Фармококинетика и проникновение антибиотиков в жидкости глаза

Обновлено: 11.05.2024

Активное вещество - бензилпенициллин прокаина (бензилпенициллина новокаиновая соль) - 600000 ЕД.

Описание

Фармакотерапевтическая группа

Антибиотик - пенициллин биосинтетический

Код АТХ

Фармакодинамика:

Бактерицидный антибиотик из группы биосинтетических ("природных") пенициллинов. Подавляет синтез клеточной стенки микроорганизмов. Активен в отношении грамположительных возбудителей: стафилококков (необразующие пенициллиназу) стрептококков пневмококков коринебактерий дифтерии анаэробных спорообразующих палочек палочек сибирской язвы Actinomyces spp.; грамотрицательных микроорганизмов: Neisseria gonorrhoeae Neisseria meningitidis а также в отношении Treponema spp. гонококков менингококков и в отношении спирохет. Не активен в отношении большинства грамотрицательных бактерий риккетсий вирусов простейших. К действию препарата устойчивы пенициллиназообразующие штаммы микроорганизмов. Разрушается в кислой среде. Прокаиновая соль бензилпенициллина в сравнении с калиевой и натриевой солями характеризуется большей продолжительностью действия.

Фармакокинетика:

Время достижения максимальной концентрации при внутримышечном введении - 20-30 мин. Период полувыведения 30-60 мин при почечной недостаточности - 4-10 ч и более. Связь с белками плазмы - 60%. Проникает в органы ткани и биологические жидкости кроме ликвора тканей глаза и простаты. При воспалении менингеальных оболочек проникает через гематоэнцефалический барьер. Выводится почками в неизмененном виде.

Показания:

Бактериальные инфекции вызванные чувствительными возбудителями: крупозная и очаговая пневмония эмпиема плевры бронхит; сепсис септический эндокардит (острый и подострый) перитонит; менингит; остеомиелит; инфекции мочеполовой системы (пиелонефрит пиелит цистит уретрит гонорея бленнорея сифилис цервицит) желчевыводящих путей (холангит холецистит); раневая инфекция инфекции кожи и мягких тканей: рожа импетиго вторично инфицированные дерматозы; дифтерия; скарлатина; сибирская язва; актиномикоз; ЛОР-заболевания глазные болезни.

Противопоказания:

Гиперчувствительность к группе пенициллинов аллергия к прокаину.

С осторожностью:

Бронхиальная астма сенная лихорадка и другие аллергические заболевания снижение свертывающей активности крови беременность период лактации почечная недостаточность.

Способ применения и дозы:

Внутримышечно. Внутривенное и эндолюмбалъное введение запрещается!

Средняя терапевтическая доза для взрослых: разовая - 300000 ЕД суточная - 600000 ЕД. Высшая суточная доза для взрослых - 1200000 ЕД. Детям в возрасте до 1 года назначают по 50000-100000 ЕД/кг/сут старше 1 года - по 50000 ЕД/кг/сут. Кратность введения 1-2 раза в сутки.

Длительность лечения в зависимости от формы и тяжести течения заболевания продолжается от 7-10 дней до 2 месяцев и более (септический эндокардит сепсис).

Растворы готовят ex tempore добавляя к содержимому флакона 3 мл воды для инъекций или раствора натрия хлорида для инъекций 0.9%. Содержимое флакона интенсивно встряхивают образующуюся суспензию быстро набирают в шприц и вводят глубоко в мышцу.

Побочные эффекты:

Аллергические реакции: гипертермия крапивница кожная сыпь сыпь на слизистых оболочках артралгия эозинофилия ангионевротический отек интерстициальный нефрит бронхоспазм; редко - анафилактический шок.

Местно: болезненность и уплотнение в месте инъекции.

При попадании в сосудистое русло: шум в ушах нарушение зрения страх головокружение кратковременная потеря сознания.

При введении очень больших доз могут наблюдаться нейротоксические явления: тошнота рвота повышение рефлекторной возбудимости симптомы менингизма судороги кома.

Взаимодействие:

Бактерицидные антибиотики (в т.ч. цефалоспорины ванкомицин рифампицин аминогликозиды) оказывают синергидное действие; бактериостатические (в т.ч. макролиды хлорамфеникол линкозамиды тетрациклины) - антагонистическое.

Повышает эффективность непрямых антикоагулянтов (подавляя кишечную микрофлору снижает протромбиновый индекс); снижает эффективность пероральных контрацептивов лекарственных средств в процессе метаболизма которых образуется пара-аминобензойная кислота этинилэстрадиола - риск развития кровотечений "прорыва".

Диуретики аллопуринол блокаторы канальцевой секреции фенилбутазон нестероидные противовоспалительные препараты снижая канальцевую секрецию повышают концентрацию бензилпенициллина.

Аллопуринол повышает риск развития аллергических реакций (кожной сыпи).

Особые указания:

Если через 2-3 дня (максимум 5 дней) после начала применения препарата эффекта не отмечается следует перейти-к применению других антибиотиков или комбинированной терапии. В связи с возможностью развития грибковых поражений целесообразно при длительном лечении бензилпенициллином назначать витамины группы В и витамин С а при необходимости - нистатин и леворин. Необходимо учитывать что применение недостаточных доз препарата или слишком раннее прекращение лечения часто приводит к появлению резистентных штаммов возбудителей.

Нельзя допускать внутривенное и эндолюмбальное введение (возможно развитие синдрома Уанье - развитие чувства подавленности тревоги парестезий и нарушения зрения).

При лечении венерических заболеваний если имеется подозрение на сифилис перед началом терапии и затем в течение 4 мес необходимо проведение микроскопических и серологических исследований.

При появлении любой аллергической реакции требуется немедленное прекращение лечения.

Форма выпуска/дозировка:

Упаковка:

Порошок для приготовления суспензии для внутримышечного введения по 600000 ЕД во флаконах вместимостью 10 мл.

1 5 или 10 флаконов с инструкцией по применению помещают в пачку из картона.

Условия хранения:

Список Б. В сухом месте при температуре не выше 25 °С.

Хранить в местах недоступных для детей.

Срок годности:

Условия отпуска

Производитель

Открытое акционерное общество "Акционерное Курганское общество медицинских препаратов и изделий "Синтез" (ОАО "Синтез"), 640008, Курганская обл., г. Курган, проспект Конституции, д. 7, Россия

Владелец регистрационного удостоверения/организация, принимающая претензии потребителей:

Бензилпенициллина новокаиновая соль - цена, наличие в аптеках

Указана цена, по которой можно купить Бензилпенициллина новокаиновая соль в Москве. Точную цену в Вашем городе Вы получите после перехода в службу онлайн заказа лекарств:

Фармококинетика и проникновение антибиотиков в жидкости глаза

В начале нынешнего столетия арсенал офтальмолога при лечении инфекционных поражений глаз был более чем скромен. Так, известны рекомендации использовать субконъюнктивальные инъекции цианида ртути при "опасно поврежденных или инфицированных глазах''. В 1938 г. Домагк получил Нобелевскую премию в области медицины за исследования антибактериальных свойств p-sulfamylchysoidine. Внедрение сульфаниламидов было первым достижением, коренным образом изменившим подходы к лечению инфекционных заболеваний. Вторым принципиально новым шагом было открытие антибиотиков [1, 7].

Левомицетин

Фторхинолоновые производные:
ципрофлоксацин, офлоксацин, норфлоксацин

Аминогликозиды:
гентамицин, тобрамицин, неомицин

Полимиксины:
полимиксина В сульфат

Тетрациклины:
тетрациклин, грамицидин, сульфацил-натрий

Рис. 1. Бактериальный коньюнктивит

Левомицетин
(Chloramphenicol)

Является наиболее широко применяемым антибиотиком в офтальмологической практике и оказывает антимикробное действие за счет подавления синтеза белка.
Антибиотик широкого спектра действия, впервые выделенный из Streptomyces venezuelae. Дает бактериостатический эффект, ингибируя синтез белка посредством подавления транспорта активированных аминокислот от растворимой РНК к рибосомам. Доказано наличие левомицетина в определяемых количествах во влаге передней камеры после инстилляции в конъюнктивальную полость. Развитие резистентности к левомицетину может иметь место при лечении ряда инфекций, в частности стафилококковой инфекции, однако это бывает редко.
Показания. Левомицетин следует назначать только при таких серьезных инфекционных заболеваниях, при которых другие потенциально менее опасные препараты неэффективны или противопоказаны. Рекомендуется проведение бактериологического исследования с целью выявления возбудителя и определения степени его чувствительности к левомицетину.
Следует иметь в виду, что на фоне местного использования левомицетина возможно развитие таких грозных осложнений, как гипоплазия костного мозга, сопровождающаяся апластической анемией, даже с летальным исходом.
Наиболее чувствительными к инстилляциям левомицетина или закладываниям мази с этим препаратом являются следующие возбудители инфекционных заболеваний роговицы или конъюнктивы: Staphylococcus aureus; cтрептококки, включая Streptococcus pneumonia, Escherichia coli, Haemophilus influenzaе, виды Klebsiella/Enterobacter, Moraxella lacunata (бацилла Моракса - Аксенфельда), виды Neisseria.
Длительное назначение левомицетина, как и любого другого антибиотика, может приводить к чрезмерному росту нечувствительных микроорганизмов и грибков. Если во время лечения левомицетином выявлена новая инфекция, необходимо прекратить инстилляции или закладывание мази до уточнения характера патогенного фактора.
Побочные реакции в виде аллергии или воспалительных изменений обычно обусловлены индивидуальной непереносимостью. Используют 1% глазную мазь и глазные капли в концентрации от 0,16% до 0,5%. Две капли раствора или небольшое количество мази назначают местно в конъюнктивальную полость пораженного глаза каждые 3 ч в течение дня и ночи первые 48 ч, после чего интервалы закапываний или закладываний мази могут быть увеличены [6].

Производные фторхинолона

История хинолонов началась со случайного открытия антибактериального действия вещества, обнаруженного при перегонке в процессе синтеза хлороквина. На основании изучения этого вещества была синтезирована налидиксовая кислота, которая была активна в отношении грамположительных микроорганизмов. Аналоги данного соединения, содержащие атом фтора, имели более широкий спектр антибактериальной активности. Отличительной чертой хинолонов является способность подавлять функционирование нуклеиновых кислот в самой бактериальной хромосоме. По отношению к фторированным хинолонам резистентность со стороны микроорганизмов развивается весьма редко [4, 5]. Ципрофлоксацин
(Ciprofloxacinum)

Синтетический антибиотик фторхинолонового ряда широкого спектра действия, эффективный в отношении как грамотрицательных, так и грамположительных микроорганизмов. Ципрофлоксацин отличается от других препаратов хинолонового ряда наличием атома фтора в 6-м положении, пиперазиновой структуры в 7-м положении и циклопропилового кольца в 1-м положении.
После инстилляций возможна системная абсорбция препарата. Так, при закапывании в оба глаза 0,3% раствора ципрофлоксацина каждые 2 ч с момента утреннего пробуждения в течение 2 дней с последующим закапыванием каждые 4 ч с момента пробуждения еще в течение 5 дней максимальная концентрация ципрофлоксацина в плазме крови составила 5 нг/мл. Средняя концентрация составляла менее 2 нг/мл.
Ципрофлоксацин проявляет активность в отношении большого количества грамотрицательных и грамположительных микроорганизмов в исследованиях in vitro. Бактерицидное действие препарата объясняется воздействием на ДНК-гиразу, необходимую для синтеза ДНК бактерий. Ципрофлоксацин активен против следующих микроорганизмов:

Рис. 2. Бактериальный конъюнктивит

  • грамположительных - Staphylococcus aureus (включая метициллинрезистентные штаммы), S. epidermidis; Streptococcus pneumoniae, S. viridans;
  • грамотрицательных - Haemophilus influenzae, Pseudomonas aeruginosa, Serratia marcescens.

Показана активность ципрофлоксацина против следующих микроорганизмов in vitro:

грамположительных - Enterococcus faecalis; Staphylococcus haemoliticus, S. hominis, S. saprophyticus; Streptococcus pyogenes;

  • грамотрицательных - Acinetobacter calcoaceticus (подвид anitratus); Aeromonas caviae, A. hydrophila; Brucella melitensis; Campylobacter coli, C. jejuni; Citrobacter diversus,
    C. freundii; Edwardsiella tarda; Enterobacter aerogenes, E. cloacae; Escherichia coli; Haemophilus ducreyi, H. influenzae,
    H. parainfluenzae; Klebsiella pneumoniae,
    K. oxytoca; Legionella pneumophila;
    Moraxella (Branhamella) catarrhalis; Morganella morganii; Neisseria gonorrhoeae,
    N. meningitidis; Pasteurella multocida;
    Proteus mirabilis, P. vulgaris; Providencia rettgeri, P. stuartii; Salmonella enteritidis,
    S. typhi; Shigella sonneii, S. flexneri;
    Vibrio cholerae; V. parahaemolyticus,
    V. vulnificus; Yersinia enterocolitica.

Среди других микроорганизмов следует отметить умеренную чувствительность к ципрофлоксацину со стороны Chlamydia trachomatis и Mycobacterium tuberculosis.
Ципрофлоксацин не дает перекрестной реакции с другими антимикробными препаратами, такими как b- лактамные антибиотики и аминогликозиды, поэтому микроорганизмы, устойчивые к этим препаратам, могут оказаться чувствительными к ципрофлоксацину. Клинические исследования показали, что на фоне терапии ципрофлоксацином в виде глазных капель отмечается излечение 76% больных с язвами роговицы, положительными по результатам бактериологических исследований. Полного восстановления эпителиального покрова роговицы удавалось достичь в 92% случаев язвенного корнеального поражения. Расширенное клиническое исследование показало, что через 3 и 7 дней закапывания у 52% больных с конъюнктивитом и положительными результатами бактериологических культуральных исследований наступало клиническое выздоровление и к моменту прекращения инстилляций было уничтожено 70-80% всех причинных микроорганизмов.
Показания. Закапывание глазных капель 0,3% раствора ципрофлоксацина показано при инфекционном поражении глаза чувствительными к антибиотику микроорганизмами: при язвах роговицы, вызванных Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, S. epidermidis, Stre p tococcus pneumoniae, Streptococcus группы Viridans; при конъюнктивитах, вызванных Haemophilus influenzae, Staphylococcus aureus, S. epidermidis, Streptococcus pneumoniae.
Для лечения язв роговицы рекомендуется закапывание 2 капель 0,3% раствора ципрофлоксацина в пораженный глаз каждые 15 мин в течение первых 6 ч, а затем по 2 капли раствора каждые полчаса в течение дня. На 2-й день закапывают по 2 капли в пораженный глаз каждый час. С 3-го по 14-й день по 2 капли в пораженный глаз закапывают каждые 4 ч. Лечение может быть продолжено и после 14-го дня, если эпителизация роговицы не наступила. При бактериальном конъюнктивите 1 или 2 капли инстиллируют в конъюнктивальную полость каждые 2 ч с момента утреннего пробуждения в течение 2 дней и по 1-2 капли каждые 4 ч в течение последующих 5 дней.
Офлоксацин
(Ofloxacin)

  • грамположительных - Staphylococcus aureus, S. epidermidis, Streptococcus pneumoniae;
  • грамотрицательных - Enterobacter cloacae, Haemophilus influenzae, Proteus mirabilis, Pseudomonas aeruginosa.

Минимальная ингибирующая концентрация (70% МИК, т. е. концентрация, необходимая для подавления 70% штаммов возбудителя; чем ниже величина 70% МИК, тем более сильное действие оказывает антибиотик) для офлоксацина примерно вдвое меньше 70% МИК для гентамицина в отношении Staphylococcus aureus. Офлоксацин превосходит по эффективности в отношении Staphylococcus epidermidis такие антибиотики, как левомицетин и гентамицин. Офлоксацин вдвое активнее левомицетина в отношении Streptococcus pneumonia. Активность офлоксацина превышает таковую тобрамицина в отношении Klebsiella pne umonia в 32 раза, и его 70% МИК ниже, чем 70% МИК тобрамицина в отношении Pseudomonas aeruginosa.
Cтандартной схемой назначения препарата является следующая: закапывание 1-2 капель 0,3% раствора офлоксацина в конъюнктивальную полость пораженного глаза каждые 2-4 ч первые 2 дня и затем каждые 4 ч последующие 5 дней.

Норфлоксацин
(Norfloxacin)

Фторхинолоновый антибиотик для инстилляций, отличающийся от других фторхинолонов наличием атома фтора в 6-м положении и пиперазиновой структуры в 7-й позиции. Так, показано, что наличие атома фтора в 6-м положении повышает эффективность препарата в отношении грамотрицательных бактерий, а пиперазиновая структура обеспечивает активность в отношении псевдомонад. Норфлоксацин подавляет синтез ДНК бактерий, что позволяет считать препарат бактерицидным [2, 8].
Показана активность препарата in vitro и в клинических исследованиях в отношении большинства штаммов следующих микроорганизмов:

  • грамположительных - Staphylococcus aureus, S. epidermidis, S. warnerii; Streptococcus pneumonia;
  • грамотрицательных - Acinetobacter calcoaceticus, Aeromonas hydrophila, Haemophilus influenzae, Proteus mirabilis, Pseudomonas aeruginosa, Serratia marcescens.

Норфлоксацин активен in vitro в отношении следующих микрорганизмов (клиническая активность не установлена):

  • грамположительных - Bacillus cereus, Enterococcus faecalis, Staphylococcus saprophyticus;
  • грамотрицательных - Citrobacter diversus, C. freundii; Edwardsiella tarda; Enterobacter aerogenes, E. cloacae; Escherichia coli; Hafnia alvery;
  • Haemophilus aegyptius ( бацилла Коха - Уикса); Klebsiella oxytoca, K. pneumoniae, K. rhinoscleromatis; Morganella morganii; Neisseria gonorrhoeae; Proteus vulgaris; Providencia alcalifaciens, P. rettgeri, P. stuartii; Salmonella typhi; Vibrio cholerae, V. parahaemoliticus; Yersinia enterocolitica;
  • других микроорганизмов - Ureaplasma urealyticum.

Норфлоксацин неактивен в отношении облигатных анаэробов.
Рекомендуемая доза для взрослых и детей старше 1 года составляет 1 - 2 капли 0,3% раствора норфлоксацина 4 раза в день в пораженный глаз в течение 7 дней. При тяжелых поражениях глаза в 1-й день возможны инстилляции 1 - 2 капель каждые 2 ч с момента утреннего пробуждения.

Аминогликозиды

Гентамицина сульфат
(Gentamicini sulfas)

Водорастворимый антибиотик группы аминогликозидов, выделяемый из культуры Micromonospora purpurea [3].
Гентамицина сульфат проявляет in vitro активность в отношении целого ряда штаммов следующих микроорганизмов:

Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes, S. pneumoniae, Enterobacter aerogenes, Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Serratia marcescens.

Стерильные глазные капли или мазь гентамицина сульфата назначают при конъюнктивитах, кератитах, кератоконъюнктивитах, язвах роговицы, блефаритах, блефароконъюнктивитах, острых мейбомиитах и дакриоциститах, вызванных чувствительными штаммами микроорганизмов.
Обычно назначают 1 - 2 капли (3 мг/мл) раствора гентамицина каждые 4 ч в пораженный глаз. При тяжелых поражениях частота закапываний может быть увеличена до одного закапывания каждый час.

Тобрамицин
(Tobramycinum)

Водорастворимый антибиотик аминогликозидового ряда [9]. К тобрамицину чувствительны многие штаммы стафилококков, в том числе S. aureus и S. epidermidis ( включая пенициллинрезистентные штаммы); стрептококков, включая некоторые b- гемолитические штаммы группы А, а также
Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus mirabilis, Morganella morganii, большинство штаммов Proteus vulgaris, Haemophilus influenzae и H. aegyptius, Moraxella lacunata, Acinetobacter ealeoaceticus, некоторые штаммы Neisseria.
Исследования бактериальной чувствительности показали, что в ряде случаев резистентные к гентамицину микроорганизмы сохраняли чувствительность к тобрамицину.
0,3% раствор тобрамицина закапывают в пораженный глаз по 1 - 2 капли каждые 4 ч.

Неомицин
(Neomycinum)

Аминогликозид, антибактериальное действие которого связано с подавлением синтеза белка за счет образования связи с РНК рибосом, что затрудняет считывание генетического кода бактерий. Неомицин оказывает бактерицидное действие в отношении целого ряда грамположительных и грамотрицательных микроорганизмов. Чаще используется в комбинированных препаратах.

Полимиксины

Полимиксина В сульфат
(Polymyxini B sulfas)

Антибиотик из группы полимиксинов с бактерицидной активностью в отношении большого количества грамотрицательных микроорганизмов. Полимиксина В сульфат способен увеличивать проницаемость стенки бактериальной клетки путем взаимодействия с фосфолипидными компонентами мембраны. Системная абсорбция после инстилляций полимиксина выражена незначительно. Закапывание препарата в дозе 10 000 ЕД в 1 мл приводит к максимальному повышению его уровня в сыворотке крови до 1 ЕД/мл. Данный антибиотик чаще всего используется в сочетании с неомицином.

Рис. 3. Блефарит

Тетрациклины

Тетрациклина гидрохлорид
(Tetracyclini hydrochloridum)

Используется для лечения поверхностных инфекционных поражений глазного яблока, а также для профилактики офтальмии новорожденных, вызванных Neisseria gonorrhoeae или Chlamydia trachomatis.
Чувствительность к тетрациклину проявляют следующие микроорганизмы:
Staphylococcus aureus, стрептококки, включая S. pneumoniae, Escherichia coli, штаммы Neisseria, Сhlamydia trachomatis.
Препарат назначают в виде 1% мази или суспензии.

Грамицидин
(Gramicidinum)

Грамицидин представляет собой смесь трех антибактериальных соединений (грамицидинов A, B и C), образующихся в результате роста Bacillus brevis.
Бактерицидное действие грамицидина распространяется на большое количество грамположительных микроорганизмов. Данный антибиотик повышает проницаемость клеточной стенки бактерии путем формирования сети каналов в мембране микроорганизма. Чаще используется в комбинации с другими антибиотиками.
Сульфацил-натрий
(Sulfacylum-natrium)

Сульфаниламиды являются бактериостатическими препаратами. Они подавляют бактериальный синтез дегидрофолиевой кислоты, препятствуя соединению птеридина с аминобензойной кислотой путем конкурентного подавления активности фермента дегидроптероатсинтетазы. Возможно развитие резистентности к данному препарату по двум механизмам:

  • изменение дегидроптероатсинтетазы со снижением чувствительности к сульфаниламидам;
  • образование большего количества аминобензойной кислоты.

Местное применение сульфаниламидов эффективно в том случае, когда возбудителем инфекционного заболевания глаз является чувствительный штамм таких микроорганизмов, как
Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, стрептококки группы viridans, Haemophilus influenzae, отдельные штаммы Klebsiella и Enterobacter.

Редкими, но фатальными осложнениями применения сульфаниламидов являются:

  • синдром Стивенса - Джонсона;
  • токсический эпидермальный некролиз;
  • агранулоцитоз;
  • апластическая анемия.

Следует иметь в виду, что эффективность сульфаниламидов может быть значительно снижена за счет пара - аминобензойной кислоты, в большом количестве присутствующей в гнойном экссудате. Важно и то, что сульфаниламиды несовместимы с препаратами серебра.
Назначают 10, 15 и 30% растворы препарата в виде инстилляций в пораженный глаз.

Бацитрацин
(Bacitracin zinc)

Цинковая соль циклических полипептидов, образованных в результате роста микроорганизмов группы licheniformis бактерий Bacillus subtilis.
Бактерицидный препарат, эффективный против целого ряда грамположительных и грамотрицательных бактерий. Эффект обусловлен влиянием на процессы синтеза стенки микроорганизма. Бацитрацин подавляет синтетические процессы, ингибируя регенерацию фосфолипидных рецепторов, задействованных в синтезе пептидогликанов. Применяется в комбинированных антибактериальных препаратах.

Триметоприм
(Trimetoprimum sulfas)

Синтетический антибактериальный препарат, активный в отношении широкого спектра аэробных грамположительных и грамотрицательных микроорганизмов. Триметоприм блокирует образование тетрагидрофолиевой кислоты из дигидрофолиевой кислоты за счет обратимого подавления активности фермента дигидрофолатредуктазы. Причем блокада бактериального фермента гораздо больше выражена, чем блокада соответствующего энзима человеческого организма, что позволяет говорить о селективности воздействия на биосинтез бактерий. Исследования in vitro показали антибактериальное действие триметоприма в отношении следующих микроорганизмов:

Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes, S. faecalis, S. pneumoniae, Haemophilus influenzae, H. aegyptius, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, P. vulgaris, Enterobacter aerogenes, Serratia marcescens.

Cистемная абсорбция триметоприма при местном назначении незначительна. Так, при закапывании капель, содержащих 1 мг триметоприма в 1 мл, максимальная концентрация препарата в сыворотке крови составила 0,03 мкг/мл.

Технологический Институт МАРА, Медицинский факультет, Малайзия (Universiti Teknologi MARA (UiTM), Faculty of Medicine, Sungai Buloh Campus, Jalan Hospital)

Технологический Институт МАРА, Медицинский факультет, Малайзия (Universiti Teknologi MARA (UiTM), Faculty of Medicine, Sungai Buloh Campus, Jalan Hospital);
Технологический Институт МАРА, Медицинский факультет, Малайзия (Universiti Teknologi MARA (UiTM), R16 "Molecular Pharmacology and Advanced Therapeutics", Brain and Neuroscience Communities of Research);
ФГБОУ ВПО "Волгоградский государственный медицинский университет" Минздрава России, НИИ фармакологии

Технологический Институт МАРА, Медицинский факультет, Малайзия (Universiti Teknologi MARA (UiTM), Faculty of Medicine, Sungai Buloh Campus, Jalan Hospital);
Технологический Институт МАРА, Медицинский факультет, Малайзия (Universiti Teknologi MARA (UiTM), R16 "Molecular Pharmacology and Advanced Therapeutics", Brain and Neuroscience Communities of Research)

Транспорт лекарственных средств через роговицу глаза: перспективы применения липосомальных лекарственных форм

Журнал: Вестник офтальмологии. 2014;130(4): 117‑122

Аляутдин Р.Н., Иежица И.Н., Агарвал Р. Транспорт лекарственных средств через роговицу глаза: перспективы применения липосомальных лекарственных форм. Вестник офтальмологии. 2014;130(4):117‑122.
Aliautdin RN, Iezhitsa IN, Agarval R. Transcorneal drug delivery: prospects for the use of liposomes. Vestnik Oftalmologii. 2014;130(4):117‑122. (In Russ.).

Анатомические и физиологические барьеры глазного яблока определяют низкую биодоступность офтальмологических препаратов. Уникальная структура роговицы, состоящая из связанных плотными контактами эпителиальных клеток и гидрофильной стромы, ограничивает проникновение как гидрофильных, так и липофильных лекарственных средств при традиционных путях введения. Кроме того, слезная пленка, включающая белки и ферменты, также представляет собой барьер для транскорнеального транспорта лекарственных препаратов. Несмотря на то что в роговице имеются различные транспортные системы, принимающие участие в доставке некоторых лекарственных препаратов, проблемы повышения биодоступности офтальмологических препаратов являются актуальными. Одной из систем доставки лекарственных веществ через роговицу могут быть липосомы. Это средство доставки лекарственных веществ представляет собой везикулярные структуры, состоящие из внешнего бислоя липидов и внутреннего пространства, заполненного раствором лекарственного вещества. Эта особенность структуры липосом определяет условия для их проникновения через как гидрофильные, так и липофильные среды глаза, включая барьеры переднего и заднего сегментов глаза. Липосомы являются эффективным средством для целенаправленной доставки лекарственных веществ в переднюю камеру глаза. Эта статья представляет собой обзор литературы, посвященной взаимодействию лекарственных веществ с барьерами передней камеры глаза и перспективам использования липосом для транскорнеальной доставки лекарственных средств.

Анатомические особенности расположения органа зрения создают иллюзию простоты лекарственной терапии офтальмологических заболеваний с помощью местного введения препаратов 3. Действительно, введение лекарственных препаратов в конъюнктивальный мешок имеет ряд преимуществ: локализация эффектов препарата, что позволяет избежать ненужных системных побочных эффектов; введение препаратов, не требующее специальных навыков, что трудно достичь при системном введении, возможность использования удобного, неинвазивного и безболезненного метода, что особенно важно при длительной терапии. Вместе с тем местное применение лекарственных веществ в офтальмологии, несмотря на кажущуюся простоту, имеет ряд ограничений 6.

К обстоятельствам, ограничивающим эффективность этого пути введения, относятся прекорнеальные факторы, физиологические и биохимические особенности строения роговицы, а также физико-химические свойства лекарственного вещества и его растворителя [7].

Прекорнеальные факторы

Офтальмологические лекарственные формы для местного применения быстро удаляются из конъюнктивального мешка, поэтому время поглощения лекарства составляет только несколько минут, определяя низкую биодоступность лекарственного препарата, обычно менее 5% [8]. Важную роль в этом процессе играет слезная жидкость (СЖ). Образуемая ею пленка имеет три слоя: внешний липидный слой, средний - гидрофильный и внутренний слизистый. Липидный слой предотвращает высыхание среднего слоя. Муцин за счет взаимодействия с поверхностью глаза обеспечивает более плотный контакт гидрофильной части СЖ.

СЖ по ряду причин является препятствием для вводимых местно лекарственных препаратов.

«Слезный» клиренс обеспечивает удаление препарата из прекорнеальной области и увеличивает всасывание препарата окружающими тканями. Кроме того, белки СЖ способны сорбировать лекарственные препараты, снижая биодоступность последних до 5% [9]. Связывание их с лекарственными веществами способно изменять биодоступность последних. Содержащиеся в СЖ белки структурно и функционально гетерогенны [10]. Общее число таких белков по разным данным составляет 60-500, в том числе протеазы и ингибиторы протеаз [11]. Основными белками являются лактоферрин, лизозим, липокалин, липофилин, белки комплемента и иммуноглобулины. Важный протеин СЖ липокаин имеет несколько мест связывания, что предполагает его взаимодействие с другими компонентами СЖ. Противотуберкулезный препарат рифампицин образует с липокаином прочный комплекс. Этот комплекс теряет стабильность в кислой среде, поэтому липокаин может рассматриваться как потенциальная транспортная система для доставки рифампицина в очаг специфического воспаления [12].

Лактоферрин, относящийся к мультифункциональным структурам, является компонентом иммунной системы и обладает нуклеазной активностью. Наряду с этим С-концевая часть лактоферрина может связываться с НПВС, блокаторами ЦОГ2, эторикоксибом, парекоксибом и нимесулидом, угнетая их активность при местном применении [13]. Лизозим, фермент с гликозид-гидролазной активностью, за счет гидрофобных взаимодействий способен связываться с пенициллинами и цефалоспоринами (цефрадин, цефуроксим, цефотаксим, цефтриаксон). Важным активным ферментом СЖ является кальцийзависимая фосфолипаза А2, в норме обеспечивающая бактерицидную активность в отношении грамположительных бактерий. Но фосфолипазная активность фермента увеличивает порозность мембран липосом, приводя к преждевременному выделению лекарственного препарата. В состав СЖ входят 12 ферментов, включающих альдолазу, пируваткиназу, амилазу, металлопротеиназы, которые способны оказать влияние на фармакокинетику офтальмологических препаратов [14, 15].

Наличие в СЖ белков, способных связывать лекарственные препараты, приводит к конкуренции последних за места связывания при комбинированном применении. Так, комбинированное применение тимолола и пилокарпина приводит к снижению концентрации бета-блокатора в тканях глаза за счет увеличения связывания с белками СЖ [16]. Пилокарпина нитрат повышал биологическую активность в 10 раз при его комбинировании с цетилпиридиния хлоридом, вытесняющим пилокарпин из связи с белками СЖ [17].

Роговица

Эпителий роговицы

Роговица является следующим существенным барьером на пути лекарственных препаратов. Эта структура глаза является уникальной, так как имеет гидрофильную часть, строму, покрытую, как сандвич, с двух сторон двумя липидными слоями (эпителия и эндотелия). В результате препараты, которые одновременно имеют как гидрофобную, так и гидрофильную природу, могут проникать через ткани роговицы свободно. Если же препараты являются полярными или высоколипофильными соединениями, они проникают в роговицу значительно менее эффективно. Пока лекарственное средство находится в контакте с внешней поверхностью глаза, градиент концентрации служит в качестве движущей силы проникновения в роговицу. В этом случае физико-химические свойства, такие как растворимость в воде и липофильность, являются двумя определяющими факторами, которые регулируют скорость проникновения препаратов через роговицу. Другие физические свойства молекул (например, рКа и коэффициент распределения) также могут оказать влияние на проницаемость роговицы глаза [18].

Роговица является не только барьером для механических повреждений, но также обеспечивает избирательную проницаемость для химических соединений с целью поддержания гомеостаза в тканях передней камеры глаза. Структурно и функционально в роговице можно выделить эпителиальный слой, строму и эндотелиальный монослой. Барьерные функции эпителия обеспечиваются развитой системой активного транспорта, регулирующего поступление в клетки и выведение гидрофильных и липофильных соединений, а также плотными контактами между телами эпителиальных клеток [19].

В процессе формирования поверхностного слоя эпителия роговицы эпителиоциты экспрессируют плотные контакты, которые не характерны для более глубоких слоев эпителия. Плотные контакты в значительной степени снижают парацеллюлярный транспорт, являющийся механизмом проникновения гидрофильных веществ. Таким образом, поверхностные слои эпителия роговицы представляют препятствие для проникновения гидрофильных веществ [20]. Этим фактором определяется низкая проницаемость ряда лекарственных веществ через роговицу. Через неповрежденную роговицу плохо проникают гидрофильный амикацин [21], циклоспорин А [22], липофильный дексаметазон [23], вариконазол [24], гатифлоксацин [25]. Повреждение эпителия перед инстилляцией лекарственного препарата значительно снижает защитные свойства роговицы [26].

Обеспечение доставки необходимых для жизни веществ определяет наличие в эпителии роговицы развитых систем облегченного и активного транспорта. Эти виды транспорта имеют большее значение для доставки гидрофильных соединений, нежели для проникновения липофильных лекарственных средств, что связано с низкой пассивной диффузией гидрофильных лекарственных средств через мембрану. Транспортные системы, экспрессированные на апикальной поверхности эпителиальных клеток роговицы, обеспечивают активную доставку гидрофильных соединений. Для липофильных соединений, легко проникающих через клеточные мембраны, существует обратный транспорт, осуществляемый специфическими транспортными системами.

Транспортные системы роговицы

Транспорт аминокислот в эпителии роговицы важен, потому что эпителий представляет собой интенсивно регенерирующую ткань c непрерывным синтезом белка. Основным источником питательных веществ в эпителии является водянистая влага и в меньшей степени лимбальное кровообращение. Аминокислоты активно поступают в эпителий роговицы из водянистой влаги, тогда как слезная сторона эпителия выступает в качестве диффузионного барьера [27]. Концентрация аминокислот в СЖ сопоставима с плазмой за исключением аспарагината, глутаминовой кислоты и таурина, которые присутствуют в СЖ в гораздо более высоких концентрациях, чем в плазме [28].

Транспортные системы аминокислот включают SLC1 (преимущественно глутамат и нейтральные аминокислоты), SLC6 (глицин, ГАМК). Система SLC7 LAT опосредует Na + -независимый транспорт больших нейтральных ароматических аминокислот. Субстратами для LAT1 являются лейцин, фенилаланин, метионин глутамин, глицин, серин. Эта транспортная система также участвует в доставке таких лекарственных препаратов, как L-ДОПА, метилдопа, габапентин и мелфалан [29], баклофен [30].

Транспортеры олигопептидов SLC15 принадлежат к суперсемейству протонассоциированных транспортеров олигопептидов (POT) [31]. PepT1 и PepT2 транспортируют ди- и трипептиды, а также β-лактамные антибиотики, ингибиторы АПФ, ингибиторы ренина и аналоги вирусных нуклеозидов (валацикловир, валганцикловир).

SLCO - органический анионный транспортер полипептидов участвует в переносе как эндогенных соединений (например, соли желчных кислот, стероидные конъюгаты, гормоны щитовидной железы), так и лекарственных препаратов (например, эналаприл, правастатин, фексофенадин, зидовудин, дексаметазон и дигоксин) [32].

Барьерная функция эпителия роговицы во многом определяется также наличием АВС - транспортеров, представляющих самое большое семейство белков, не только обеспечивающих барьерную функцию для ксенобиотиков, но также лимитирующих транспорт лекарственных веществ в глаз. Эти транспортеры относятся к мембранным белкам, состоящим из многих доменов и использующим энергию АТФ для транспорта веществ через клеточные мембраны у всех позвоночных [33]. В это семейство белков входят MDR1/ABCB1 (белки множественной лекарственной устойчивости; P-gp), белки множественной устойчивости MRP4/ABCC4, а также BCRP/ABCG2 (белок устойчивости опухоли молочной железы). В роговице субстратами для P-gp могут быть противоопухолевые средства этопосид, доксорубицин, винкристин; блокаторы кальциевых каналов верапамил и дилтиазем; ингибиторы ВИЧ протеазы индинавир и ритонавир; гормоны тестостерон, прогестерон; иммунодепрессанты такролимус, циклоспорин; эритромицин, дигоксин, хинидин, фексофенамид, лоперамид. Транспортер MRP4/ABCC4 имеет сродство к нуклеозидным аналогам, к числу которых относятся противоопухолевые средства 6-меркаптопурин и метотрексат, противовирусные препараты адефовир и тенофовир. Кроме того, этот фермент «выкачивает» диуретики фуросемид и трихлорметиазид, антибиотики цефазолин и цефтизоксим. Субстратами для BCRP/ABCG2 являются противоопухолевые средства метотрексат, митоксантрон, топотекан и иматиниб; статины розувастатин и питавастатин, а также дантролен, празозин, нитрофурантоин.

Строма

Строма - расположенный глубже слой гидратированного коллагена является препятствием для липофильных соединений 36. Для гидрофильных соединений строма, напротив, предпочтительнее, чем эпителий и эндотелий. В модели in vitro изолированная роговица кролика помещалась в двухкамерную систему, в которой роговица служила перегородкой между камерами. В раствор со стороны эндотелия роговицы добавляли гидрофильный краситель флуоресцеин. Краситель быстро проникал через эндотелиальный слой за счет транс- и парацеллюлярного транспорта. В конечном итоге концентрация гидрофильного флуоресцеина в строме была выше, чем в эндотелии и эпителии. В эпителии краситель появился со значительным латентным периодом [37].

Эндотелий роговицы

Эндотелий роговицы защищает строму от водянистой влаги. Эта структура представлена монослоем гексагональных клеток, образующих мозаичную поверхность. Основной функцией стромы является сохранение тургора стромы, что является гарантией сохранения прозрачности последней. Гидрофильные глюкозаминогликаны стромы определяют постоянный ток жидкости из передней камеры через эндотелий в строму. Несмотря на наличие плотных контактов эндотелий роговицы обладает порозностью, поэтому трансэндотелиальное сопротивление невелико и составляет 30 мОм [38, 39].

Фармакотерапия в офтальмологии

Офтальмологические лекарственные средства местного применения могут назначаться в виде аппликаций на кожу век, введений в конъюнктивальный мешок, инъекций в ткани глаза (переднюю и заднюю камеры, в стекловидное тело) и окружающие ткани.

Наиболее широко в офтальмологии применяются такие лекарственные формы, как глазные капли (растворы, суспензии, спреи), мази и гели, глазные пленки. Большинство жидких офтальмологических форм выпускают в виде водных растворов, а плохо растворимые вещества — в виде суспензии.

При местном применении скорость и степень всасывания ЛС зависят от многих факторов, среди которых можно выделить: время пребывания в конъюнктивальном мешке и слезной жидкости, покрывающей роговицу (чем дольше вещество находится в конъюнктивальном мешке, тем лучше оно всасывается), степень оттока через слезоотводящие пути, связывание с белками слезной жидкости, разрушение ферментами тканей и слезной жидкости, диффузию через конъюнктиву и роговицу.

Глазные гели, например, всасываются путем диффузии после разрушения оболочки из растворимого полимера. В качестве полимеров применяют эфиры целлюлозы, поливиниловый спирт, карбомер, полиакриламид и др. Мази обычно делают на основе вазелинового масла или вазелина. Выделение ЛС из глазных пленок осуществляется благодаря равномерной диффузии, поэтому в течение некоторого времени препарат выделяется в слезную жидкость с более постоянной скоростью, чем при одномоментном введении этой же дозы.

При закапывании глазных капель лекарственное вещество быстро всасывается из конъюнктивальной полости, при этом всасывание зависит от его растворимости, концентрации (растворы с высокой концентрацией всасываются быстрее) и рН среды в месте применения. Для увеличения времени пребывания ЛС в конъюнктивальном мешке (с целью улучшения всасывания) разработаны специальные лекарственные формы, в т.ч. глазные гели, пленки, одноразовые мягкие контактные линзы, коллагеновые линзы. Следует учитывать, что лекарства, назначаемые в растворе, значительно быстрее всасываются, чем те, которые назначаются в виде эмульсии или в масляной форме. При этом действие глазных суспензий, гелей и мазей — более длительное, чем глазных капель в виде водных растворов.

ЛС поступают в ткани глаза после абсорбции через роговицу. При повреждении роговицы всасывание усиливается.

На биодоступность офтальмологических средств также влияют pH, вид соли, лекарственная форма, состав растворителя, осмоляльность, вязкость.

Системное действие местных офтальмологических форм обусловлено тем, что ЛС попадают (минуя печень) в системный кровоток. Местные офтальмологические средства могут попадать в кровоток через конъюнктивальные сосуды, сосуды радужной оболочки, либо через носослезный проток — ЛС попадает в носовую полость, где всасывается через слизистую носа. В связи с этим многие местные офтальмологические ЛС вызывают системные побочные эффекты, особенно при длительном применении. При попадании в системный кровоток офтальмологические средства выводятся через печень и почки. Лекарственные средства в составе офтальмологических лекформ в значительной степени разрушаются ферментами тканей глаза — эстеразами, оксидоредуктазами, лизосомальными ферментами, пептидазами, глутатионтрансферазами, КОМТ и др.

При лечении заболеваний глаз следует помнить, что большинство глазных капель и мазей не следует применять при ношении глазных линз из-за опасности кумуляции активного вещества и консервантов, входящих в состав препарата. Кроме этого, поскольку при одновременном закапывании двух препаратов в виде глазных капель эффект второго препарата снижается, при использовании более одного препарата необходимо соблюдать интервал (обычно 15-минутный) между закапываниями.

С лечебными и диагностическими целями в офтальмологии используются лекарственные средства из различных фармакологических групп.

В клинической практике часто встречаются инфекции кожи век, конъюнктивы, слезных органов. Противомикробные средства, используемые для профилактики и лечения инфекционных заболеваний глаз, относятся к различным фармакологическим группам:

- антибиотики: аминогликозиды, амфениколы, ансамицины, гликопептиды, макролиды, пенициллины, тетрациклины, цефалоспорины, полимиксин В, фузидиевая кислота;

- синтетические антибактериальные средства, в т.ч. сульфаниламиды, фторхинолоны;

- противовирусные, противогрибковые и противопаразитарные средства;

В офтальмологической практике выбор противомикробного средства, как и в остальных случаях проведения противомикробной терапии, зависит, в первую очередь, от возбудителя и его чувствительности к ЛС. Кроме этого выбор антибактериального средства и пути введения зависит от тяжести заболевания. При большинстве острых инфекционных заболеваний глаз (блефарит, конъюнктивит, склерит, кератит, иридоциклит) возможно местное лечение с использованием глазных капель и мазей. При внутриглазных инфекциях средней и тяжелой степени выраженности используются и другие пути введения — подконъюнктивальный, пара- или ретробульбарный, интравитреальный. В ряде случаев при тяжелых поражениях глаз может возникнуть необходимость в дополнительном общем лечении.

Широкое распространение для лечения поверхностных инфекций глаза получил хлорамфеникол (Левомицетин). При бактериальных воспалениях переднего отдела глаза (конъюнктивит, блефарит, дакриоцистит, поражение роговицы) самыми частыми возбудителями являются Staphylococcus aureus, Streptococcus pneumoniae и Haemophilus influenza, все они чувствительны к хлорамфениколу.

В офтальмологической практике в качестве антибактериальных средств наиболее часто применяются такие антибиотики, как тетрациклин, гентамицин, тобрамицин, фузидиевая кислота, эритромицин.

В офтальмологии используют два сульфаниламидных ЛС — сульфацетамид (Сульфацил-натрий, Альбуцид) и сульфаметоксипиридазин. По активности сульфаниламиды уступают современным антибиотикам, обладают большей токсичностью, поэтому применение этих препаратов в офтальмологической практике сократилось. Однако сульфаниламиды используют при непереносимости антибиотиков или устойчивости к ним микробной флоры. Следует иметь в виду, что антибактериальная активность сульфаниламидов резко снижается в присутствии высоких концентраций парааминобензойной кислоты (ПАБК), т.е. при большом количестве гнойного отделяемого (поскольку механизм действия сульфаниламидов связан с конкурентным антагонизмом с ПАБК).

В настоящее время сульфаниламиды используются в качестве монотерапии редко (в связи с развитием резистентности), часто их комбинируют с антибиотиками. Основными показаниями для назначения сульфаниламидных препаратов в офтальмологии являются конъюнктивит, блефарит, кератит, профилактика и лечение гонорейных заболеваний глаз у новорожденных и взрослых.

Благодаря широкому спектру действия, относительно низкой токсичности, хорошим фармакокинетическим свойствам, в т.ч. высокой биодоступности, фторхинолоны (ломефлоксацин, норфлоксацин, офлоксацин, ципрофлоксацин) часто применяются при лечении бактериальных инфекций глаз. Они хорошо проникают сквозь неповрежденный эпителий роговицы в ткани глаза. Терапевтическая концентрация в роговице и влаге передней камеры достигается через 10 мин после местного применения и сохраняется в течение 4-6 ч. При системном применении хорошо проходят через гематоофтальмический барьер во внутриглазную жидкость.

В офтальмологии фторхинолоны применяют местно в виде инстилляций. Основными показаниями являются инфекционные заболевания век, слезных органов, трахома, бактериальный кератит, увеит, а также профилактика послеоперационных и посттравматических инфекционных осложнений. Преимущество клинического применения фторхинолонов определяется их активностью в отношении микроорганизмов (грамотрицательных и некоторых грамположительных) и бактерий с внутриклеточной локализацией. Резистентность бактерий развивается относительно медленно.

Учитывая отрицательное влияние фторхинолонов на ткани хряща неполовозрелых животных, необходимо ограничивать применение этих ЛС у детей и подростков.

Паразитарные инвазии глаз наиболее часто бывают вызваны Toxoplasma gondii. Для лечения токсоплазмоза эффективны пириметамин и дапсон.

Для лечения вирусных поражений глаз применяют противовирусные (идоксуридин, ацикловир и др.) и иммуномодулирующие средства (интерфероны и др.).

Антисептики используют для обработки краев век при лечении блефарита, мейбомита, для лечения конъюнктивита, для профилактики инфекционных осложнений после оперативных вмешательств, при травмах конъюнктивы, роговицы и др. Применяют однокомпонентные ЛС — мирамистин, пиклоксидин, этакридин, а также комбинированные препараты, в состав которых входит антисептик, например борная кислота (глазные капли, включающие раствор 0,25% цинка сульфата и раствор 2% борной кислоты).

Большинство препаратов, применяющихся для антисептической обработки глаз, изготавливают ex temporo, они имеют небольшой срок хранения (3-7 дней).

Для диагностики офтальмологической патологии, при некоторых офтальмологических операциях, при лечении глаукомы, увеита, косоглазия широко применяются вегетотропные средства.

Медикаментозное лечение глаукомы направлено на две цели — снижение продукции внутриглазной жидкости (ВГЖ) и повышение ее оттока через трабекулярную сеточку и увеосклеральный путь.

К средствам, улучшающим отток ВГЖ, относятся:

- антихолинэстеразные (м-, н-холиномиметики) (галантамин, неостигмина метилсульфат);

- альфа-, бета-адреномиметики (эпинефрин).

Средства, угнетающие продукцию ВГЖ:

- бета-адреноблокаторы (бетаксолол, тимолол);

- альфа-, бета-адреноблокаторы (проксодолол).

Помимо вегетотропных средств для лечения глаукомы применяются:

- препараты-аналоги простагландина F2альфа — латанопрост, травопрост (улучшают отток ВГЖ);

- ингибиторы карбоангидразы — ацетазоламид, дорзоламид, бринзоламид (угнетают секрецию ВГЖ).

В настоящее время для лечения глаукомы используют преимущественно препараты из двух групп — бета-адреноблокаторы и препараты-аналоги простагландина F2альфа.

Бета-адреноблокаторы — препараты первого выбора при лечении глаукомы. Из селективных бета-адреноблокаторов в офтальмологии применяют бетаксолол, к неселективным относится тимолол. Применяют также проксодолол, который блокирует альфа- и бета-адренорецепторы.

При местной аппликации в виде глазных капель бета-адреноблокаторы уменьшают продукцию водянистой влаги, что приводит к понижению внутриглазного давления (ВГД). Гипотензивный эффект тимолола и бетаксолола обычно развивается через 20-30 мин после инстилляции, достигает максимума примерно через 2 ч (у проксодолола — примерно через 4-6 ч) и продолжается 12-24 ч. Снижение ВГД составляет 20-25% от исходного уровня. При длительном применении бета-адреноблокаторов отмечается улучшение оттока водянистой влаги.

У больных с бронхообструктивным синдромом неселективные бета-адреноблокаторы необходимо применять с особой осторожностью и только в том случае, если нет возможности использовать другие ЛС.

При наличии абсолютных или относительных противопоказаний к назначению бета-адреноблокаторов (в т.ч. при ХОБЛ, аритмии, брадикардии, AV-блокаде и др.) в качестве препаратов первого ряда рекомендуется назначение латанопроста или клонидина.

Ацетазоламид, дорзоламид, бринзоламид и другие ЛС ингибируют фермент карбоангидразу. Карбоангидраза катализирует обратимую реакцию гидратации диоксида углерода и дегидратации угольной кислоты. По мере образования угольная кислота быстро диссоциирует с образованием протонов и ионов бикарбоната.

Ингибирование карбоангидразы ресничного тела глаза приводит к снижению секреции внутриглазной жидкости (преимущественно за счет уменьшения образования ионов бикарбоната с последующим снижением транспорта натрия и жидкости) и понижению внутриглазного давления.

Ингибиторы карбоангидразы применяются для лечения глаукомы (в т.ч. в виде инстилляционных форм — бринзоламид, дорзоламид). Комбинированные препараты (например пилокарпин + тимолол, латанопрост + тимолол) оказывают более выраженное гипотензивное действие, но и системные побочные эффекты у них также более выражены.

Мидриатики (средства, расширяющие зрачок) представлены м-холинолитиками (атропин и др.), альфа- и бета-адреномиметиками (эпинефрин) и альфа-адреномиметиками (фенилэфрин). м-Холинолитики расширяют зрачок (мидриаз) и парализуют цилиарную мышцу (циклоплегия). Их применяют с диагностической (осмотр глазного дна, определение рефракции) и лечебной целью (иммобилизация зрачка и предупреждение образования спаек радужки с хрусталиком при иридоциклитах и радужки с роговицей при проникающих ранениях глаза). Мидриатики различают по силе и длительности действия. К мидриатикам длительного (лечебного) действия относят атропин, короткого (диагностического) — тропикамид, циклопентолат, фенилэфрин.

м-Холиноблокаторы противопоказаны при глаукоме, т.к. повышают внутриглазное давление.

Для лечения воспалительных заболеваний глаз применяют глюкокортикоиды (в т.ч. комбинированные препараты, например, имеющие в составе глюкокортикоид и антибиотик), а также НПВС.

Применение глюкокортикоидов в офтальмологии основано на их местном противовоспалительном, противоаллергическом, противозудном действии. Показаниями к назначению глюкокортикоидов являются воспалительные заболевания глаз неинфекционной этиологии, в т.ч. после травм и операций — ирит, иридоциклит, склерит, кератит, увеит и др. После операции по поводу глаукомы глюкокортикоиды для местного применения замедляют рубцевание, подавляя инфильтрацию фибробластов. Наиболее предпочтительно применение местных форм (глазные капли или суспензия, мази), в тяжелых случаях — субъконъюнктивальные инъекции.

Из монокомпонентных препаратов в офтальмологии применяются: бетаметазон, гидрокортизон, дезонид, дексаметазон, преднизолон, триамцинолон и др.

Как при местном, так и при системном применении глюкокортикоиды (за исключением гидрокортизона) хорошо проникают практически во все ткани глазного яблока, в т.ч. и в хрусталик. При системном (парентерально, внутрь) использовании глюкокортикоидов следует помнить о высокой вероятности (75%) развития стероидной катаракты при ежедневном применении в течение нескольких месяцев преднизолона в дозе более 15 мг (а также эквивалентных доз других препаратов), при этом риск возрастает с увеличением длительности лечения. Кроме развития задней субкапсулярной катаракты, при использовании глюкокортикоидов возможно развитие вторичной инфекции и вторичной открытоугольной глаукомы.

Глюкокортикоиды противопоказаны при острых инфекционных заболеваниях глаз.

Для лечения воспалительных и аллергических заболеваний глаз при наличии сопутствующей или подозреваемой бактериальной инфекции, скажем при некоторых видах конъюнктивита, в послеоперационном периоде назначают комбинированные препараты, содержащие в своем составе антибиотики, например капли глазные/ушные Гаразон (бетаметазон + гентамицин) или Софрадекс (дексаметазон + фрамицетин + грамицидин) и др.

Из НПВС в России применяют диклофенак и индометацин (в форме глазных капель).

НПВС и при местном, и при системном применении хорошо проникают в различные ткани глаза, за исключением хрусталика. При местном применении диклофенак оказывает противовоспалительное и болеутоляющее действие, в связи с чем его назначают как альтернативу глюкокортикоидов. Диклофенак не вызывает характерных для глюкокортикоидов неблагоприятных эффектов, его можно применять у пациентов с дефектом роговицы после перенесенных травм глаза и кератита (препарат не тормозит репаративные процессы). По выраженности противовоспалительного действия диклофенак уступает глюкокортикоидам.

НПВС назначают для лечения конъюнктивитов неинфекционной природы, для профилактики и лечения послеоперационного и посттравматического увеита. Диклофенак используется для ингибирования миоза во время операций по поводу катаракты (совместно с мидриатиками) и для профилактики кистозной макулопатии.

Для лечения аллергических заболеваний глаз, которые являются одними из самых распространенных в офтальмологии, местно используют как монокомпонентные, так и комбинированные противоаллергические средства, содержащие сосудосуживающие вещества, — альфа-адреномиметики (нафазолин, оксиметазолин и др.), Н1-антигистаминные средства (левокабастин и др.), стабилизаторы мембран тучных клеток (кромоглициевая кислота и др.).

В качестве вспомогательных средств при операциях на переднем отделе глаза используются ирригационные растворы (0,9% раствор натрия хлорида), вязкоупругие средства, защищающие эндотелий роговицы и заполняющие пространство передней камеры (натрия гиалуронат, гипромеллоза), и внутрикамерные миотические средства — ацетилхолин, которые вводят в переднюю камеру глаза.

При многих манипуляциях в офтальмологии используются местные анестетики: тетракаин (Дикаин 0,3-1% растворы), прокаин (Новокаин 1, 2, 5% растворы), лидокаин (1-4% растворы, 5% гель, 10% раствор в виде аэрозоля или спрея), оксибупрокаин (Инокаин 0,4%), тримекаин (1-3% растворы), бумекаин (Пиромекаин, 0,5% раствор), проксиметакаин (Алкаин 0,5%). Для длительной анестезии используют пленки глазные (например пленки с дикаином).

Местноанестезирующие средства применяют в глазной практике при удалении инородных тел и различных оперативных и диагностических вмешательствах.

При местном применении хорошо абсорбируются в ткани роговицы и конъюнктивы тетракаин, лидокаин, оксибупрокаин, проксиметакаин. Местноанестезирующее действие усиливается, а системная абсорбция уменьшается при совместном применении с вазоконстрикторами-симпатомиметиками (эпинефрин).

В качестве диагностических средств при офтальмологическом обследовании используют мидриатики, местные анестетики, красители — например флуоресцеин натрия (для обнаружения повреждений роговицы и инородных тел при заболеваниях и травме глаза).

Для лечения катаракты применяются азапентацен (Квинакс), пиреноксин (Каталин), таурин (Тауфон и др.) и пр., а также комбинированные препараты, например Офтан катахром (цитохром С + аденозин + никотинамид), Вита-Иодурол (аденозин + кальция хлорид + магния хлорид + никотиновая кислота).

Широкое распространение в современной офтальмологической практике получили витамины и микроэлементы (ретинол, тиамин, пиридоксин, цианокобаламин, аскорбиновая кислота, витамин Е, фолиевая кислота, витамин К, цинк), искусственные слезы и другие средства, увлажняющие глаза (гипромеллоза, карбомер), стимуляторы регенерации роговицы (декспантенол, актовегин). Среди новых ЛС для офтальмологии следует упомянуть вертепорфин — ЛС для фотодинамической терапии возрастной дегенерации желтого пятна у пациентов с преимущественно классической субфовеальной хориоидальной неоваскуляризацией или повторной субфовеальной хориоидальной неоваскуляризации при миопии.

Подводя итог краткого обзора лекарственных средств и их лекарственных форм для использования в офтальмологии можно констатировать, что для специалиста-офтальмолога возможности выбора эффективных средств для лечения различных заболеваний глаз существенно расширились.

Читайте также: