаяОчень большая

Функции мышечных волокон

Основная функция волокон типа I - выполнение длительной работы низкой интенсивности. Они активны также при поддержании позы. Поэтому антигравитационные мышцы в основном состоят из медленных волокон типа I.

Основная функция мышечных волокон типа II - выполнение быстрых и сильных сокращений.

Расположение мышечных волокон различных типов в скелетных мышцах

Мышечные волокна объединены в пучки. Их покрывает перимизий. Пучок содержит мышечные волокна различных типов. В пучке мышечные волокна расположены в виде мозаики. Однако доказано, что внутри мышцы больше мышечных волокон типа I, а снаружи - мышечных волокон типа II.

Строение мышц, биология мышцы

Мышцы - активная часть опорно-двигательного аппарата. Сокращаясь, они приводят в движение костные рычаги: совершаются движения, благодаря чему тело и его части перемещаются в пространстве.

Леонардо да Винчи - Изучение мышц человека

Строение мышцы

Мышцы состоят из многочисленных мышечных волокон, которые образуют брюшко мышцы. Выделяют головку и хвост мышцы: головка соединена с неподвижным элементом, а хвост при сокращении мышцы притягивает подвижную часть скелета.

В разделе мышечные ткани мы подробно изучили строение поперечно-полосатой мышечной ткани, благодаря которой у нас есть возможность совершать произвольные движения (под контролем сознания.) Поперечно-полосатая мышечная ткань состоит из длинных многоядерных волокон - миосимпластов, обладающих поперечной исчерченностью за счет элементарной единицы - саркомера. Соединяясь друг с другом, саркомеры образуют миофибриллы, входящие в состав миосимпласта.

Строение мышцы

Антагонисты и синергисты

Среди мышц различают мышцы-антагонисты и мышцы-синергисты. Мышцы-антагонисты (от греч. antagonistes - противник) представляют группы мышц, которые располагаются параллельно друг другу и, сокращаясь, приводят костные рычаги в противоположно-направленное действие. Проще говоря - одни сгибают, а другие разгибают конечность. Наиболее яркий пример мышц-антагонистов: бицепс и трицепс.

Бицепс и трицепс мышцы антагонисты

Мышцы-синергисты (от греч. synergos - вместе действующий) - мышцы, действующие совместно для осуществления определенного движения. Примером таких мышц может служить плечевая и двуглавая (бицепс) мышцы.

Мышцы синергисты бицепс и плечевая

Работа и утомление мышц

Как мышцы "узнают" когда, как и с какой силой, им нужно сократиться? Задумайтесь - одной и той же мышцей мы можем совершить плавное и медленное движение, а можем быстрое и резкое. Все определяется частотой нервных импульсов, которые идут к мышце от двигательных нейронов, расположенных в передних рогах спинного мозга.

Двигательное нервное волокно оканчивается на мышце нервно-мышечным синапсом, с помощью которого возбуждение передается многим мышечным волокнам. Сила сокращения мышцы есть сумма сокращений отдельных мышечных волокон в ней. То есть сила, с которой сокращается мышца, зависит от количества возбужденных (и, как следствие, сокращающихся) мышечных волокон.

Иннервация мышц

Поперечно-полосатая мускулатура характеризуется возможностью утомления - временного понижения работоспособности мышцы. Скорость наступления утомления зависит от состояния нервной системы, ритма работы, величины нагрузки на мышцу.

Утомление мышц

В мышцах у человека и животных откладывается гликоген - запасное питательное вещество. Гликоген представляет собой большую сильно разветвленную молекулу, состоящую из остатков глюкозы. Такая большая структура хорошо удерживается в клетке, а благодаря ее разветвлениям одновременно от нее могут отщепляться несколько молекул глюкозы, что весьма важно при интенсивной работе.

При физической нагрузке от гликогена отщепляются молекулы глюкозы. Это анаэробный вариант расщепления глюкозы, при котором образуется 2 молекулы АТФ из одной глюкозы. Образовавшаяся молочная кислота вызывает характерное жжение и боль в мышцах, затем она подвергается аэробному окислению до углекислого газа и воды - в ходе этого выделяется 36 молекул АТФ.

Гликоген, расщепление глюкозы в мышцах

Таким образом, суммарный выход АТФ с одной молекулы глюкозы равен 38 АТФ.

Болезни мышечной системы

При чрезмерной нагрузке существует риск разрыва мышцы, либо отрыва сухожилия. Эти состояния можно заподозрить на основании данных внешнего осмотра: при разрыве мышцы образуется гематома (скопление крови в мягких тканях), при отрыве сухожилия мышцы и попытке ее сокращения, образуется характерное полушаровидное выпяичвание.

Отрыв сухожилия и разрыв мышцы

Помните о законе средних нагрузок мышц, который открыл И.М. Сеченов! Он гласит, что максимальная эффективность в работе мышц достигается при средних нагрузка (не слишком легких, и не слишком тяжелых). Рационально оценивайте собственные силы и возможности, и всегда начинайте спортивную тренировку с разминки ;)

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Мышечные ткани

Мышечные ткани - это ткани, для которых способность к сокращению является главным свойством. Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей).

Общими свойствами всех мышечных тканей является сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечнополосатая скелетная и поперечнополосатая сердечная мышечные ткани. Клетки мышечной ткани имеют хорошо развитый цитоскелет, содержат много митохондрий.

Мышцы человека

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (бронхи, кишечник, желудок, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов - коротких одноядерных клеток. Между клетками имеются межклеточные контакты - нексусы (лат. nexus - связь). Благодаря нексусам возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкие миоциты, гладкая мышечная ткань

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру мочевого пузыря), сокращается медленно, практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает - сокращается и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов - миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим).

Особо заметим, что в гладкой мышечной ткани миофиламенты собираются в миофибриллы только во время сокращения. У таких временных миофибрилл не может быть регулярной организации, а значит ни у таких миофибрилл, ни у гладких миоцитов не может быть поперечной исчерченности.

Гладкая мышечная ткань сокращается непроизвольно (неподвластна воле человека). Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой. К примеру невозможно по желанию сузить или расширить бронхи, кровеносные сосуды, зрачок.

Гладкая мускулатура

Гладкая мышечная ткань называется неисчерченной, так как не обладает поперечной исчерченностью, характерной для поперечнополосатых скелетной и сердечной мышечных тканей.

Скелетная (поперечнополосатая) мышечная ткань

Скелетная мышечная ткань образует диафрагму (дыхательную мышцу), мускулатуру туловища, конечностей, головы, голосовых связок.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер - миосимпластами. Миосимпласт (греч. sim - вместе + plast - образованный) представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметров (соответствует длине мышцы).

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой. Сократительные элементы - миофибриллы (лат. fibra - волоконце) - длинные тяжеобразные органеллы в миосимпласте (около 1400).

Скелетная мышечная ткань, миосимпласт

Характерная черта данной ткани - поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы - саркомер.

Саркомер (от греч. sarco - мясо (мышца) + mere - маленький)

Саркомер - элементарная сократительная единица поперечнополосатых мышц, структурная единица миофибриллы. В состав саркомера (и миофибриллы в целом) входят миофиламенты (лат. filamentum - нить) двух типов, которые обеспечивают сократимость мышечной ткани.

Саркомер состоит из актиновых (тонких) и миозиновых (толстых) филаментов, которые образованы главным образом белками актином и миозином. Сокращение происходит за счет взаимного перемещения миофиламентов: они тянутся навстречу друг другу, саркомер укорачивается (и мышца в целом).

Строение саркомера

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином, что приводит к изменению конформации тропомиозина (тропонин и тропомиозин - регуляторные белки между нитями актина), за счет чего становится возможно соединение актина и миозина. При сокращении мышц выделяется тепло (сократительный термогенез).

Регуляторные белки тропонин и тропомиозин

Замечу, что трупное окоченение (лат. rigor mortis) - посмертное затвердевание мышц - связано именно с ионами кальция, которые устремляются в область низкой концентрации (в саркоплазму миосимпласта), способствуя связыванию актина и миозина.

После смерти в мышце перестает синтезироваться АТФ, ее уровень быстро снижается. Как следствие этого перестает функционировать Ca-АТФаза - насос, выкачивающий ионы Ca из саркоплазмы в саркоплазматический ретикулум (мембранная органелла мышечных клеток (сходная с ЭПС), в которой запасаются ионы Ca).

В саркоплазме повышается концентрация ионов Ca - замыкаются мостики между актином и миозином, однако разомкнуться они уже не могут, в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura - стягивание, сужение): конечности очень сложно разогнуть или согнуть.

Сокращение мышц

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние миосимпласты (волокна) не возбуждают друг друга, в отличие от гладких миоцитов, где возбуждение предается между соседними клетками через нексусы. Скелетные мышцы сокращаются быстро и быстро утомляются (у гладких мышц фазы сокращения и расслабления растянуты во времени, мало утомляются) .

Скелетные мышцы сокращаются произвольно: они подконтрольны нашему сознанию. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Строение мышцы

Сердечная поперечнополосатая мышечная ткань

Сердечная мышечная ткань образует мышечную оболочку сердца - миокард (от др.-греч. μῦς «мышца» + καρδία - «сердце»). Миокард - средний слой сердца, составляющий основную часть его массы. При работе сердечная мышечная ткань не утомляется.

Миокард

Сердечная мышечная ткань состоит из кардиомиоцитов - одиночных клеток, имеющих поперечную исчерченность. Соединяясь друг с другом, кардиомиоциты образуют функциональные волокна.

Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство - автоматизм.

Автоматизм - способность сердечной мышечной ткани возбуждаться и сокращаться самопроизвольно, без влияний извне. Это легко можно подтвердить, наблюдая сокращения изолированного сердца лягушки в физиологическом растворе: сокращения сердца в нем будут продолжаться несколько десятков минут после отделения сердца от организма.

Автоматизм сердца, изолированное сердце лягушки сокращается

Места контактов соседних кардиомиоцитов - вставочные диски (в их составе находятся нексусы), благодаря которым возбуждение одной клетки передается на соседние, таким образом волнообразно охватываются возбуждением и сокращаются новые участки миокарда.

Большое число контактов между кардиомиоцитами обеспечивает высокую эффективность и надежность проведения возбуждения по миокарду. Сокращается эта ткань непроизвольно, не утомляется.

На рисунке или микропрепарате узнать данную ткань можно по центральному положению ядер в клетках, поперечной исчерченности, наличию вставочных дисков и анастомозов (греч. anastomosis - отверстие) - мест соединений боковых поверхностей функциональных волокон (кардиомиоцитов).

Сердечная мышечная ткань

В норме возбуждение проводится по проводящей системе сердца от предсердий к желудочкам (однонаправленно). Участок сердечной мышцы, в котором генерируются импульсы, определяющие частоту сердечных сокращений - водитель сердечного ритма.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker - задающий ритм) клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή - еда, пища) - в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.

Гипертрофия мышц

В условиях гиподинамии (от греч. ὑπό - под и δύνᾰμις - сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии (греч. а - "не" + trophe - питание). В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Атрофия мышц

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца - состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Гипертрофия сердца

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка - мезодермы.

Зародыш человека

Читайте также: