Рентгенография жестким излучением. Преимущества жесткого излучения в рентгенографии

Обновлено: 02.05.2024

Государственное реформирование здравоохранения поставило перед лечебными учреждениями принципиально новые задачи: скорость и качество получения и обработки информации стали важнейшим условием повышения уровня оказываемой медицинской помощи. Эту задачу нельзя решить без внедрения новых информационных технологий. Основным приоритетом развития лучевой диагностики на сегодняшний день является внедрение в практику цифровых технологий.

Цифровая рентгенография обладает рядом существенных преимуществ по сравнению с аналоговыми методами. Это отсутствие пленки и реактивов, экономия площади, широкие возможности по обработке снимков, автоматизация данных. Кроме того, использование цифровой диагностической техники позволяет объединить диагностические кабинеты и рабочие места лаборантов, врачей в единую информационную систему лечебного учреждения. В настоящее время лечебно-профилактические учреждения (ЛПУ) используют 2 типа информационных систем: общебольничные системы – автоматизация работы ЛПУ как предприятия и радиологические информационные системы (РИС) – обработка, хранение и передача диагностических изображений. С целью оказания врачами оперативной квалификационной консультации пациентам, находящимся на расстоянии могут использоваться телемедицинские сети, к которым подключается РИС ЛПУ. Особенностью таких сетей является способность передачи рентгеновских снимков на большие расстояния в реальном времени без искажений и с соблюдением строгой конфиденциальности. Организация телемедицинских радиологических сетей позволит вывести раннюю диагностику на новый качественный уровень.

Создание цифровых информационных систем в диагностической медицине обеспечивает сохранение максимума информации о больном и ее рациональное и эффективное использование в клинической практике и для научных целей. С целью повышения качества лучевой диагностики хирургических заболеваний в отделении лучевой диагностики Института хирургии им. А.В. Вишневского используется автоматизированная радиологическая информационная система (PACS), обеспечивающая беспленочную систему получения, обработки, передачи и архивирования изображений в стандартном формате DICOM. Единое медицинское информационное пространство предоставляет возможность оказания дистанционной высококвалифицированной помощи ведущих медицинских центров, что в конечном итоге позволяет повысить качество и снизить себестоимость обслуживания пациентов.

Малодозовая цифровая рентгенография органов грудной клетки получает все более широкое распространение. Её преимуществом является стандартно высокое качество изображения, не зависящее от особенностей фотохимической обработки пленки. Цифровые изображения имеют значительно более широкий динамический диапазон, позволяющий одновременно анализировать как легочную ткань, так и плотные структуры средостения. В зависимости от типа пленочного флюорографического аппарата обследуемый получает дозу от 0,3 до 1,99 мЗв. Эффективная доза при проведении скрининговых исследований не должна превышать 1 мЗВ. При проведении цифровой рентгенографии эффективная доза составляла от 0,004 до 0,2 мЗв. Существенное снижение дозы облучения при выполнении рентгенограммы на аппарате высокого разрешения позволит свести риск облучения к безопасному минимуму при оценке эффективности лечения в динамике больных туберкулезом легких и осуществлять динамическое наблюдение за состоянием диспансерных пациентов из групп повышенного риска с любой необходимой периодичностью.Кроме того, цифровое изображение может быть подвергнуто дополнительной обработке с помощью математических программ, что в ряде случаев повышает информативность исследования.

В настоящее время ряд исследователей изучают и проводят сравнительную оценку различных типов цифровых рентгенографических систем для определения их диагностических возможностей в клинической практике, а также для определения эффективной дозы, получаемой пациентом при исследовании органов грудной клетки. Современные системы прямой рентгенографии позволяют снижать дозу до 50%.

Процесс перехода на цифровой рентген аппарат в Западной Европе прошел несколько этапов и начался с систем оцифровки пленочных рентгенограмм, на смену которым достаточно быстро пришли системы компьютерной рентгенографии с технологией запоминающих люминофоров. Затем появился плоскопанельный детектор рентгеновского излучения и, соответственно, сканирующие рентгенографические системы. Четвертым этапом перехода к цифровой технологии визуализации стало внедрение в клиническую практику полноформатных рентгеновских систем на основе матричных детекторов, которые в настоящее время преобладают на мировом рынке.

Для постановки окончательного диагноза или для контроля состояния пациента в динамике врачу лучевой диагностики приходится не только анализировать изображения, но и обращаться к архивным данным. Использование компьютерных технологий и информационных систем: Picture Archiving and Communication System (PACS), Radiological Information Systems (RIS), Hospital Information Systems (HIS) в лучевой диагностике позволяет осуществлять мультимодальное совмещение медицинских изображений, хранить их в сжатом цифровом виде в централизованном архиве, а также считывать и пересылать рентгеновские снимки на любой компьютер по различным информационным сетям, включая интернет. Необходимость внедрения информационных технологий в клиническую практику неоспорима на сегодняшний день. Применение систем архивирования, передачи и обработки изображений (PACS, RIS) в работе отделения лучевой диагностики ЛПУ позволяет обеспечить быстрый доступ к информации о пациенте различным специалистам, представить медицинские изображения в цифровом виде, повысить производительность и эффективность работы всего ЛПУ.

Положительный опыт оснащения большинства крупных европейских клиник системами архивирования и передачи медицинских изображений (PACS), широкое использование компьютерных анализаторов в медицинской визуализации и рабочих станций, а также ведение историй болезни в электронном виде (Bellon E. et al, 2005) позволяет предположить в скором времени внедрение данных систем в отечественное здравоохранение.

Одной из основных тенденций развития медицинской визуализации является активное внедрение цифровых технологий, замены аналоговых аппаратов для лучевой диагностики на цифровые установки. Эти изменения также коснулись и традиционной рентгенологии.

Переход к оцифровке рентгеновских снимков способствует тому, чтобы цифровая флюорография легких заняла свое ведущее место в первичной диагностике легочной патологии, и при скрининге, и в обычных клинических ситуациях. Возможности компьютерной обработки рентгеновских изображений позволили значительно повысить выявляемость патологии органов грудной клетки при проведении профосмотров.

В последние годы большое внимание уделяется компьютерному анализу медицинских изображений при заболеваниях легких. В частности, созданы компьютерные программы, позволяющие выявлять мелкие очаговые образования в легких и, тем самым, повышающие диагностическую эффективность цифровой рентгенографии.На цифровых изображениях убедительно выявляются мелкие, компактные, изолированные петрификаты в парааортальных лимфатических узлах, а также в периферических лимфатических узлах шеи и подмышечной области, которые при проекционной пленочной рентгенографии по разным причинам не всегда находят отображение. Важное практическое значение приобретает возможность обнаружения на цифровых снимках "малых" форм. В особенностях отображения очагового туберкулеза легких количество очаговых теней, как правило, тоже определяется большее, чем на обзорных рентгенограммах и флюорограммах. Кроме того, в США в связи с относительно низкой стоимостью и пониженной лучевой нагрузкой в будущем планируется использовать цифровой рентген в сочетании с компьютерным анализом изображений вместо КТ при скрининговом исследовании органов грудной клетки для выявления бронхогенного рака.

Значительная часть населения России подвергается рентгенологическим исследованиям с целью диагностики или профилактики различных заболеваний. Установлено, что более 70% заболеваний распознается с помощью рентгенологического метода, необходимого для обнаружения и определения степени распространенности патологического процесса, а также для контроля эффективности лечения. Поэтому усилия ученых направлены на создание рентгеновских аппаратов с пониженной лучевой нагрузкой. К ним относятся малодозовые цифровые рентгеновские аппараты. Необходимо оптимизировать лучевые исследования для уменьшения лучевой нагрузки на пациента при одновременном сохранении качества медицинских изображений.

В настоящее время накоплен опыт эксплуатации цифровых рентгеновских установок и флюорографов в лечебно-профилактических учреждениях различного профиля. Преимуществами цифровой флюорографии являются: снижение лучевой нагрузки на исследуемого (в 10-30 раз), высокая информативность, уменьшение стоимости исследования, возможность хранения данных на всех видах носителей информации и передачи через интернет, простота и высокая скорость получения изображений и их высокое качество. Сравнение возможностей в выявлении нормальных анатомических структур и патологических рентгенологических симптомов показывает, что цифровые изображения имеют преимущество, которое проявляется в превосходном разрешении по контрастности в широком динамическом диапазоне.

Дополнительными преимуществами цифровой радиографии являются возможности применения гистограммного анализа и цветового кодирования. Цветовое кодирование может быть выполнено на основе техники трапециоидов. При этом различные ткани получают разную окраску, что позволяет проводить их визуальную дифференцирововку.

Экологическое благополучие населения является одной из важнейших задач современного индустриального общества. Среди всех экологических проблем, стоящих сейчас перед государством, радиационный фактор занимает одно из ведущих мест. Рассматривая радиационный фактор, необходимо отметить, что среди всех видов облучения населения источниками ионизирующего излучения 17% вклада в него обусловлено медицинской компонентой. В целом считается, что польза от применения медицинского облучения превышает вред от его использования, поэтому оно не нормируется в отличие от профессионального облучения. Диагностическое облучение характеризуется довольно низкими дозами, получаемыми каждым из пациентов (типичные эффективные дозы находятся в диапазоне 1-10 мЗв), что в принципе вполне достаточно для получения требуемой клинической информации. Эффективная доза при рентгенографии составляет от 1 мЗв до 0,6 мЗв и для КТ от 0,2 мЗв до 12 мЗв.

Сканирующий метод исключает регистрацию рассеянного излучения при формировании рентгеновского изображения, поэтому, рентгенологическое обследование, проведенное путем сканирования пациента узким коллимированным лучом, с прямым преобразованием энергии -кванта в электрический сигнал, позволяет уменьшить лучевую нагрузку на пациента в десятки раз и повысить диагностическую эффективность обследования по сравнению с традиционной пленочной технологией. Стратегия снижения дозовых нагрузок на население при проведении рентгенологических процедур должна предусматривать поэтапный переход в рентгенологии на сканирующие технологии получения информации и, прежде всего, при проведении профилактических процедур, доля которых в общем объеме рентгенологических исследований составляет около 33%. Реализация в полном объеме этих предложений по снижению дозовых нагрузок позволит уже в ближайшие 2-3 года снизить эффективную среднюю годовую дозу облучения на одного человека до 0,6 мЗв. При этом суммарная годовая коллективная эффективная доза облучения населения уменьшится почти на 31000 чел.-Зв, а число вероятных случаев возникновения злокачественных заболеваний (смертельных и не смертельных) снизится за это период более чем на 2200.

В системах сканирующего типа рентгеновский пучок проходит через узкую щель коллиматора прежде, чем попадает на линейку детекторов. В сканирующих аппаратах получение информации с одной строки происходит максимум за 5-6 мс, что даже меньше времени формирования изображения в цифровых флюорографах на основе ПЗС-матрицы. Преимущество сканирующих систем с узким веерным рентгеновским пучком состоит в том, что в них практически отсутствует вредное влияние рассеянного излучения на качество изображения, а это, в свою очередь, позволяет значительно снизить дозовую нагрузку на пациента. Ряд авторов отмечает, что сканирующая рентгенография на сегодняшний день является наилучшим решением для практической рентгенодиагностики с точки зрения достижения приемлемого баланса цена качество для цифрового приемника.

Таким образом, цифровые рентген аппараты обладают рядом преимуществ над традиционными аналоговыми аппаратами, что связано с высоким качеством и возможностью компьютерной обработки получаемых изображений, хранением полученной информации в электронном виде, возможностью передачи рентгеновских снимков через интернет и значительным снижением лучевой нагрузки на пациента.

Цифровые рентген аппараты — высокотехнологичное оборудование для соверменной медицины!

Рентгенография жестким излучением. Преимущества жесткого излучения в рентгенографии

Под рентгенографией жестким излучением понимается производство снимков при напряжении на трубке свыше 100 кв.
В соответствии с диапазоном применяемого при рентгенографии напряжения технику производства снимков можно разделить (по жесткости излучения) на четыре вида: 1) мягким излучением при напряжении до 50—60 кв; 2) обычным излучением при напряжении от 50—60 кв до 95—100 кв; 3) жестким излучением при напряжении от 100 до 300 /се; 4) сверхжестким излучением при напряжении, превышающем 1000 кв.

Рентгенография жестким излучением, производимая при напряжении от 100 до 300 кв, подразделяется на две ступени: а) средней ступени при напряжении от 100 до 160 кв и б) высокой ступени при напряжении от 200 до 300 кв.

За последние десять лет освоена и получила широкое практическое применение методика рентгенографии жестким излучением средней ступени при напряжении от 100 до 160 кв. Для этого рентгеновские аппараты современной конструкции изготовляются так, чтобы на них можно было производить рентгенографию при напряжении от 40 до 150 кв, т. е. обычным излучением и жестким излучением среднем ступени. Рентгенография жестким излучением высокой ступени при напряжении 200—300 кв и сверхжестким излучением при напряжении, превышающем 1000 кв, пока еще не вышла за пределы эксперимента и производится только в лабораторных условиях.

Преимущества производства рентгеновских снимков жестким излучением говорят сами за себя, если исходить из зависимости оптической плотности почернения рентгеновской пленки и требующих для этого экспозиционных величин, т. е. напряжения, величины тока, выдержки. Эта зависимость выражается формулой 4
D = kiUpt,

D — оптическая плотность почернения рентгеновской пленки; k — коэффициент пропорциональности; i — величина анодного тока в ма; V — напряжение на рентгеновской трубке в кв; р — показатель степени, величина которой, в зависимости от напряжения, колеблется от 3 до 5; t — выдержка в секундах.

Из приведенной формулы видно, что почернение рентгеновской пленки имеет прямую зависимость от величины тока, выдержки и степени, в которую возводится числовое значение напряжения. Очевидно, что интенсивность рентгеновского излучения на уровне пленки в большей степени зависит не от величины тока или выдержки, а от напряжения. Например, при увеличении тока в 2 раза, при всех прочих равных величинах, интенсивность рентгеновского излучения на уровне пленки будет также двойной. Если же повысить напряжение на рентгеновской трубке в 2 раза, то интенсивность рентгеновского излучения на уровне лленки увеличится не в 2, а в 32 раза. В целях получения одинаковой плотности почернения рентгеновской пленки при повышении напряжения на рентгеновской трубке надо уменьшать величину тока или сокращать выдержку.

рентгенография

Из указанной зависимости можно видеть все преимущества рентгенографии жестким излучением:
1) Значительное сокращение выдержки. При сокращении выдержки уменьшается динамическая нерезкость, в результате чего при рентгенографии движущихся органов рентгеновское изображение, с технической точки зрения, получается более высокого качества.

2) Уменьшение дозы рентгеновского излучения, воспринимаемой кожей и внутренними органами больного. Кроме того, доза рентгеновского излучения может быть еще больше уменьшена путем более усиленной фильтрации излучения.

3) В связи с уменьшением дозы рентгеновского излучения, воспринимаемой внутренними органами и кожей больного (за счет повышения проникающей способности рентгеновского излучения) , появляется возможность увеличения количества снимков.

Это преимущество, по сравнению с рентгенографией обычным излучением, приобретает особое значение при производстве скоростных серийных снимков (за счет сокращения выдержки). Уменьшение дозы рентгеновского излучения происходит не только при скоростной серийной рентгенографии, но и при необходимости исследований в гинекологии и акушерстве, при исследовании объемных частей тела человека, при производстве контактных снимков, при рентгенографии с непосредственным увеличением изображения, при флюорографии (за счет повышения проникающей способности рентгеновского излучения)

4) В связи со значительным уменьшением экспозиции снижается нагрузка, особенно тепловая, на рентгеновской трубке, в результате чего увеличивается ее срок эксплуатации.

5) В связи с уменьшением нагрузки на рентгеновской трубке снижается нагрузка на питающую электрическую сеть, в результате чего снижается потребление электрической энергии.

6) Большая проникающая способность жесткого излучения облегчает получение качественных снимков частей тела человека большого объема, позволяет использовать менее чувствительную рентгеновскую пленку Рентгенография жестким излучением выгодна при исследовании беременных женщин, тучных больных, а также при исследовании в боковых и косых проекциях.

7) Благодаря большой проникающей способности жесткого излучения изображения на снимке мягких и плотных тканей, тонких и толстых участков объекта выравниваются и прорабатываются одинаково подробно; снимок получается более богатым отдельными деталями исследуемого объекта по всей его толщине и во всех его частях.

8) При работе жестким излучением отпадает необходимость в использовании мощных рентгеновских аппаратов. Поэтому рентгеновские аппараты, предназначенные для рентгенографии жестким излучением, изготовляются небольших мощностей, что, в свою очередь, дает возможность использовать трубки с малой величиной фокуса. Применением рентгеновской трубки с малой величиной фокуса практически сводится на нет влияние на качество изображения геометрической нерезкости, в результате чего значительно улучшается различимость мелких деталей на рентгеновском снимке.

С применением малофокусной трубки нерезкость от объектива флюорографа также перестает играть роль в суммарной нерезкости. Следовательно, качество флюорографического и обычного рентгеновского изображения становится зависимым только от нерезкости флюорографического экрана, пленки и усиливающих экранов.

9) С повышением напряжения на рентгеновской трубке возрастает эффективность усиливающих экранов, в результате чего имеется возможность применять мелкозернистые экраны с небольшим фактором усиления без значительного увеличения выдержки.

- Вернуться в оглавление раздела "Лучевая медицина"

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Недостатки рентгенографии жестким излучением. Техника рентгенографии жестким излучением

Наряду с положительными преимуществами методики рентгенографии жестким излучением, по сравнению с рентгенографией обычным излучением, имеют место и недостатки.
1) Понижение контрастности рентгеновского изображения. По мере повышения напряжения на трубке, т. е. увеличения жесткости излучения, возрастает количество рассеянных рентгеновых лучей. Количество рассеянных рентгеновых лучей, достигающих пленки, может быть даже больше, чем прямых лучей. Поэтому техника рентгенографии жестким излучением тесно связана с уменьшением вторичного излучения, главным образом за счет использования рентгеновской решетки. Рентгеновские решетки с отношением 1 6 для работы при напряжении выше 80 кв непригодны. Рентгенография с напряжением выше 80—90 кв возможна лишь при наличии специальных решеток с отношением не менее 1 10—1 12. При отсутствии в рентгеновском кабинете решеток для жесткого излучения бесполезно применять «жесткую» технику Кроме того, решетки должны быть быстродействующие, потому что рентгенография жестким излучением производится при очень коротких выдержках (десятые и сотые доли секунды)

Другим способом уменьшения вторичного излучения является увеличение расстояния между объектом исследования и пленкой, т. е. когда при достаточно большом расстоянии фокус трубки — объект (150, 200, 300 см) увеличивается расстояние объект — пленка на 10—15 см. Кроме того, применяются тубусы и диафрагмы, позволяющие максимально ограничивать в поперечном сечении рабочий пучок рентгеновых лучей.

Для повышения качества рентгеновского снимка (контрастности) следует применять пленки с большой величиной коэффициента контрастности, уменьшать поле облучения и применять там, где это возможно, компрессию.

2) Защита от рентгеновского излучения должна быть более действенной для большего поглощения прямого и усиленного рассеянного рентгеновского излучения.

3) Точная установка величины выдержки производится очень малыми интервалами, так как при работе жестким излучением имеется всегда опасность сделать передержку, отчего снимок будет необычайно вялым.

4) Безукоризненная химико-фотографическая обработка экспонированной рентгеновской пленки с соблюдением указанного времени проявления и температуры проявителя, с обязательным и своевременным добавлением восстановителя. Прекращение проявления по признаку, когда на прозрачных местах рентгенограммы начинает появляться вуаль, приводит к многократному недопроявлению с понижением контрастов в изображении. Способ проявления пленки, до появления вуали уместен при работе на обычных напряжениях, но и то не всегда. Обработка снимков, сделанных жесткими лучами, должна быть направлена на достижение максимальной контрастности изображения, для чего применяются проявители с большим содержанием щелочей и проявляющего вещества — фенидона — и обращается внимание на постоянство качества проявителя.

рентгенография жестким излучением

Техника производства снимков при помощи жесткого излучения имеет сравнительно широкое применение, так как: 1) она имеет неоспоримые преимущества при рентгенографии скелета, 2) может быть применена при исследовании желудочно-кишечного тракта, 3) дает преимущества при рентгенографии грудной клетки, 4) может быть применена как при негативных, так и при позитивных контрастных методах исследования или при их комбинации (метод двойного контрастирования), 5) может иметь успех при специальных методах исследования.
В соответствии с перечисленными выше преимуществами, рентгенографию при помощи жесткого излучения можно применять при исследовании скеле т а, так как:

а) имеется большая возможность использования безэкранной пленки при рентгенографии объектов толще 10 см. Благодаря безэкранной пленке исключается нерезкость изображения, которая всегда имеется при рентгенографии на пленке с применением усиливающих экранов. Снимки, сделанные на безэкранной пленке, богаты деталями с повышенной резкостью изображения, что является очень ценным для диагностики;
б) лучшее изображение толстых частей тела человека особенно при рентгенографии в боковых и косых проекциях;

в) благодаря короткой выдержке значительно уменьшается риск получения нерезкого изображения в случае движения объекта исследования, что особенно важно при рентгенографии беспокойных больных, детей, больных престарелого возраста и психических больных;

г) имеется возможность проведения функциональных исследований, например, суставов, позвоночника; д) позволяет пользоваться рентгеновской трубкой с микрофокусом (0,3x0,3 мм) как при обычной рентгенографии, так и при рентгенографии с непосредственным увеличением изображения.

Кроме того, техника производства снимков при помощи жесткого излучения применяется в тех случаях, когда требуется сократить выдержку (томография крупных артерий), при рентгенографии объемных областей тела человека (поясничный отдел позвоночника), при исследовании в специальных проекциях (томография в боковой проекции), когда необходимо получить большее число деталей во всей толще исследуемого объекта, отличающихся друг от друга плотностью и своим химическим составом, и во всех случаях, когда требуется уменьшение дозы рентгеновского излучения, воспринимаемой кожей и внутренними органами больного.
При выборе технических условий рентгенографии следует прежде всего обращать внимание на сокращение выдержки.

При выборе напряжения следует исходить из того, что при повышении напряжения контрастность рентгеновского изображения убывает. Из сказанного следует, что при применении методики рентгенографии жестким излучением должны быть определены границы ее возможностей и приняты во внимание ее недостатки.

В каждом отдельном случае могут быть в большей или меньшей степени, так как на технические условия рентгенографии влияет большое количество факторов, о которых было сказано выше.

Бесспорным является тот факт, что техника рентгенографии при помощи жесткого излучения является ценной помощницей для каждого врача-рентгенолога и отвечает современному уровню развития рентгенологии, а снимок получается более совершенным.

Жёсткие лучи

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10 −4 до 10² Å (от 10 −14 до 10 −8 м).

Содержание

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·10 16 Гц до 6·10 19 Гц и длиной волны 0,005 — 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.

Получение

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения (см. рентгеновская трубка).

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. е. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена.

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т. н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн спектральных линий K-серий (нм) для ряда анодных материалов. [1] , [2]
Kα₁ Kα₂ Kβ₁ Kβ₂
Fe 0,193735 0,193604 0,193998 0,17566 0,17442
Cu 0,154184 0,154056 0,154439 0,139222 0,138109
Ag 0,0560834 0,0559363 0,0563775
Cr 0,2291 0,22897 0,229361
Co 0,179026 0,178897 0,179285
Mo 0,071073 0,07093 0,071359
W 0,0210599 0,0208992 0,0213813
Zr 0,078593 0,079015 0,070173 0,068993
Ni 0,165791 0,166175 0,15001 0,14886

Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e -kd , где d — толщина слоя, коэффициент k пропорционален Z³λ³, Z — атомный номер элемента, λ — длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

  • Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.
  • Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах — т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.


В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения — за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, т. к. полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

История открытия


По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо — при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название «рентгеновские лучи». В некоторых странах осталось старое название — X-лучи. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.

Действие рентгеновского излучения на человека

Рентгеновское излучение – это электромагнитные волны, длина которых колеблется в интервале от 0,0001 до 50 нанометров. Излучение было открыто в ноябре в 1895 году физиком из Германии Вильгельмом Конрадом Рентгеном, работавшим в Вюрцбургском университете. Он охарактеризовал свойства лучей, обнаружив их способность проникания через мягкие непрозрачные ткани.

Применение и свойства рентгеновского излучения

Излучение делится два типа:

Лучи характеристического типа получаются при перестройке атомов анода рентгеновской трубки. Волны различаются длиной, на них воздействуют номера химических элементов, которые используются при получении трубки.

Тормозные лучи появляются из-за торможения электронов, которые испаряются из вольфрамовой спирали.

У электромагнитных волн существует ряд характеристик, объясняющихся их природой. Электромагнитные волны при перпендикулярном падении на плоскость не отражаются.

Это интересно! При перечне соблюдённых условий алмаз отразит их.

Электромагнитные волны пробиваются через непроницаемые предметы: бумага, металл, дерево, живые ткани. Чем поверхность материала плотнее и толще, тем лучи поглощаются интенсивнее и больше.

Рентгеновское излучение вызывает свечение некоторых элементов. Он останавливается после прекращения воздействия электромагнитных волн. Электромагнитные волны засвечивают фотоплёнку.

Излучение рентгена

При прохождении лучей в воздухе происходит его ионизация. В итоге воздух способен проводить ток. Облучение повреждает клетки, это связано с ионизацией биологических структур.

Благодаря рентгеновскому излучению можно просветить тело человека, чтобы получить снимок его костей. При современных технологиях также возможно выявление внутренних органов. С помощью обычных приборов получают двумерную проекцию, а благодаря компьютерным томографам возможно сделать объёмное изображение человеческих органов.

В этом промежутке времени существует такое понятие как рентгеновская дефектоскопия. С помощью неё выявляют повреждения в различных изделиях, к примеру, в варочных швах и в рельсах.

Во многих науках рентгеновское излучение применяется для выявления строения элементов на уровне атомов при помощи дифракционного рассеяния рентгеновского излучения. Это называется рентгеноструктурным анализом. В качестве примера можно привести выявление структуры ДНК.

Химический состав элементов также выявляется благодаря электромагнитным волнам. Вещество, по которому осуществляется анализ, облучается электронами, в процессе происходит ионизация атомов. Такой метод называется рентгено-флюоресцентным.

На сегодняшний момент применение рентгеновского излучения осуществляется в разных отраслях. В целях безопасности создаются переносные и стационарные приборы для выявления запрещённых или опасных для жизни предметов в таможнях, аэропортах и местах, где часто происходят столпотворения людей.

Благодаря специальным телескопам возможно наблюдение за космическими телами и различными явлениями. При помощи электромагнитных волн разрабатывается лазерное оружие.

Виды рентгеновского излучения

Оно бывает нескольких видов и различается по проникающей способности и по протяжённости волны:

  • Жёсткое;
  • Мягкое (проникающая способность значительно ниже, но сами волны длиннее).

Действует подразделение по признакам спектра и механизмам действия:

Любые типы складываются благодаря рентгеновской трубке. Этот термин значит электровакуумный прибор, который предназначен для генерации электромагнитных волн. Основой работы служит термоэлектронная эмиссия.

Тормозное излучение образуется при помощи торможения электронов полем атомарных электронов. Его диапазон — непрерывный, определяется границами волн.

Влияние рентгеновского излучения на человека

После их открытия Вильгельмом Рентгеном, который опубликовал статью, назвав их х-лучами, выяснилось, что такое излучение влияет на организм человека.

Рентгеновское излучение в повышенных дозах провоцирует изменения в кожных покровах, которые похожи на ожог от солнечных лучей. Только при облучении происходит более глубокое и серьёзное повреждение верхнего слоя кожи. Появившиеся на коже язвы требуют затяжного по времени лечения.

Со временем исследователи выявили, что такого пагубного действия реально избежать, если уменьшить дозировку или время. При этом применяется дистанционное управление процедурой.

Вред от получаемых волн иногда проявляется не сразу, а только спустя промежуток времени, постепенно: случаются непрерывные или временные преобразования в структуре эритроцитов, повышается риск развития лейкемии. Возможно характерное образование последствия в виде преждевременного старения и утери эластичности кожи.

Применение рентгена

Влияние рентгеновского излучения зависит от того, какой внутренний орган подвержен излучению. Воздействие электромагнитных волн зависит от дозы лучей. При облучении половых органов у человека развивается бесплодие, при кроветворных органах – болезни крови.

Регулярное облучение даже в самых маленьких количествах и при коротких промежутках, приводит к изменениям на генетическом фоне. Они редко обратимы.

Электромагнитные волны проникают через ткани человеческого тела, при этом осуществляется ионизация в клетках, изменяется структура. Результатами таких воздействий становятся соматические осложнения или болезни в будущем поколении. Так проявляются генетические заболевания.

У людей, подвергшихся излучению, выявляются патологии крови. После маленьких доз возникают изменения её состава, которые ещё обратимы. Распадаются эритроциты и гемоглобин вследствие гемолитических изменений. Возможна тромбоцитопения.

При облучении нередки травмы хрусталика глаза, он мутнеет, и наступает катаракта.

Однократное облучение медицинской аппаратурой не влечёт за собой сильных перемен, т.к. содержит небольшую дозировку. При чувстве пациентом повышенной тревоги он вправе попросить у медика специальный защитный фартук. После выключения аппарата вредоносное действие тут же прекращается. Частое же влияние пагубно сказывается на человеческом организме.

Исследование последствий вредного облучения позволило создать международные стандарты, в которых указаны разрешённые минимальные дозы.

Читайте также: