Эпигенетические нарушения как причина рака

Обновлено: 17.05.2024

История развития эпигенетических подходов к доказательству влияния образа жизни на здоровье и болезни. Работы Дэвида Баркера в 80—90-х гг. XX века заложили основу программирования риска хронических заболеваний взрослых в критический период формирования организма [2]. Д. Баркер [3] показал, что неадекватное снабжение организма ребенка питательными веществами или кислородом формирует резистентность к инсулину [3]. По мнению D. Lawlor и соавт. [4], внутриутробные воздействия определяют риск развития ишемической болезни сердца (ИБС) у взрослых, который при обратной связи с массой тела при рождении опосредуется резистентностью к инсулину. Сегодня теория «Истоки развития здоровья и болезней» (Developmental Origins of Health and Disease, DOHaD) предполагает, что экспозиция в ранний период развития организма играет решающую роль в определении риска метаболических заболеваний у взрослых, что доказано в эпигенетических исследованиях в отношении метаболических нарушений, ожирения и хронических заболеваний [5—8]. Дисрегуляция miРНК вызывает изменения в структуре генов, контролирующих воспаление, липидный обмен, резистентность к инсулину и адипогенез [9]. Современные представления о детском ожирении как составной части метаболического синдрома базируются на многофакторности его происхождения и ключевой роли эпигенетики в передаче риска ожирения потомству за счет генетического наследования однонуклеотидных полиморфизмов в локусах адипокинов и их рецепторов и влияния микробиоты кишечника, участвующей в регуляции массы тела [10].

Эпигенетические механизмы программирования состояния здоровья потомства, обусловленные питанием матери во время зачатия и беременности. Питание матери во время зачатия ребенка и в период его раннего развития может эпигенетическим путем инициировать метаболические сдвиги у потомства, известные как «программирование питанием». Драматический рост распространенности аллергических заболеваний связывают с пищевым программированием специфически уязвимой в раннем возрасте иммунной системы. Глубокое понимание эпигенетики и других биологических процессов в раннем возрасте может привести к разработке диетических стратегий, обеспечивающих более устойчивое состояние именной системы в ранний период и снижающих бремя многих воспалительных заболеваний, а не только аллергии [11].

В опытах на животных показано, что сниженная калорийность питания матери эпигенетически индуцирует усиление возрастной непереносимости глюкозы у поросят [12]; добавка бетаина беременным свиньям увеличивает содержание холестерина в печени неонатальных поросят посредством эпигенетических правил метаболических генов холестерина [13]. Долгосрочное потребление высоких доз никотинамида (витамина РР) самками крыс, в том числе при беременности, может быть фактором риска метаболических аномалий у потомства, связанных с метилированием генов и инсулинорезистентностью, а фолиевой кислоты — увеличивает опухолевый генез молочной железы, но снижает риск колоректального рака и ряда врожденных дефектов сердца у потомства [14—16]. Введение 150 мг фолиевой кислоты в яйца улучшает рост бройлеров и укрепляет взаимосвязь между иммунной функцией и эпигенетической регуляцией иммунных генов путем изменения конформации хроматина и метилирования промотеров гистонов [17]. У людей эффект воздействия фолиевой кислоты на эпигенетическую регуляцию фосфоенолпируваткарбоксикиназы — ключевого фермента в образовании глюкозы из пировиноградной кислоты и гомеостаза глюкозы зависит от периода жизненного цикла и пола [18]. Материнский статус фолата, регулируемый диетическими и генетическими факторами на ранних стадиях беременности, предположительно может влиять на риск расстройств аутистического спектра у людей, однако данные об эпигенетическом воздействии пока ограниченны [19].

Таким образом, сердечно-сосудистая патология, ожирение, аутоиммунные проявления, сахарный диабет (СД) и предположительно аутизм эпигенетически связаны с образом жизни матери, пренатальным и постнатальным периодами, относимыми к критическим в отношении здоровья в будущем, и могут регулироваться такими пищевыми компонентами, как фолаты и фолиевая кислота.

Эпигенетические механизмы старения. Старение как совокупность изменений, постепенно увеличивающих вероятность смерти, с эпигенетической точки зрения характеризуется воспроизводимым в независимых выборках гипометилированием CpG-последовательностей [20]. Возрастные изменения эпигенетических меток могут приводить к снижению иммунной функции, что способствует увеличению заболеваемости пожилых людей, для поддержания здоровья которых здоровый образ жизни (ЗОЖ) на протяжении всей жизни, учитывая пожизненную эпигеномную регуляцию во врожденных иммунных клетках, в лимфоцитах Т- и В- под действием внутренних и внешних факторов, может быть самым эффективным способом профилактики заболеваний [21, 22].

Естественные возрастные изменения, приводящие к высококонкурентной экспрессии генов с явными последствиями для клеточной дифференциации и риском начала заболевания, играют несомненную роль в формировании болезней сердечно-сосудистой системы. Модифицируемые и немодифицируемые факторы риска эпигенетически изменяют экспрессию генов в возрасте, ускоряя эпигенетические «часы», прежде избавлявшие человека от сердечно-сосудистых заболеваний. Ускоренное сосудистое старение и, как следствие, снижение возрастного порога заболевания, обусловленное эпигенетическим возрастом, не совпадающим с хронологическим, вызывает серьезную озабоченность. Вместе с тем адекватное питание и физическая активность оказывают синергическое воздействие на здоровье сердечно-сосудистой системы, представляя собой мощную потенциальную эпигенетическую точку вмешательства с целью коррекции управленческих стратегий в отношении сердечно-сосудистой системы, направленных на «хорошее старение» [23]. Детальное изучение дисрегулированных эпигенетических механизмов, связанных с СД и его сосудистыми осложнениями (кардиомиопатия, нефропатия, ретинопатия, синдром диабетической стопы), может раскрыть столь необходимые новые лекарственные мишени для профилактики сосудистых заболеваний в целом [24, 25].

Одним из примеров профилактики возрастных изменений может служить длительный прием фолиевой кислоты пожилыми здоровыми людьми, вызвавший глобальное метилирование ДНК, причем, несмотря на препозицию связи нейродеструктивных процессов с аберрантным метилированием ДНК в лейкоцитах, когнитивные способности пожилых только улучшились [26]. Однако не только внешние воздействия, но и генетические факторы влияют на эпигеномные изменения. Так, в лонгитюдном исследовании психических расстройств у пожилых жителей Австралии (n=1863) показано, что метилирование и модификация связи между депрессией и метилированием ДНК находятся под влиянием генетических вариантов ангиотензинпревращающего фермента, играющего ключевую роль в регуляции гипоталамо-гипофизарно-надпочечниковой системы [27].

Из 500 тыс. локусов, метилирование которых связано с риском смерти по причине рака, отобраны 10 участков CpG, строго коррелирующих с риском смерти [28]. Метилирование ДНК клеток крови по локусам AHRR, 6p21.33 и F2RL3 является прогностическим для развития рака легких и может быть использовано для идентификации групп риска при скрининге [29]. Идентифицированные локусы mQTLs, оказывающие влияние на метилирование участков CpG, имеют особое значение при их использовании в качестве маркеров метилирования ДНК в связанных с курением сравнительных популяционных исследованиях. H. Brenner [30] отмечает: «Неблагоприятный статус метилирования может измениться после прекращения курения, и риск смертности может значительно снизиться… Профилактика или вмешательство в состояния, связанные с курением (ДНК-метилирование), могут эффективно способствовать предупреждению преждевременной смерти, учитывая обратимость индуцированных курением метиломных аберраций». В эпигенетических исследованиях пациентов с колоректальным раком (n=1836) выявлены специфические изменения miРНК, связанные с опухолевыми проявлениями и косвенно определяющие выживаемость пациентов [31].

Таким образом, возрастные изменения связаны с активацией генов гипометилированием и иными эпигенетическими и генетическими модуляциями, что обусловливает снижение активности иммунной системы, сердечно-сосудистые болезни, СД и его сосудистые осложнения, депрессию и рак. Интервенции посредством изменения образа жизни могут снизить риск смерти и продлить здоровую жизнь пожилых людей благодаря эпигенетическим механизмам, обеспечивая популярную концепцию «хорошего старения». «Связь между диетой и эпигенетическими изменениями, с одной стороны, и между эпигенетическими изменениями и раком — с другой, подтверждается как обсервационными исследованиями на людях, так и опытами на животных. Однако вывод о том, что диета напрямую связана с эпигенетическими изменениями и что эти эпигенетические изменения непосредственно увеличивают или уменьшают риск развития рака человека, гораздо менее определен» [32].

Выявленные к 2011 г. эпигенетические механизмы, обеспечивающие влияние элементов образа жизни и среды на здоровье. К 2011 г. стало известно, что потребление фолатов, эпигаллокатехин-3-галлатов зеленого чая, селена, а также физическая активность, табакокурение, материнская диета и табакокурение матери во время беременности, вредное потребление алкоголя, воздействие поллютантов окружающей среды (мышьяк, хром, аэрозоли, бензол, полициклическихе ароматические углеводороды и стойкие органические соединения), а также старение, психологический стресс и сменная работа оказывают влияние на экспрессию генов путем изменения метилирования ДНК. Потребление полифенольных соединений и селена с пищей, а также физическая активность ведут к ковалентной модификации (ацетилированию) гистоновых белков. Физическая активность, курение сигарет и внутриутробные условия, в частности связанные с курением табака матерью во время гестации, регулируется экспрессией miРНК путем метилирования ДНК в miРНК локусах [33].

Эпигенетические механизмы воздействия питания и нутриентов на современном этапе. За прошедшие 7 лет многие эпигенетические механизмы были уточнены и расширены, в том числе в отношении питания и приема нутриентов. Так, показано, что куркумин изменяет эпигенетические маркеры, подавляя активацию ядерного транскрипционного фактора каппа-би В-клеток (NF-κB), тем самым уменьшая воспалительные реакции. Эпигаллокатехин гидрат также может снижать риск воспаления, сердечной травмы и окислительного повреждения, вызванного поллютантами окружающей среды, посредством эпигенетической регуляции генов провоспалительных мишеней NF-κB [34]. Обладающие антиоксидантной активностью полифенолы, содержащие катехины, подавляют активность ферментов и эпигенетически активируют «молчащие» гены. Некоторые нутриенты, включая фолиевую кислоту, кобаламин, рибофлавин, пиридоксин и метионин, играют решающую роль в метаболизме 1-углерода, непосредственно воздействуя на S-аденозил-L-метионин. Соевые полифенолы блокируют ДНК-метилтрансферазы и гистондеацетилазы, обеспечивая обратное аберрантное метилирование локусов CpG. Сульфорафан, обнаруженный в брокколи, нормализует метилирование ДНК и активирует экспрессию miR-140, которая в свою очередь подавляет SOX9 и ALDH1 и уменьшает рост опухолей [35]. В четырех европейских когортах (n=3096) только среди потребителей чая, но не кофе, женского пола выявлено два дифференциально метилированных CpG-сайта в составе генов DNAJC16 и TTC17, участвующих в опухолевых процессах и метаболизме эстрогенов [36]. Токоферолы — класс химических соединений, представляющих собой метилированные фенолы, многие из которых объединены названием «витамин E», — изменяя профили miРНК у пациентов, инфицированных вирусом гепатита B, проявляют антивирусную активность [37].

Эпигенетические механизмы воздействия ЗОЖ как интегрального показателя на здоровье. ЗОЖ в совокупности его элементов также может играть определенную роль в регуляции метилирования ДНК. Так, выявлены высокие уровни индекса глобального метилирования ДНК и гена TNF противовоспалительного цитокина в белых клетках крови в группе здоровых молодых людей (n=156) со средней нормальной массой тела, соблюдающих ЗОЖ, против контрольной группы с метаболическими нарушениями. Среди элементов ЗОЖ 1-й группы выявлены потребление рационального количества энергии и микроэлементов с пищей, большее число занимающихся спортом лиц и меньшее число курящих [38]. С другой стороны, пациенты с СД 1-го типа (Чили) без осложнений относительно контрольной группы без СД показали достоверно более высокий уровень метилирования промотора гена TNF-α [39].

Функциональная значимость эпигенетических механизмов как интерфейса между модификациями образа жизни и фенотипическими изменениями подчеркивается обширным перепрограммированием эпигенома диетой и физическими упражнениями. У мышей физические нагрузки и двигательная активность благодаря их защитным эффектам на фоне питания фастфудом, для которого характерно высокое содержание жиров, сахара и соли, предотвращали вызванное фастфудом гиперметилирование ДНК в клетках печени, особенно у промоторов и энхансеров. Вместе с тем ослабление гипометилирования в определенных участках ДНК наблюдалось только частично. Без физической нагрузки наблюдалось тотальное гиперметилирование и значительное увеличение специфических для печени энхансеров, что предполагает частичную потерю идентичности гепатоцитов, а гиперметилирование множества генных промоторов было связано с ингибированием развития ткани и промотированием канцерогенных процессов [40]. Коррелирующие со снижением массы тела изменения в эпигенетических модификациях 12 геномных локусов, из которых два расположены вблизи ассоциированных с потерей массы тела генов RUNX3 и NAMPT, выявлены у женщин 55—70 лет без инвалидности (n=20) на протяжении 6 мес, участвовавших в программе группового санитарного просвещения по вопросам значимости отказа от сидячего образа жизни для здоровья (9 занятий по 2 ч), против контрольной группы (6 занятий иной тематики по 1 ч). В виде проекта авторы предложили потенциальный эпигенетический предиктор снижения массы тела на основе базового метилирования ДНК в 5 CpG-сайтах [41].

Эпигенетические механизмы повреждающего воздействия экспозиции мелкодисперсным аэрозолем. Эпигенетические подтверждения вредного воздействия найдены в отношении вдыхания мелкодисперсных аэрозолей (взвешенные частицы), которые ВОЗ в 2005 г. отнесла к стохастическим факторам, не имеющим порога воздействия. Показано, что экспонирование аэрозолем с размером частиц не более 10 мкм (РМ10) повышает активность гистонацетилтрансферазы, катализирующей модификацию гистонов, и уровень ацетилированного гистона типа Н4 и таким образом способствует высвобождению воспалительных цитокинов [42]. Школьники (n=900) с воспалением дыхательных путей даже при кратковременном вдыхании самой мелкодисперсной пыли с размером частиц до 2,5 мкм (PM2,5) и наиболее опасной ввиду легкого проникновения сквозь биологические барьеры фракции аэрозолей проявили большую генетическую и эпигенетическую восприимчивость к этому типу аэрозолей [43]. РМ2,5 при 2-часовой экспозиции в концентрации 250 мг/м 3 индуцирует метилирование в генах, участвующих в метаболизме митохондриальной энергии реакций окисления, снижаемое под действием витаминов группы В в составе аэрозоля, что позволяет использовать данный метод для индивидуальной профилактики вредного воздействия аэрозолей в промышленных районах с частыми пиками выбросов PM2,5 [44].

Заключение

В настоящее время становится очевидным, что, несмотря на необходимость уточнения многих эпигенетических механизмов воздействия внешних и поведенческих факторов, эпигенетика обеспечивает профилактическую медицину и гигиену не только информацией о возможных эпигенетических точках вмешательства ЗОЖ в широком понимании этого термина, но и молекулярной доказательной базой профилактических мероприятий. Возможность эффективного управления здоровьем через эпигенетические механизмы в любой период жизни человека отражено в концепции развития здоровья на протяжении всего жизненного цикла (Life Сourse Health Development — LCHD), разработанной под руководством Neal Halfon, в соответствии с которой здоровье представляет собой динамический процесс, начинающийся до зачатия и продолжающийся на протяжении всей жизни, и должно развиваться (укрепляться) во всех периодах жизненного цикла человека, поскольку негативные изменения в состоянии здоровья обратимы, их можно скорректировать даже в старости. Хотя основные процессы развития человека генетически запрограммированы, экспрессия генов модифицируется предыдущей и текущей средой и поведением [45]. В 2014 г. N. Halfon и соавт. [46] ставят вопрос о необходимости реформы общественного здоровья на основе теории LCHD и вносят предложения по внедрению инноваций, которые могли бы ускорить перевод принципов развития здоровья в практику менеджмента здоровья на протяжении всей жизни, которые соответствуют прецизионной (персонифицированной) медицине. В руководстве «Handbook of Life Course Health Development» [47] обобщается и анализируется растущая база знаний о возможностях и перспективах развитии здоровья на протяжении всей жизни.

Эпигенетика: гены и кое-что сверху

Пожалуй, самое емкое и в то же время точное определение эпигенетики принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару: «Генетика предполагает, а эпигенетика располагает».

Эпигенетика

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваша мама и бабушка. Ваши клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. Во многом благодаря клеточной памяти мы не похожи на шимпанзе, хотя имеем с ним примерно одинаковый состав генома. И эту удивительную особенность наших клеток помогла понять наука эпигенетика.

Эпигенетика — довольно молодое направление современной науки, и пока она не так широко известна, как ее «родная сестра» генетика. В переводе с греческого предлог «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых структура ДНК остается прежней. Можно представить, будто некий «командир» в ответ на внешние стимулы, такие как питание, эмоциональные стрессы, физические нагрузки, отдает приказы нашим генам усилить или, наоборот, ослабить их активность.

Управление мутацией

Развитие эпигенетики как отдельного направления молекулярной биологии началось в 1940-х. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта», объясняющую процесс формирования организма. Долгое время считалось, что эпигенетические превращения характерны лишь для начального этапа развития организма и не наблюдаются во взрослом возрасте. Однако в последние годы была получена целая серия экспериментальных доказательств, которые произвели в биологии и генетике эффект разорвавшейся бомбы.

Переворот в генетическом мировоззрении произошел в самом конце прошлого века. Сразу в нескольких лабораториях был получен ряд экспериментальных данных, заставивших генетиков сильно призадуматься. Так, в 1998 году швейцарские исследователи под руководством Ренато Паро из Университета Базеля проводили эксперименты с мухами дрозофилами, у которых вследствие мутаций был желтый цвет глаз. Обнаружилось, что под воздействием повышения температуры у мутантных дрозофил рождалось потомство не с желтыми, а с красными (как в норме) глазами. У них активировался один хромосомный элемент, который и менял цвет глаз.

К удивлению исследователей, красный цвет глаз сохранялся у потомков этих мух еще в течение четырех поколений, хотя они уже не подвергались тепловому воздействию. То есть произошло наследование приобретенных признаков. Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие сам геном, могут закрепляться и передаваться следующим поколениям.

Но, может, такое бывает только у дрозофил? Не только. Позже выяснилось, что у людей влияние эпигенетических механизмов тоже играет очень большую роль. Например, была выявлена закономерность, что предрасположенность взрослых людей к диабету 2-го типа может во многом зависеть от месяца их рождения. И это при том, что между влиянием определенных факторов, связанных со временем года, и возникновением самого заболевания проходит 50−60 лет. Это наглядный пример так называемого эпигенетического программирования.

Что же может связывать предрасположенность к диабету и дату рождения? Новозеландским ученым Питеру Глюкману и Марку Хансону удалось сформулировать логическое объяснение этого парадокса. Они предложили «гипотезу несоответствия» (mismatch hypothesis), согласно которой в развивающемся организме может происходить «прогностическая» адаптация к условиям обитания, ожидающимся после рождения. Если прогноз подтверждается, это увеличивает шансы организма на выживание в мире, где ему предстоит жить. Если нет — адаптация становится дезадаптацией, то есть болезнью.

К примеру, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день». Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек после рождения, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни.

Опыты, проведенные в 2003 году американскими учеными из Дюкского университета Рэнди Джиртлом и Робертом Уотерлендом, уже стали хрестоматийными. Несколькими годами ранее Джиртлу удалось встроить искусственный ген обычным мышам, из-за чего те рождались желтыми, толстыми и болезненными. Создав таких мышей, Джиртл с коллегами решили проверить: нельзя ли, не удаляя дефектный ген, сделать их нормальными? Оказалось, что можно: они добавили в корм беременным мышам агути (так стали называть желтых мышиных «монстров») фолиевую кислоту, витамин В12, холин и метионин, и в результате этого появилось нормальное потомство. Пищевые факторы оказались способными нейтрализовать мутации в генах. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, сами рождали нормальных мышей, хотя питание у них было уже обычное.

В ответе за случайность

Почти все женщины знают, что во время беременности очень важно потреблять фолиевую кислоту. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином служит донором, поставщиком метильных групп, необходимых для нормального протекания процесса метилирования. Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах, поэтому разгрузочные диеты будущей мамы могут иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что дефицит в рационе этих двух веществ, а также фолиевой кислоты может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается просто трагической случайностью.

Также известно, что недоедание и стресс в период беременности меняет в худшую сторону концентрацию целого ряда гормонов в организме матери и плода — глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша начинают происходить негативные эпигенетические изменения в клетках гипоталамуса и гипофиза. Это чревато тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т. д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

Можно уверенно сказать, что период беременности и первых месяцев жизни наиболее важен в жизни всех млекопитающих, в том числе и человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни».

Судьба по наследству

Наиболее изученный механизм эпигенетической регуляции активности генов — процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода) к цитозиновым основаниям ДНК. Метилирование может влиять на активность генов несколькими способами. В частности, метильные группы могут физически препятствовать контакту фактора транскрипции (белка, контролирующего процесс синтеза информационной РНК на матрице ДНК) со специфичными участками ДНК. С другой стороны, они работают в связке с метилцитозин-связывающими белками, участвуя в процессе ремоделирования хроматина — вещества, из которого состоят хромосомы, хранилища наследственной информации.


Метилирование ДНК
Метильные группы присоединяются к цитозиновым основаниям, не разрушая и не изменяя ДНК, но влияя на активность соответствующих генов. Существует и обратный процесс — деметилирование, при котором метильные группы удаляются и первоначальная активность генов восстанавливается

Метилирование участвует во многих процессах, связанных с развитием и формированием всех органов и систем у человека. Один из них — инактивация X-хромосом у эмбриона. Как известно, самки млекопитающих обладают двумя копиями половых хромосом, обозначаемых как X-хромосома, а самцы довольствуются одной X и одной Y-хромосомой, которая значительно меньше по размеру и по количеству генетической информации. Чтобы уравнять самцов и самок в количестве генных производимых продуктов (РНК и белков), большинство генов на одной из X-хромосом у самок выключается.

Кульминация этого процесса происходит на стадии бластоцисты, когда зародыш состоит из 50−100 клеток. В каждой клетке хромосома для инактивации (отцовская или материнская) выбирается случайным образом и остается неактивной во всех последующих генерациях этой клетки. С этим процессом «перемешивания» отцовских и материнских хромосом связан тот факт, что женщины намного реже страдают заболеваниями, связанными с X-хромосомой.

Метилирование играет важную роль в клеточной дифференцировке — процессе, благодаря которому «универсальные» эмбриональные клетки развиваются в специализированные клетки тканей и органов. Мышечные волокна, костная ткань, нервные клетки — все они появляются благодаря активности строго определенной части генома. Также известно, что метилирование играет ведущую роль в подавлении большинства разновидностей онкогенов, а также некоторых вирусов.

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с пищевым рационом, эмоциональным статусом, мозговой деятельностью и другими внешними факторами.

Данные, хорошо подтверждающие этот вывод, были получены в начале этого века американскими и европейскими исследователями. Ученые обследовали пожилых голландцев, родившихся сразу после войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944−1945 годов был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год или два позднее (или ранее).

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, было заметно понижено метилирование гена инсулиноподобного фактора роста (ИФР), из-за чего количество ИФР в крови повышалось. А этот фактор, как хорошо известно ученым, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче.

Позднее американский ученый Ламбер Люмэ обнаружил, что и в следующем поколении дети, родившиеся в семьях этих голландцев, также появлялись на свет с ненормально малым весом и чаще других болели всеми возрастными болезнями, хотя их родители жили вполне благополучно и хорошо питались. Гены запомнили информацию о голодном периоде беременности бабушек и передали ее даже через поколение, внукам.

Многоликая эпигенетика

Многоликая эпигенетика

Эпигенетические процессы реализуются на нескольких уровнях. Метилирование действует на уровне отдельных нуклеотидов. Следующий уровень — это модификация гистонов, белков, участвующих в упаковке нитей ДНК. От этой упаковки также зависят процессы транскрипции и репликации ДНК. Отдельная научная ветвь — РНК-эпигенетика — изучает эпигенетические процессы, связанные с РНК, в том числе метилирование информационной РНК.

Гены не приговор

Наряду со стрессом и недоеданием на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции. Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд.

Самый яркий и негативный пример — это, пожалуй, бисфенол-А, уже много лет применяющийся в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится в некоторых видах пластиковой тары — бутылок для воды и напитков, пищевых контейнеров.

Отрицательное воздействие бисфенола-А на организм заключается в способности «уничтожать» свободные метильные группы, необходимые для метилирования, и подавлять ферменты, прикрепляющие эти группы к ДНК. Биологи из Гарвардской медицинской школы обнаружили способность бисфенола-А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Их коллеги из Колумбийского университета обнаружили способность бисфенола-А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам, женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером, покладистыми и спокойными.

К счастью, существуют продукты, оказывающие положительное влияние на эпигеном. Например, регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нем содержится определенное вещество (эпигаллокатехин-3-галлат), которое может активизировать гены-супрессоры (подавители) опухолевого роста, деметилируя их ДНК. В последние годы популярен модулятор эпигенетических процессов генистеин, содержащийся в продуктах из сои. Многие исследователи связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Изучение эпигенетических механизмов помогло понять важную истину: очень многое в жизни зависит от нас самих. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. Этот факт позволяет рассчитывать на принципиально новые методы борьбы с распространенными болезнями, основанные на устранении тех эпигенетических модификаций, которые возникли у человека под воздействием неблагоприятных факторов. Применение подходов, направленных на корректировку эпигенома, открывает перед нами большие перспективы.

«Эпигенетическое лечение»: новое направление в борьбе с онкологическими заболеваниями?

Наука генетика занимается расшифровкой генетического кода, а эпигенетика — изучением того, используются или не используются те или иные гены определенными клетками. Это тоже очень важные процессы. Они могут играть роль в развитии злокачественных опухолей, а также открыть новые возможности для лечения онкологических больных.

Во всех клетках тела человека присутствует один и тот же набор генов. Тем не менее, многие клетки в организме выглядят очень и выполняют различные функции. На это влияет так называемый эпигеном — набор особых химических модификаций и белков, влияющих на активность генов.

Эпигенетические модификации начинают работать еще с самых ранних этапов развития эмбриона. В результате изменяется активность разных генов, несмотря на то что в последовательность ДНК не вносятся никакие изменения.

Путем изменения своего эпигенома клетки могут адаптироваться к внешним условиям. Генетика и эпигенетика работают вместе, и за счет их слаженного функционирования каждая клетка находится на своем месте, выполняет определенные функции. А различные эпигенетические нарушения могут способствовать развитию злокачественных опухолей.

Недавно исследователи из Франции решили тщательно, клетка за клеткой, проанализировать эпигенетические изменения, которые происходят в злокачественных опухолях во время химиотерапии.

В итоге удалось обнаружить изменения в активности генов, позволяющие раковым клеткам выработать устойчивость к лечению, а также регулирующие этот процесс эпигеномные модификации. Ученые установили, что эти эпигенетические изменения отключают определенные гены и не дают им функционировать, пока не началось лечение. Когда же на опухоль действуют химиопрепараты, то в отдельных клетках этот блок исчезает. Такие клетки получают нечто вроде эволюционного преимущества — они становятся «самыми приспособленными». И, в то время как их соседи погибают, они выживают и дают начало новому устойчивому к лечению потомству. Если же (или пока) такого эффекта не отмечается, опухоль остается чувствительной к химиопрепаратам.

Уже предложен новый метод лечения

Ученым уже удалось создать так называемые , которые помогают предотвратить эпигенетические изменения на фоне химиотерапии и активацию опасных генов. Эти потенциальные лекарственные средства уже были испытаны на генетически модифицированных мышах с раком молочной железы.

На людях новые препараты пока не испытывались, для этого их еще нужно доработать. Но результаты исследования выглядят весьма обнадеживающе. Ученые однозначно продемонстрировали, что эпигеном участвует в развитии лекарственной резистентности злокачественных опухолей.

Сейчас исследователи оценивают возможность применения в клинической практике. Если в будущем успешно пройдут клинические испытания, то такие лекарственные средства станут хорошим подспорьем для химиотерапии.

Устойчивость опухолей к химиотерапии — одна из актуальных проблем современной онкологии. Даже если лекарство поначалу хорошо уничтожает раковые клетки, со временем все равно терапия перестает действовать. Чаще всего в таких случаях врач может подобрать новую схему лечения: в современных международных протоколах представлено несколько альтернатив для каждого типа рака. Но при длительном лечении может наступить момент, когда уже ни одна стандартная схема не помогает. В этом случае тоже есть выход: в клиниках «Евроонко» можно провести генетический анализ с применением новейшей технологии секвенирования нового поколения (NGS) и подобрать для пациента персонализированную схему терапии. Кроме того, можно рассмотреть возможность участия в клинических исследованиях новых препаратов, методик. Даже если у вас сложный случай — наши врачи обязательно постараются найти решение.

Мутации при раке

Тело человека состоит примерно из 37 триллионов клеток. Информация о строении и функциях каждой из них закодирована в ДНК. Любая злокачественная опухоль является результатом нарушения работы тех или иных генов, а главная причина этого кроется в мутациях. Некоторые из них человек получает с рождения, и они присутствуют во всех клетках тела. А некоторые возникают уже в течение жизни под влиянием тех или иных факторов — эти мутации будут обнаруживаться только в потомках той клетки, в которой изначально возникла «поломка».

На этой странице мы собрали всю информацию о генетических нарушениях, связанных с онкологическими заболеваниями, представленную на нашем сайте.


Как часто в клетках тела человека происходят мутации?

Мутагенез — процесс непрерывный. Он происходит на всех этапах развития любого организма: в половых клетках, с самых первых дней существования эмбриона и на протяжении всей жизни. К счастью, далеко не все мутации вредны. Многие из них нейтральные (то есть не приносят ни вреда, ни пользы), а некоторые даже дают организму определенные преимущества.

Мутации — это главный двигатель эволюции живых организмов. В 2018 году были опубликованы результаты исследования, во время которого ученые обнаружили, что у 20-летних людей на одну клетку слизистой оболочки пищевода в среднем приходится по 100 мутаций, а у людей более старшего возраста — по 2000. Большинство из них не опасны, но некоторые затрагивают онкогены.

Чаще всего рак связан именно с соматическими, приобретенными, мутациями. Согласно современным представлениям, наследственные мутации ответственны за развитие лишь 5-10% онкопатологий. А по результатам исследования, опубликованного в 2020 году, наследственные мутации, связанные с раком, встречаются у каждого восьмого онкологического больного.

Почему мутации приводят к онкологическим заболеваниям?

Конечно же, далеко не все мутации и далеко не во всех генах приводят к развитию онкологических заболеваний. Чтобы нормальная клетка стала злокачественной, нарушения должны произойти в определенных генах:

Протоонкогены

Это гены, которые в результате мутаций способны превращаться в онкогены. В свою очередь, онкогены — это дефектные гены, которые способствуют развитию злокачественной опухоли, например, путем бесконтрольного размножения клеток. Характерный пример — EGFR.

Гены-супрессоры опухолевого роста

В норме они «сдерживают» клетки и не дают им стать злокачественными. Когда в этих генах возникают мутации, они перестают выполнять свои функции. Например, к этой категории относится ген TP53, кодирующий белок p53.

Гены репарации ДНК

Чаще всего их относят к генам-супрессорам опухолевого роста, но иногда выделяют в отдельную группу. Белки, кодируемые этими генами, исправляют «ошибки», возникающие в ДНК. Например, продукты генов BRCA1 и BRCA2 восстанавливают двухцепочечные разрывы в ДНК путем гомологичной рекомбинации — процесса, при котором поврежденная хромосома использует свою «сестру-близнеца» в качестве шаблона для репарации. Когда эти гены перестают правильно работать из-за мутаций, ДНК не может нормально восстанавливаться, и в ней накапливается еще больше повреждений.


Что способствует развитию мутаций, которые приводят к раку?

Мутации, связанные с онкозаболеваниями, бывают двух основных видов. Наследственные мутации происходят в половых клетках, и затем они будут присутствовать во всех клетках тела ребенка. Соматические мутации присутствуют только в клетках, в которых они изначально возникли, и в их потомках — например, только в злокачественной опухоли.

Обычно, чтобы нормальная клетка превратилась в злокачественную, в ней должен возникнуть целый набор мутаций. В каждом конкретном случае невозможно точно сказать, что именно послужило причиной. Скорее всего, единой причины и нет. На организм человека постоянно действует множество факторов, и многие из них могут способствовать поломкам в генах.

Вот список некоторых распространенных факторов риска, способствующих развитию рака:

Некоторые инфекции, например, ВПЧ

Неблагоприятная экологическая ситуация, воздействие вредных веществ на работе

Пол — многие онкологические заболевания чаще встречаются у мужчин или женщин

Семейный анамнез: рак у близких родственников

Большое количество красного и обработанного мяса (говядина, свинина, баранина, фастфуд, сосиски и колбасы, бекон и пр.)

Распространенные мутации при раке

Мутации в гене EGFR — белка-рецептора эпидермального фактора роста, который находится на поверхности клеток и активирует их размножение

T790M — один из вариантов мутации в гене EGFR

Мутации в гене ROS1 — белка, который встроен в клеточную мембрану и передает сигналы, играющие роль в росте и дифференцировке клеток

Мутации в гене BRAF. Белок, который он кодирует, участвует в регуляции делений клеток путем активации специфического сигнального пути.

Слияние генов с участием NTRK — когда из двух генов получается “неправильный”, гибридный. Гены NTRK кодируют белки Trk, которые выполняют разные функции, в том числе защищают клетки от апоптоза.

Мутации в гене ALK — белка, встроенного в клеточную мембрану, который передает сигналы, связанные с ростом, миграцией клеток, образованием новых кровеносных сосудов

Мутации в генах BRCA — белков, которые помогают восстанавливать ДНК, когда в обеих ее цепочках происходят разрывы

Мутации в генах RAS — белков, которые передают сигналы внутри клеток и регулируют клеточные деления. Семейство RAS включает три гена: KRAS, NRAS и HRAS.

Мутации в PIK3CA — гене, который кодирует белок PI3K, участвующий в регуляции важных процессов в клетках

Мутации в HRR — группе генов, продукты которых участвуют в репарации ДНК при двухцепочечных разрывах

Мутации в TP53 — гене, кодирующем белок p53, «страж генома», который останавливает размножение клеток с поврежденной ДНК и «приказывает» им совершить «самоубийство».

Результатом некоторых мутаций может стать микросателлитная нестабильность — состояние, при котором нарушается восстановление ДНК, и она приобретает повышенную склонность к мутациям.

Почему важно изучать мутации при онкологических заболеваниях?

Для врачей-онкологов важно знать, какие мутации произошли в раковых клетках у конкретного пациента. Это помогает решать важные задачи:

  • судить о степени агрессивности рака, выстраивать прогноз;
  • определять тип, подтип некоторых злокачественных опухолей;
  • подбирать наиболее эффективные противоопухолевые препараты;
  • назначать персонализированную терапию при запущенном раке, когда не помогают стандартные схемы лечения из протоколов.

Выявление мутаций, связанных с раком, у здоровых людей помогает оценивать риск развития онкологического заболевания, проводить профилактику и решать, кому назначать дополнительные скрининговые исследования.

А ученым знания о мутациях в опухолевых клетках помогают создавать новые лекарства.



Как определяют мутации при раке?

В федеральной сети клиник экспертной онкологии «Евроонко» доступны все современные исследования для выявления мутаций при раке:

Что такое эпигенетические изменения, и какую роль они играют в онкологии?

Не меньшую (а может быть, даже и более важную) роль, чем мутации, в развитии рака играют эпигенетические изменения. Этим термином называют такие модификации, которые не меняют последовательность генетического кода, но влияют на активность генов.

Чаще всего встречаются две разновидности эпигенетических изменений (но есть и другие):

  • Метилирование ДНК — присоединение к ее определенным участкам метильных групп. Чаще всего они заставляют «молчать» определенные гены. В норме у человека метилирован 1% всего генома. В некоторых раковых клетках этот показатель ниже. За счет этого в них могут «включаться» онкогены.
  • Модификации гистонов. ДНК организована таким образом, что напоминает бусы — эта структура называется нуклеосомой. В качестве бусинок выступают особые белки — гистоны. Они обмотаны нитями ДНК и влияют на активность генов. Даже небольшие изменения в гистонах могут сильно повлиять на регуляцию работы генов, заставить некоторые из них «замолчать» или, напротив, активировать.


Эпигенетика — очень интересная наука. Возможно, со временем она поможет ученым создать еще больше эффективных препаратов для лечения рака.

Не-у-всех-курильщиков-развивается-рак-легких

Почему у многих курильщиков не развивается рак легких? 20 апреля 2022

С-возрастом-в-ДНК-накапливаются-мутации

С возрастом у людей накапливается много мутаций, способных привес. 27 декабря 2021

Как-родинки-превращаются-в-меланомы

Как родинка превращается в меланому? 08 декабря 2021

Лечение пациентов проводится в соответствии со стандартами и рекомендациями наиболее авторитетных онкологических сообществ. «Евроонко» является партнёром Фонда борьбы с раком. ВНИМАНИЮ ПАЦИЕНТОВ: Рекомендации по лечению даются только после консультации у специалиста. Ваши персональные данные обрабатываются на сайте в целях его корректного функционирования. Если вы не согласны с обработкой ваших персональных данных, просим вас покинуть сайт. Оставаясь на сайте, вы даёте согласие на обработку ваших персональных данных.

Сведения и материалы, размещенные на сайте , подготовлены исключительно в информационных целях и не являются медицинской консультацией или заключением. Авторы информационных материалов сайта не могут гарантировать применимость такой информации для целей третьих лиц и не несут ответственности за решения третьих лиц и связанные с ними возможные прямые или косвенные потери и/или ущерб, возникшие в результате использования информации или какой-либо ее части, содержащейся на сайте.

Путь клетки «из греков в варяги». Малигнизация: причины и следствия


Обзор

Малигнизация — один из самых загадочных процессов. Что же на самом деле направляет клетку на тернистый путь перерождения?

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Недуг, прозванный чумой XXI века. В наши дни рак является одним из самых страшных заболеваний. В 2010 году более семи миллионов людей по всему свету умерли от рака. В Соединенных Штатах каждая третья женщина и каждый второй мужчина рано или поздно заболеют раком. По прогнозам ВОЗ, число случаев заболевания будет продолжать расти от 14 миллионов в 2012 году до 22 миллионов в следующие десятилетия. Пугающие числа, от которых невольно бросает в дрожь. Однако процесс ракового перерождения, или малигнизации, не только страшен, но и интересен, и в этой статье мы разберемся, почему же некоторые «избранные» клетки решают свернуть не туда и как это влияет на самого «изменника».


Конкурс «био/мол/текст»-2019

Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2019.


Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Спонсором приза зрительских симпатий выступила компания BioVitrum.

Гончие еще играют во дворе, но дичи не уйти,
как ни мчится она уже сейчас по лесам.

Франц Кафка

На «Биомолекуле» опубликовано немало статей о молекулярных основах канцерогенеза. Но каждая из них, как правило, посвящена какой-то одной стороне этого патологического процесса, в то время как среди наших читателей наверняка есть люди, которые хотели бы, прежде чем углубляться в детали, получить общее представление о раковой клетке. Обзорная статья Анны Батуевой удачно заполняет этот пробел и дает общее представления о ключевых молекулярных механизмах злокачественного перерождения. — Ред.

Под малигнизацией понимают приобретение здоровыми клетками черт злокачественности, которые мы подробно рассмотрим ниже. Процесс злокачественного изменения можно уподобить дичи из цитаты Кафки, ведь клетка, однажды встав на этот путь, не сможет вернуться и получить свое клеточное здоровье обратно. Важную роль в понимании основ перерождения клеток и их дальнейшего функционирования сыграла медицина, а следом за ней и молекулярная биология. Но начнем с истоков истории рака.

Часть 1. Биография рака

Первые упоминания о раке встречаются в папирусе Эдвина Смита, датируемом 16 веком до нашей эры [1]. Там же отмечается, что данное заболевание не поддается лечению.

Во времена Гиппократа, около 400 года до нашей эры, появилось специальное обозначение рака — karkinos. Разросшаяся опухоль напомнила Гиппократу краба, окутывающего все вокруг клешнями. Современное название онкологии произошло от греческого слова onkos, которое греки использовали для описания опухолей. Однако врачи того времени не различали доброкачественные и злокачественные новообразования, и karkinos Гиппократа не имеет ничего общего с истинным раком.

Гиппократ выдвинул гуморальную теорию, суть которой состояла в том, что каждый недуг является следствием переизбытка одного из четырех гуморов: крови, слизи, желтой желчи и черной желчи.

Гален, греческий врач, практиковавший в Риме около 160 года нашей эры, довел теорию Гиппократа до совершенства. Он заявил, что рак образуется из-за переизбытка черной желчи. Гален умер в 199 году нашей эры, но его «черная желчь» еще долго будоражила умы онкологов.

Только спустя пять столетий, в 1538 году, Андреас Везалий опроверг теорию Галена, делая вскрытия в Парижском университете. Окончательно похоронил галенову теорию лондонский анатом Мэтью Бейли, который в 1793 году опубликовал учебник «Патологическая анатомия некоторых наиболее важных частей человеческого тела» [2], в котором представил рисунки и описания раковых опухолей, где не было и следа «черной желчи».

Изобретение микроскопа повлекло за собой первые цитологические исследования рака. В 1801 году французский физиолог Франсуа Биша и в 1838 году Иоганн Мюллер определили, что опухоли имеют клеточную структуру. После этого Жан Крювелье высказал гипотезу «канцероматозной дегенерации», основанную на предположении, что клетка проходит несколько этапов, прежде чем окончательно превратиться в раковую. Немецкий хирург Карл Тирш доказал, что раковая опухоль происходит из эпителиальной ткани, а саркома — из соединительной.

Первая половина XX века породила еще одну теорию канцерогенеза, недалеко ушедшую от истины. В 1911 году Пейтон Раус, работая в Рокфеллеровском университете в Нью-Йорке, открыл вирус, способный вызывать опухоли у кур. Ученые по всему свету бросились искать вирусы, ответственные за рак именно у человека, однако ничего не могли найти. В 1974 году в Medical World News вирус рака у человека ставили в один ряд с НЛО, снежным человеком и лохнесским чудовищем. Вирус СВ-40 и вирус папилломы человека, вызывающие рак у людей, были открыты в 1960 и 1983 годах соответственно.

В 1970 году генетик Говард Темин, работавший в лаборатории Макардла в Висконсине и изучавший вирус саркомы Рауса (ВСР, или VSR), представил свою работу на Десятом Международном онкологическом конгрессе. Он открыл у ВСР обратную транскрипцию — синтез ДНК по РНК — и положил начало изучениям ретровирусов. Позднее он отказался от вирусной теории канцерогенеза, а в 1979 году ученые Майкл Бишоп и Харолд Вармус открыли первый протоонкоген — src (сарк), содержащийся в ВСР. Это положило начало новому этапу в истории онкологии, люди наконец-то поняли, как запускается процесс канцерогенеза. Но этого бы не произошло без изучения раковой клетки и ее странной физиологии.

Часть 2. Что заставляет клетку измениться?

В этой главе мы разберем причины злокачественного перерождения клетки. Первым толчком к началу этого изменения является мутация в ДНК.

Важными факторами, вызывающими мутации и провоцирующими раковое перерождение, являются ионизирующее излучение, воздействие ультрафиолетовых лучей, влияние цитотоксических веществ, повреждающих ДНК (к ним относятся наркотические вещества и некоторые лекарственные препараты — например, цисплатин, повреждающий структуру двойной спирали) и органические яды.

Но не всякие повреждения ДНК обязательно приведут к появлению раковой клетки, а лишь те, что затронут определенные гены. Наиболее важную роль в канцерогенезе играют три группы генов: протоонкогены, онкогены и гены — супрессоры опухолей.

Протоонкогены — это «здоровые» предшественники онкогенов, которые в результате мутации могут вызвать развитие опухоли. Такими причинами являются различные мутации или суперэкспрессия гена. Как правило, протоонкогены кодируют белки, участвующие в процессах жизненного цикла клетки. В результате мутаций появляются сбои в регуляции клеточного деления и дифференцировки.

Основные изменения, происходящие с протоонкогенами:

    Транслокация — перенос генетического материала с одной хромосомы на другую. Часто в результате такой перестройки появляется новый химерный ген, имеющий канцерогенные свойства. Характерным примером химерного онкогена служит BCR-ABL, появляющийся в «филадельфийской хромосоме» (рис. 1) — результате реципрокной транслокации между участками 9 и 22 хромосом [3].
    Эта мутация приводит к развитию хронического миелоидного лейкоза, который сегодня успешно лечится. Также в 90-95% случаев саркомы Юинга — злокачественной опухоли костной ткани, поражающей в основном трубчатые кости, — обнаруживают транслокацию между 11 и 22 хромосомами, которая приводит к образованию гена, кодирующего патологический белок EWS/FLI1.

BCR-ABL

Рисунок 1. Химерный ген BCR-ABL образуется при слиянии участка 9 хромосомы, несущей ген ABL, с участком 22 хромосомы, несущей ген BCR

В некоторых случаях канцерогенез запускается вирусами. Онкогены в геноме вирусов являются ранее захваченными в клетках-хозяевах нормальными генами, которые со временем превратились в злокачественные. Когда такие онкогенные вирусы попадают в клетку, начинается считывание информации с вирусной ДНК или РНК, в цитоплазме накапливаются онкогенные белки и начинается процесс перерождения.

Онкогены

Онкогены — это гены, активность которых стимулирует образование и развитие злокачественной опухоли. Как уже было упомянуто выше, первый вирусный онкоген был открыт в 1979 году.

Биохимические продукты онкогенов

Онкогены кодируют белки с различной структурой и функциями. К основным продуктам деятельности онкогенов относят:

  • Факторы роста. Раковые клетки продуцируют белки, способные вызывать пролиферацию и дифференцировку клеток. Наиболее известным фактором роста является HER2, кодируемый геном ERBB2. Мутации и гиперэкспрессия этого гена обнаружены при раке молочной железы и ассоциированы с крайней агрессивностью опухоли. Суперэкспрессия гена приводит к запуску белковых каскадов, ответственных за клеточное деление. Постоянные сигналы к делению вызывают неконтролируемую пролиферативную активность клеток и их злокачественное перерождение.
  • ГТФ-связывающие белки. Гуанозинтрифосфат-связывающие белки участвуют во многих клеточных процессах: передача сигналов, транспорт метаболитов внутри клетки и др. Первыми открытыми ГТФ-связывающими белками были белки семейства Ras — продукты онкогена RAS. При постоянном производстве они вызывают злокачественный рост. Наиболее изученный эффектор Ras — это RAF, который запускает белковый каскад MAPK, отвечающий за клеточное деление и пролиферацию [6].
  • Мембранные рецепторы. В онкогенезе основную роль играют рецепторы с тирозинкиназной активностью. Они служат для связывания с ростовыми факторами. К ним относится рецептор эпидермального фактора роста, повышенный синтез которого приводит к перерождению клетки.
  • Онкогенные протеинкиназы. Протеинкиназы — это группа ферментов, которые модифицируют белки путем фосфорилирования (присоединения остатка фосфорной кислоты). Протеинкиназы регулируют апоптоз, процессы роста и дифференцировки клеток. Нарушения в их работе приводят к сбою в клеточном цикле и, как следствие, к развитию рака. Например, протеинкиназа AKT1, ответственная за ингибирование апоптоза, при перепроизводстве способна вызывать перерождение клеток. Также, она связана с ростом сосудов в опухоли, что помогает раковым клеткам расселяться по организму и давать метастазы.

Все вышеперечисленные продукты онкогенов являются сигналами к запуску неконтролируемого клеточного деления. Внешние факторы больше не играют никакой роли в жизни клетки, потому что пролиферацию запускают внутренние сигнальные белки.

Гены и белки — супрессоры

В здоровой клетке существуют защитные механизмы, следящие за процессами и регулирующие клеточный цикл. К таким механизмам относят деятельность белков — супрессоров опухолей: p21, p53, pRb, PTEN и др.

Белок p53 — наиболее изученный белок-супрессор. Он является продуктом гена TP53, мутации которого обнаруживаются в клетках многих опухолей [7]. p53 синтезируется во всех клетках организма, но активируется только при повреждениях ДНК. Этот белок способен остановить клеточный цикл и не допускать дальнейшее деление клетки, пока не произойдет репарация ДНК. При сильных повреждениях он также может запускать процесс апоптоза.

Одной из главных функций p53 является сохранение генетической идентичности всех клеток организма. При неправильной работе этого белка клетка получает возможность делиться даже при поврежденной ДНК, что увеличивает вероятность мутаций и накопления дефектных онкогенов. Важную роль в подавлении p53 играет белок MDM2, который в норме регулирует активность p53. Однако при повышенном синтезе он связывается с p53 и ингибирует его противоопухолевое действие.

Эпигенетические факторы рака

Важными факторами канцерогенеза являются эпигенетические события. Эпигенетика изучает процессы, затрагивающие активность генов, но не изменяющие структуру ДНК. К ним относится изменение метилирования ДНК.

Метилирование — это присоединение метильной группы к нуклеотидам в особых, строго определенных участках генома, называемых CpG-островками. Такое изменение не влияет на структуру молекулы, однако может влиять на экспрессию отдельных генов. В частности, если в участке ДНК много метильных групп, то транскрипция этого участка прекращается.

Особенно активно метилирование проходит в эмбриональный период жизни, а у взрослого человека метилировано около 2% генома. В норме баланс между метилированием и деметилированием строго регулируется и соблюдается, однако в старости начинают преобладать процессы метилирования, что может в итоге привести к канцерогенезу. В процессе онкогенеза происходит гиперметилирование CpG-островков, что приводит к общей геномной нестабильности и накоплению еще большего количества мутаций. В большинстве случаев метилированные участки являются промоторами и влияют на активацию или, наоборот, инактивацию генов, что с виду похоже на действие точечных мутаций.

Однако хотя нарушения в эпигенетической регуляции сопровождают развитие злокачественного перерождения, они, как правило, не являются его первопричиной, а лишь одним из сопутствующих факторов.

По отдельности каждое из вышеперечисленных нарушений не может спровоцировать раковое перерождение. Все они работают совместно и слаженно. Так, онкогенез запускается, только если одновременно активированы онкогены и инактивированы гены-супрессоры в обеих копиях ДНК. Впервые теорию двойного канцерогенеза высказал Альфред Кнудсон, изучавший ретинобластому: «По всей видимости, — писал он, — в возникновении рака у детей ключевую роль играют два типа генов. Первый, онкогены, действует посредством повышенной, аномальной активности. Второй же класс, антионкогены, в онкогенезе рецессивен: рак происходит лишь тогда, когда обе нормальные копии удалены или изменены» [8]. В процессе жизнедеятельности раковая клетка накапливает все большее количество мутаций, поэтому раковый геном часто очень сильно отличается от генома здоровой клетки (рис. 2).

Раковый геном

Рисунок 2. Раковый геном. В процессе жизнедеятельности раковая клетка накапливает огромное количество мутаций и нередко характиризуется полиплоидностью.

Часть 3. Физиологические последствия малигнизации

Основное последствие малигнизации — клеточное бессмертие. Оно может поддерживаться несколькими способами: активацией фермента теломеразы, блокировкой регуляторов митохондриального пути апоптоза и в некоторых случаях активацией механизма ALT (alternative lengthening of telomeres, альтернативного удлинения теломер [14]).

Обратная сторона «вечной молодости»

Впервые клеточное бессмертие раковых клеток было продемонстрировано в 1951 году на клеточной линии HeLa, взятой у Генриетты Лакс, вскоре скончавшейся от рака шейки матки (рис. 3) [9].

Клеточная линия HeLa

Рисунок 3. Клеточная линия HeLa — «бессмертная» линия раковых клеток. С 50-х годов прошлого столетия используется для изучения поведения раковых клеток и выявления новых противораковых препаратов.

Как правило, малигнизация сопровождается активацией фермента теломеразы. На концах хромосом находятся короткие повторяющиеся участки ДНК, названные теломерами [10]. После каждого деления теломеры укорачиваются, что в итоге приводит к их полному исчезновению и невозможности продолжать деление. Количество возможных делений для клетки названо пределом Хейфлика. Действие теломеразы заключается в восстановлении теломер и превращении клетки в фактически бессмертную, позволяя ей делиться бесконечно долго. Существуют нормальные клетки, в которых также экспрессируется теломераза. Это клетки, которым надо часто делиться: половые, стволовые и клетки эпителия кишечника. Однако теломераза активна в подавляющем большинстве раковых клеток, что играет важную роль в их жизненном цикле.

С другой стороны, в некоторых злокачественных клетках, наравне с активной теломеразой, существует так называемое альтернативное удлинение теломер, или сокращенно ALT [11]. При ALT происходит гомологичная рекомбинация концевых участков хромосом (рис. 4). В норме рекомбинация происходит в процессе мейоза, однако раковые клетки научились достраивать теломеры, используя теломеры другой хромосомы как матрицу [12].

Принцип действия ALT

Рисунок 4. Принцип действия ALT, основанный на гомологичном достраивании концов теломер. Такой механизм «бессмертия» является основным для ряда опухолей.

Важно отметить, что раковое бессмертие контролируется не только теломерами, но и ингибированием путей апоптоза, главным из которых является митохондриальный путь. В норме, из митохондрий в цитоплазму выходят митохондриальные белки и образуют апоптотический комплекс — апоптосому, которая и запускает апоптоз. При неправильной работе регуляторных белков, а к ним относятся белки семейства BCL-2, нарушается выход апоптотических белков, что приводит к сбою в процессе апоптоза. В раковых клетках обнаружены нарушения в работе белков BAX и BAK, а также экспрессия ингибиторов клеточной смерти.

Часть 4. Заключение

Ежедневно в нашем организме появляются клетки, вступившие на путь ракового перерождения. Но далеко не все из них дойдут до конца и образуют злокачественную опухоль. С другой стороны, интересно клеточное поведение в процессе малигнизации, когда клетка способна «выключать» отдельные гены, мешающие ее перерождению. Современные исследования в области молекулярной онкологии и раковой геномики дают повод надеяться на окончательное понимание основ малигнизации и физиологии злокачественных клеток. Также в последнее время проводятся разработки новых противораковых препаратов, направленных на исправление дефектных сторон «больных» клеток. Возможно, изучение именно особенностей раковой клетки приведет к созданию лекарства, способного снизить страшные прогнозы Всемирной организации здравоохранения.

Читайте также: