Механизмы различного действия лекарств. Вариабельность фармакодинамики

Обновлено: 09.05.2024

Фармакодинамика - это раздел общай фармакологии, изучающий:

Механизмы действия ЛВ (как, где и каким образом ЛВ действуют в организме).

Виды действия ЛВ.

Фармакологические эффекты — изменения функции органов и систем организма, вызываемые ЛВ.

К фармакологическим эффектам ЛВ относятся, например, повышение частоты сердечных сокращений, снижение артериального давления (АД), повышение порога болевой чувствительности, снижение температуры тела, увеличение продолжительности сна, устранение бреда и галлюцинаций и т.п. Каждое вещество, как правило, вызывает ряд определённых, характерных для него фармакологических эффектов. При этом одни фармакологические эффекты ЛВ, являются полезными — благодаря им ЛВ применяют в медицинской практике (основные эффекты), а другие не используются и, более того, являются нежелательными (побочные эффекты).

Для многих веществ известны места их преимущественного действия в организме — т.е. локализация действия.

Одни вещества преимущественно действуют на определённые структуры головного мозга (противопаркинсонические, антипсихотические средства), другие в основном действуют на сердце (сердечные гликозиды).

Благодаря современным методическим приёмам, можно определить локализацию действия веществ не только на системном и органном, но на клеточном и молекулярном уровнях. Например, сердечные гликозиды действуют на сердце (органный уровень), на кардиомиоциты (клеточный уровень), на Na+,K+-АТФазу мембран кардиомиоцитов (молекулярный уровень).

Одни и те же фармакологические эффекты могут быть вызваны различными способами. Так, есть вещества, которые вызывают снижение АД, уменьшая синтез ангиотензина II (ингибиторы АПФ), блокируя поступление Са2+ в гладкомышечные клетки (блокаторы потенциалзависимых кальциевых каналов) или уменьшая выделение норадреналина из окончаний симпатических нервов (симпатолитики). Способы, с помощью которых ЛВ вызывают фармакологические эффекты, определяются как механизмы действия.

Фармакологические эффекты большинства ЛВ вызываются их действием на определённые молекулярные субстраты, так называемые «мишени».

К основным молекулярным «мишеням» для ЛВ относятся рецепторы, ионные каналы, ферменты, транспортные системы.

Виды действия: местное и резорбтивное, рефлекторное, прямое и косвенное, основное и побочное и некоторые другие.

Местное действие ЛВ оказывает при контакте с тканями в месте его нанесения (обычно это кожа или слизистые оболочки). Например, при поверхностной анестезии местный анестетик действует на окончания чувствительных нервов только в месте нанесения на слизистую оболочку. Для оказания местного действия ЛВ назначают в форме мазей, примочек, полосканий, пластырей. При назначении некоторых ЛВ в виде глазных или ушных капель также рассчитывают на их местное действие. Однако, какое-то количество ЛВ обычно всасывается с места нанесения в кровь и оказывает общее (резорбтивное) действие. При местном нанесении ЛВ возможно также рефлекторное действие.

Резорбтивное действие (от лат. resorbeo — поглощаю) —эффекты, вызываемые ЛВ пocлe всасывания в кровь или непосредственного введения в кровеносный сосуд и распределения в организме. При резорбтивном действии, как при местном, вещество может возбуждать чувствительные рецепторы и вызывать рефлекторные реакции.

Рефлекторное действие. Некоторые ЛВ способны возбуждать окончания чувствительных нервов кожи, слизистых оболочек (экстерорецепторы) или хеморецепторы сосудов (интерорецепторы) и вызывать рефлекторные реакции со стороны органов, расположенных в удалении от места непосредственного контакта вещества с чувствительными рецепторами. Примером возбуждения экстерорецепторов кожи эфирным горчичным маслом является действие горчичников. Лобелин при внутривенном введении возбуждает хеморецепторы сосудов, что приводит к рефлекторной стимуляции дыхательного и сосудодвигательного центров.

Прямое (первичное) действие ЛВ на сердце, сосуды, кишечник и другие органы развивается при непосредственном воздействии на эти органы. Например, сердечные гликозиды вызывают кардиотонический эффект (усиление сокращений миокарда) вследствие их непосредственного влияния на кардиомиоциты. Вызываемое же сердечными гликозидами повышение диуреза у больных с сердечной недостаточностью обусловлено увеличением сердечного выброса и улучшением гемодинамики. Такое действие, при котором ЛВ изменяет функцию одних органов, воздействуя на другие органы, обозначают как косвенное (вторичное) действие.

Основное действие — действие для получения которого применяют ЛВ. Например, фенитоин обладает противосудорожными и антиаритмическими свойствами. У больного эпилепсией основное действие фенитоина противосудорожное, а у больного с сердечной аритмией, вызванной передозировкой сердечных гликозидов — антиаритмическое.

Все остальные (кроме основного) эффекты ЛВ, возникающие при его приёме в терапевтических дозах, расценивают как побочное действие.

Эти эффекты часто бывают неблагоприятными (отрицательными).

Например, ацетилсалициловая кислота может вызвать изъязвление слизистой оболочки желудка, антибиотики из группы аминогликозидов (канамицин, гентамицин и др.) — нарушение слуха. Отрицательное побочное действие часто служит причиной ограничения применения того или иного ЛВ и даже исключения его из списка лекарственных препаратов.

Избирательное действие ЛВ направлено преимущественно на один орган или систему организма. Так, сердечные гликозиды обладают избирательным действием на миокард, окситоцин — на матку, снотворные средства — на ЦНС.

Центральное действие развивается вследствие прямого влияния ЛВ на ЦНС. Центральное действие характерно для веществ, проникающих через ГЭБ. Для снотворных средств, антидепрессантов, анксиолитиков, средств для наркоза это основное действие. В то же время центральное действие может быть побочным (нежелательным). Так, многие антигистаминные средства вследствие центрального действия вызывают сонливость.

Периферическое действие обусловлено влиянием ЛВ на периферический отдел нервной системы или на органы и ткани. Курареподобные средства (миорелаксанты периферического действия) расслабляют скелетные мышцы, блокируя передачу возбуждения в нервно-мышечных синапсах, некоторые периферические вазодилататоры расширяют кровеносные сосуды, действуя непосредственно на гладкомышечные клетки. Для веществ с основным центральным действием периферические эффекты обычно побочные. Например, антипсихотическое средство хлорпромазин вызывает расширение сосудов и снижение АД (нежелательное действие), блокируя периферические α-адренорецепторы..

Обратимое действие — следствие обратимого связывания ЛВ с «мишенями» (рецепторами, ферментами). Действие такого вещества можно прекратить путём его вытеснения из связи c «мишенью» другим ЛВ.

Необратимое действие возникает, как правило, в результате прочного (ковалентного) связывания ЛВ с «мишенями». Например, ацетилсалициловая кислота необратимо блокирует циклооксигеназу, поэтому действие препарата прекращается лишь после синтеза нового фермента.

Вещества, которые обладают аффинитетом, могут иметь внутреннюю активность.

Внутренняя активность — способность вещества при взаимодействии с рецептором стимулировать его и таким образом вызывать определённые эффекты.

В зависимости от наличия внутренней активности ЛВ подразделяют на aгонисты и aнтагонисты рецепторов.

Агонисты (от греч. agonistes — соперник, agon — борьба), или миметики — вещества, обладающие аффинитетом и внутренней активностью. При взаимодействии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецепторов, в результате чего возникает цепь биохимических реакций и развиваются определённые фармакологические эффекты.

Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект (обладают максимальной внутренней активностью).

Частичные агонисты при взаимодействии с рецепторам вызывают эффект, меньший максимального (не обладают максимальной внутренней активностью).

Антагонисты (от греч. antagonisma — соперничество, anti — против, agon — борьба) — вещества, обладающие аффинитетом, но лишённые внутренней активности. Связываясь с рецепторам, они препятствуют действию на эти рецепторы эндогенных агонистов (нейромедиаторов, гормонов).

Поэтому антагонисты также называют блокаторами рецепторов. Фармакологические эффекты антагонистов обусловлены устранением или ослаблением действия эндогенных агонистов данных рецепторов. При этом возникают эффекты, противоположные эффектам агонистов. Так, ацетилхолин вызывает брадикардию, а антагонист м-холинорецепторов атропин, устраняя действие ацетилхолина на сердце, повышает частоту сердечных сокращений.

Если антагонисты занимают те же места связывания, что и агонисты, они могут вытеснять друг друга из связи с рецепторами. Подобный вида антагонизма обозначают как конкурентный антагонизм, а антагонисты называют конкурентными антагонистами. Конкурентный антагонизм зависит от сравнительного аффинитета конкурирующих веществ и их концентрации. В достаточно высоких концентрациях даже вещество с низким аффинитетом может вытеснить вещество с более высоким аффинитетом из связи с рецептором. Поэтому при конкурентном антагонизме эффект агониста может быть полностью восстановлен при увеличении его концентрации в среде. Конкурентный антагонизм часто используют для устранения токсических эффектов ЛВ.

Частичные антагонисты также могут конкурировать с полными агонистами за места связывания. Вытесняя полные агонисты из связи с рецепторами, частичные агонисты уменьшают их эффекты и поэтому в клинической практике могут быть использованы вместо антагонистов. Например, частичные агонисты -адренорецепторов (пиндолол) так же, как антагонисты этих рецепторов (пропранолол, атенолол) применяют при лечении гипертонической болезни.

Неконкурентный антагонизм развивается, когда антагонист занимает так называемые аллостерические места связывания на рецепторах (участки макромолекулы, не являющиеся местами связывания агониста, но регулирующие активность рецепторов). Неконкурентные антагонисты изменяют конформацию рецепторов таким образом, что они теряют способность взаимодействовать с агонистами. При этом увеличение концентрации агониста не может привести к полному восстановлению его эффекта. Неконкурентный антагонизм также имеет место при необратимом (ковалентном) связывании вещества с рецептором.

Некоторые ЛВ сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают как агонисты-антагонисты (например, буторфанол —антагонист мю- ,и - антагонист опиоидных рецепторов).

2.5.3. Основные механизмы действия лекарств

Многие лекарства имеют одинаковый механизм действия и, следовательно, могут быть объединены в группы и подгруппы. Количество различных фармакологических групп (подгрупп) ограничивается десятками. Лекарственные препараты и фармгруппы изучаются будущим врачом в институте, но для глубокого понимания фармакологии требуется немало специальных знаний и опыт работы в клинике. Однако и неспециалисту полезно попытаться понять хотя бы общие принципы действия лекарств. Тогда пациент сможет вести более аргументированный диалог с врачом, что повысит эффективность их общения. Давайте попробуем разобраться, что же происходит внутри нас, когда мы принимаем лекарство?

Под действием лекарств в организме не происходит новых биохимических реакций или физиологических процессов. Большинство лекарств только стимулируют, имитируют, угнетают или полностью блокируют действие внутренних посредников, передающих сигналы между различными органами и системами через биологические субстраты.

Под действием лекарств в организме не происходит новых биохимических реакций. Лекарства лишь корректируют (стимулируют или угнетают) физиологические и патологические процессы.

Каждое звено механизма обратной связи участвует в регулировании функций клетки и целого организма, а, следовательно, может служить “мишенью” - биологическим субстратом - для лекарственных средств. Из двух участников реакции “лекарство + биологический субстрат” первый обычно хорошо известен, специалисты знают его структуру и свойства. О втором зачастую информация более скудная: хотя последние 10-20 лет интенсивно изучается структура и функции различных биологических субстратов, однако до полной ясности пока еще далеко.

Многие ферменты являются “мишенями” для лекарств. Лекарства могут угнетать или - реже - повышать активность этих ферментов, а также являться для них “ложными” субстратами. Например, угнетающими активность (ингибирующими) ферментов средствами являются ненаркотические анальгетики и нестероидные противовоспалительные средства (глава 3.9), некоторые противоопухолевые препараты (метотрексат), а ложным субстратом - метилдофа. Ингибиторы ангиотензинпревращающего фермента (АПФ) (каптоприл и эналаприл) широко применяются в качестве понижающих артериальное давление (гипотензивных) средств (глава 3.5). Изменяя активность ферментов, лекарства изменяют внутриклеточные процессы и тем самым обеспечивают лечебный эффект.

В основе фармакологического действия лекарств лежит их физико-химическое или химическое взаимодействие с такими “мишенями”. Возможность взаимодействия лекарства с биологическим субстратом зависит в первую очередь от химического строения каждого из них. Последовательность расположения атомов, пространственная конфигурация молекулы, величина и расположение зарядов, подвижность фрагментов молекулы относительно друг друга влияют на прочность связи и, тем самым, на силу и продолжительность фармакологического действия. Молекула лекарственного вещества в большинстве случаев имеет очень маленький размер по сравнению с биологическими субстратами, поэтому она может соединяться только с небольшим фрагментом макромолекулы рецептора. При любой реакции между лекарством и биологическим субстратом образуется химическая связь (смотри главу 1.4).

Из школьного курса химии известно, что связь между двумя различными веществами может быть обратимой или необратимой, временной или прочной. Она образуется благодаря электростатическим и ван-дер-ваальсовым силам, водородным и гидрофобным взаимодействиям. Прочные ковалентные связи между лекарством и биологическим субстратом встречаются редко. Например, некоторые противоопухолевые средства за счет ковалентного взаимодействия “сшивают” соседние спирали ДНК, являющейся в данном случае субстратом, и необратимо повреждают ее, вызывая гибель опухолевой клетки.

Итак, есть сигнальные молекулы (медиаторы, гормоны, эндогенные биологически активные вещества), и есть биологические субстраты, с которыми эти молекулы взаимодействуют. Лекарства, введенные в организм, могут воспроизводить или блокировать эффекты естественных сигнальных молекул, изменяя тем самым функции клеток, тканей, органов и систем органов. Этим определяется фармакологическое действие лекарств (таблица 2.5.1).

Таблица 2.5.1. Основные принципы действия лекарственных средств (ЛС)
Вид взаимодействияМеханизм взаимодействия ЛС и рецептораЦель создания и примеры таких препаратов
Воспроизведение действия (миметический эффект, агонизм)ЛС по физико-химической структуре очень похоже на сигнальную молекулу (гормон, медиатор). Рецептор, взаимодействуя с ЛС, активирует или тормозит соответствующую функцию клетки. Таким образом, ЛС имитирует действие естественного гормона или медиатораПрепараты оказывают более выраженное, стабильное и длительное по сравнению с медиатором действие. Так действуют адрено- и холиномиметики (смотри адренергические и холинергические средства) и некоторые другие препараты
Конкурентное действие (блокирующий, литический эффект, антагонизм)ЛС по структуре частично похоже на сигнальную молекулу, что позволяет взаимодействовать с рецептором, образуя над ним экран. Возникает конкурентная борьба за рецептор, в которой ЛС имеет “численное преимущество”! Поэтому естественный медиатор или гормон остается “не у дел”, и реакция не “запускается”Препараты позволяют корректировать (блокировать) физиологические реакции клетки. Примером таких препаратов являются адрено-, холино- и гистаминоблокаторы (смотри соответствующие главы)
Неконкурентное взаимодействиеМолекула ЛС связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на другом участке. При этом изменяется пространственная структура рецептора, что облегчает или затрудняет его контакт с естественным медиаторомБензодиазепины (оказывают анксиолитическое, седативное и противосудорожное действие), взаимодействуя с бензодиазепиновыми рецепторами, увеличивают прочность связи ГАМК (нейромедиатор с тормозящим действием на центральную нервную систему) с ГАМК-рецепторами

Воспроизведение действия (миметический эффект) наблюдается в тех случаях, когда молекула лекарственного вещества и естественная сигнальная молекула очень похожи: имеют высокое соответствие физико-химических свойств и структуры, обеспечивающих одинаковые внутриклеточные изменения. Результатом взаимодействия лекарства с рецептором в этом случае является активация или торможение определенной функции клеток в полном соответствии с действием эндогенной (внутренней) сигнальной молекулы. Подобным образом действуют очень многие аналоги гормонов и медиаторов (глава 3.1, глава 3.2, глава 3.3). Цель создания подобных лекарств - получение препаратов с более выраженным, стабильным и длительным по сравнению с медиатором (адреналин, ацетилхолин, серотонин и другие) действием, а также восполнение дефицита медиатора или гормона и, соответственно, их функций.

Конкурентное действие (блокирующий, литический эффект) встречается часто и присуще лекарствам, которые лишь частично похожи на сигнальную молекулу (например, медиатор). В этом случае лекарство способно связываться с одним из участков рецептора, но оно не вызывает комплекса реакций, сопутствующих действию естественного медиатора. Такое лекарство как бы создает над рецептором защитный экран, препятствуя его взаимодействию с естественным медиатором, гормоном и так далее. Конкурентная борьба за рецептор, называемая антагонизмом (отсюда и название лекарств - антагонисты), позволяет корректировать физиологические и патологические реакции. Подобным образом действуют адрено-, холино- и гистаминолитики (глава 3.2, глава 3.7, глава 3.10).

Следующий тип взаимодействия лекарства с рецептором называют неконкурентным, и в этом случае молекула лекарства связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на рядом расположенном участке, то есть действует опосредованно. При этом происходит изменение пространственной структуры рецептора, вызывающее раскрытие или закрытие его для естественного медиатора. В этих случаях рецептор для лекарства и рецептор для медиатора не совпадают, но находятся в одном рецепторном комплексе, и лекарство не вступает в прямое взаимодействие с рецептором. Ярким примером лекарств, действующих по этому типу, являются бензодиазепины - большая группа структурно родственных соединений, обладающих анксиолитическими, снотворными и противосудорожными свойствами (глава 3.1). Соединяясь со специфическими бензодиазепиновыми рецепторами, которые взаимосвязаны с рецепторами гамма-аминомасляной кислоты (ГАМК), лекарственное средство изменяет пространственную конфигурацию ГАМК-рецепторов и увеличивает прочность их связи с субстратом - гамма-аминомасляной кислотой. В результате усиливается тормозящее влияние этого медиатора на центральную нервную систему, чем обеспечивается лечебный эффект препаратов.

Некоторые лекарства способны повышать или понижать синтез естественных регуляторов (медиаторов, гормонов и так далее), влиять на процессы их накопления в клетках или ферментного разрушения. Подробнее такие эффекты будут рассмотрены, в частности, в главе 3.1, посвященной средствам, влияющим на функции центральной нервной системы.

Механизм действия лекарств на молекулярном и клеточном уровнях имеет очень большое значение, но не менее важно знать, на какие физиологические процессы влияет препарат, то есть каковы его эффекты на системном уровне. Возьмем, к примеру, лекарственные средства, снижающие артериальное давление. Один и тот же результат - снижение давления - может быть достигнут разными способами:

1) угнетением сосудодвигательного центра (магния сульфат);

2) угнетением передачи возбуждения в вегетативной нервной системе (ганглиоблокаторы);

3) ослаблением работы сердца, уменьшением его ударного и минутного объемов (бета-адреноблокаторы);

6) снижением активности системы ренин-ангиотензин (ингибиторы АПФ, антагонисты ангиотензиновых рецепторов) и другие.

Таким образом, одни и те же фармакологические эффекты (увеличение частоты сокращений сердца, расширение бронхов, устранение боли и так далее) можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Одни и те же фармакологические эффекты можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Еще один пример - кашель. Если кашель обусловлен воспалением дыхательных путей, назначают противокашлевые средства периферического действия, причем, часто комбинируют их с отхаркивающими препаратами. Кашель у больных туберкулезом или при новообразованиях бронхов устраняют центрально действующие наркотические анальгетики (кодеин). А в детской практике в тяжелых случаях коклюша кашель лечат введением нейролептика хлорпромазина (препарат Аминазин).

Выбор лекарства, необходимого конкретному больному, осуществляет врач, руководствуясь знанием механизма действия лекарственных препаратов и обусловленных им терапевтических и побочных эффектов. Мы надеемся, что теперь вам стало понятнее, как сложен этот выбор, и какими знаниями и опытом надо обладать, чтобы правильно его сделать.

Но поскольку все органы и системы взаимосвязаны, то какие-либо изменения функции одного органа или системы вызывают сдвиги в работе других органов и систем. Кроме того, субстраты для взаимодействия могут находиться в разных органах, что также обеспечивает их взаимосвязь. Она проявляется как на физиологическом, так и на биохимическом уровнях, определяя неоднозначность и многогранность действия лекарств, наличие не только лечебного, но и побочного действия у большинства препаратов.

Механизм фармакологического действия препарата обусловливает не только лечебный, но и, зачастую, побочный эффект лекарственного средства.

Так, расширение сосудов и понижение артериального давления при приеме нитроглицерина сопровождаются рефлекторным повышением частоты сердечных сокращений, а также обусловленной расширением сосудов головного мозга, так называемой нитратной головной болью. Атропин, обладающий выраженными спазмолитическими свойствами, за счет своего механизма действия может нарушить отток внутриглазной жидкости, вызвав приступ глаукомы, и так далее.

На взаимодействие лекарств с биологическим субстратами, а, соответственно, и на эффекты препарата, большое влияние оказывают прием пищи, алкоголя, возраст пациента, одновременный прием других препаратов и еще ряд факторов, роль которых рассматривается в следующих главах.

1.4. ОСОБЕННОСТИ ДЕЙСТВИЯ ЛЕКАРСТВ ПРИ КОМБИНИРОВАНИИ

В клинической практике для всестороннего воздействия на патологический процесс лекарственные вещества, как правило, назначаются в различных сочетаниях. Одновременное применение нескольких лекарств может вызвать эффект, отличающийся по силе. длительности и даже по характеру действия от наблюдаемого при их раздельном использовании. Такое явление называется взаимодействием лекарств. Различают физико-химическое, химическое, фармакокинетическое и фармакодинамическое взаимодействие.

Примером физико-химического взаимодействия может служить способность активированного угля (крахмала, белой глины и др.) адсорбировать на своей поверхности различные вещества и токсины, уменьшая их всасывание. Это свойство активированного угля используется при лечении отравлений обусловленных попаданием в организм токсического вещества через желудочно-кишечный тракт.

В результате химической реакции между лекарствами исчезают "реагенты" и появляются новые вещества, с другой, естественно, биологической активностью. Например, при взаимодействии тетрациклинов с препаратами кальция могут образовываться нерастворимые комплексы, которые плохо всасываются из кишечника, и резорбтивное действие как тетрациклинов, так и кальция не проявляется. Препараты, имеющие щелочную реакцию, нейтрализуются в кислой среде, теряя при этом терапевтическую активность. Так, раствор кофеин-бензоата натрия, имеющий щелочную реакцию, нельзя вводить с раствором новокаина гидрохлорида, имеющим кислую реакцию.

Фармакокинетическое взаимодействие лекарств возможно на путях введения и выведения, в процессе распределения и биотрансформации. Всасывание могут изменить препараты, влияющие на рН желудочно-кишечного тракта, его моторику и мембранные транспортные системы. Например, применение антацидов снижает всасывание, а соответственно и действие слабых кислот (кислоты ацетилсалициловой, сульфаниламидов). Дифенин, блокирующий транспортные системы кишечника, тормозит всасывание фолиевой кислоты. Если лекарства медленно всасываются из желудочно-кишечного тракта, то применение препаратов, ускоряющих перистальтику, уменьшает, а замедляющих - увеличивает их резорбцию и концентрацию в крови.

После всасывания лекарства могут связываться с белками плазмы крови. Если одновременно вводят несколько препаратов, то они могут конкурировать друг с другом за места связывания с белком, в результате концентрация в крови свободной (активной) фракции одного из препаратов повышается, возрастает и его эффект. Например, при совместном применении кислоты ацетилсалициловой и антикоагулянтов непрямого действия концентрация свободной фракции последних увеличивается, и свертывание крови подавляется ниже допустимого предела.

При сочетанном применении лекарств может меняться их метаболизм. Например, фенобарбитал, рифампицин повышают активность микросомальных ферментов печени, что ускоряет метаболизм применяемых вместе с ними препаратов. Этиловый спирт при алкоголизме, напротив, снижает активность микросомальных ферментов печени, что может значительно усилить действие и токсичность препаратов.

Лекарственные средства могут взаимодействовать и на путях выведения. Это зачастую связано с изменением рН мочи. Так, при совместном использовании со средствами, снижающими рН мочи, сульфаниламиды выпадают в осадок, образуя камни в почках. Наоборот, повышая рН, можно уменьшить возможность повреждения почечных канальцев.

Фармакодинамическое взаимодействие лекарственных препаратов обусловлено их влиянием на определенные рецепторы, что ка правило изменяет эффект при комбинировании. Если в основе фармакодинамического взаимодействия лекарств лежит их влияние на один и тот же рецептор, то говорят о прямом взаимодействии, во всех остальных случаях - о косвенном.

При сочетанном применении лекарств может наблюдаться синергизм, то есть превышение при комбинировании лекарств эффекта, вызываемого каждым из них в отдельности. Это позволяет уменьшить дозы комбинируемых препаратов и их токсичность. Синергизм может проявляться в виде суммирования или потенцирования. При совместном применении лекарств, действующих на один и тот же рецептор, конечный эффект может быть равен сумме эффектов отдельно применяемых препаратов (суммационный или аддитивный синергизм). Например, при головной и зубной боли нередко используются лекарства, содержащие несколько болеутоляющих препаратов (анальгин, амидопирин, кислота ацетилсалициловая, парацетамол и т.д.).

При сочетании препаратов, действующих на разные рецепторы, может наблюдаться потенцирование - усиление действия одного препарата другим. Например, использование средств, успокаивающих центральную нервную систему (нейролептиков, транквилизаторов) позволяет значительно снизить дозу общих анестетиков при проведении наркоза.

При сочетанном использовании лекарств может наблюдаться антагонизм - действие одного из них (или всех) уменьшается или полностью устраняется. Такой вид взаимодействия широко используется для лечения отравлений лекарственными препаратами или для коррекции их побочного действия. Антагонизм может быть полным или частичным, односторонним или двусторонним.

При прямом антагонизме лекарственные препараты оказывают противоположное действие на одни и те же рецепторы, снимая действие друг друга. Например, при отравлении адреномиметиками применяют адреноблокаторы. При лечении отравлений препаратами, не имеющими прямых антагонистов или, если последние не дают достаточно сильного эффекта, можно использовать явление косвенного антагонизма. Например, острая сердечная недостаточность, развивающаяся при отравлении антихолинэстеразными средствами из-за стабилизации эндогенного ацетилхолина, снимается внутривенным введением норадреналина.

При сочетанном применении лекарств одни их эффекты могут усиливаться, другие - ослабляться. Такой вид взаимодействия называется синерго-антагонизмом. Например, на фоне М- холиноблокаторов снимается действие антихолинэстеразных средств на М-холинорецепторы, а действие на Н-холинорецепторы - усиливается.

1.1.4. Биотрансформация лекарств

Скорость и характер превращения лекарственных веществ в организме обусловлены их химическим строением. Как правило, в результате биотрансформации липоидорастворимые соединения превращаются в водорастворимые, что улучшает их выведение почками, желчью, потом. Биотрансформация лекарств происходит в основном в печени при участии микросомальных ферментов, имеющих незначительную субстратную специфичность. Превращение лекарств может идти либо по пути деградации молекул (окисление, восстановление, гидролиз), либо через усложнение структуры соединения, связывание метаболитами организма (конъюгация).

Одним из ведущих путей превращения является окисление лекарственных препаратов (присоединение кислорода, отнятие водорода, дезалкилирование, дезаминирование и т.д.). Окисление чужеродных соединений (ксенобиотиков) осуществляется оксидазами при участии НАДФ, кислорода и цитохрома Р450. Это так называемая неспецифическая окисляющая система. Гистамин, ацетилхолин, адреналин и ряд других эндогенных биологически активных веществ окисляются специфичными ферментами.

Восстановление - более редкий путь метаболизма лекарств, происходящий под влиянием нитроредуктаз и азоредуктаз и других ферментов. Этот путь метаболизма сводится к присоединению электронов к молекуле. Он характерен для кетонов, нитратов, инсулина, азосоединений.

Гидролиз - основной путь инактивации эфиров и амидов (местные анестетики, миорелаксанты, ацетилхолин и т.д.). Гидролиз происходит под влиянием эстераз, фосфатаз и т.п.

Конъюгация - связывание молекулы лекарственного вещества с каким-либо другим соединением, являющимся эндогенным субстратом (глюкуроновой, серной, уксусной кислотами, глицином и т.д.).

В процессе биотрансформации лекарственное вещество теряет свою исходную структуру - появляются новые вещества. В некоторых случаях они более активны и токсичны. Например, витамины активируются, превращаясь в коферменты, метанол менее токсичен, чем его метаболит - муравьиный альдегид.

Большинство лекарственных препаратов трансформируется в печени, и при недостаточном содержании гликогена, витаминов, аминокислот и плохом снабжении организма кислородом этот процесс замедляется.

- 4 - Понятие о фармакодинамике и механизме действия лекарственных веществ

Механизм действия - это способ взаимодействия лекарственных веществ с рецепторами комплементарных клеток и тканей организма (комплементарность - пространственное соответствие), при котором происходит включение биохимических и физиологических рычагов, изменяющих течение патологического процесса.

Рецепторы - активные группировки макромолекул субстрата, к которым присоединяется вещество.

Механизм действия отвечает на вопросы - Почему? и Как?

Почему и как развивается бактерицидное действие лекарственного вещества, снотворное или слабительное.

В настоящее время можно выделить следующие типы механизмов действия лекарственных веществ:

1. Физические и физико-химические механизмы.

Многие лекарственные вещества, контактируя с клеточными мембранами (адсорбируясь на них или растворяясь в них) нарушают проницаемость или повышают порозность последних. Всасываясь в клетку, изменяют коллоидное состояние белков или других ингредиентов протоплазмы или ядра. Так действуют некоторые краски, нитрофураны и некоторые другие лекарственные вещества.

2. Химические механизмы.

В данном случае лекарственные вещества вступают в химическую реакцию с составными частями различных жидкостей и тканей организма. Так объясняется механизм действия щелочей, кислот, солей, тяжелых металлов и т.д. (сода + HСl и др.)

3. Биохимические механизмы.

Это действие лекарственных веществ приводит к изменению ферментных систем клеток тканей и нарушению обменных процессов.

Существует несколько групп лекарственных веществ, которые ингибируют (угнетают) различные ферменты. Например, ФОС, ХОС, карбаматы ингибируют ацетилхолинестеразу, которая катализирует расщепление ацетилхолина. Существуют ингибиторы моноаминооксидазы, цитохромоксидазы, дегидраз и др.

Часть лекарственных веществ восстанавливают активность отдельных ферментов - реактиваторы (дипироксим восстанавливает ацетилхолин).

4. Механизм действия лекарственных веществ по конкурентному (антагонистическому типу).

Так действуют сульфаниламиды, мышечные релаксанты, противогистаминные средства и др.

5. Механизм действия по принципу образования хелатов.

По этому принципу действуют многие антидоты при отравлении солями тяжелых металлов и др.

Фармакодинамика - это комплекс изменений в организме вызванный лекарственным веществом.

Изучение фармакодинамики позволило установить, что клинические изменения обусловлены физиологическими изменениями, причем одно и то же клиническое проявление действия лекарственных веществ может быть обусловлено различными изменениями физиологических процессов.

Например, слабительный эффект глауберовой соли обусловлен повышением чувствительности гладкой мускулатуры (действие на барорецепторы); растительные слабительные (сабур, лист Сены) вызывают слабительный эффект за счет раздражающего действия; холиномиметики (ареколин, карбахолин) за счет повышения тонуса блуждающего нерва.

Изучение на клиническом и физиологическом уровне дало возможность поставить вопрос: «Почему различные по действию лекарственные вещества вызывают одинаковые клинические проявления (признаки)? Почему одни препараты эффективны при определенных биохимических нарушениях, а другие неэффективны и даже вредны?»

Таким образом, фармакодинамика изучает закономерности проявления эффектов, а также локализацию и механизм действия при введении фармакологических веществ в динамике на метаболитическом, функциональном и морфологическом уровнях от момента их начального возникновения и до момента полного их исчезновения. Так как развитие большинства процессов начинается на субклеточном уровне, то и фармакодинамика изучается на различных уровнях: молекулярном, субклеточном, клеточном, тканевом, органном и организменном.

Читайте также: