Коррозия стальных протезов. Принципы коррозии стальных зубных протезов

Обновлено: 11.05.2024

Термической обработке , которая неизбежна при исполь­зовании различных металлов и сплавов, сопутствует образование под воздействием кислорода воздуха окалины (окисной пленки) на поверхности металла. Удаление окалины с поверхности металла про­водят химическим путем. Для этого применяют растворы минераль­ных кислот (соляной, азотной, серной) различной концентрации или их смеси.

Вещества, служащие для растворения окалины, называют отделами, а сам процесс удаления окалины — отбеливанием.

Отбелы подбирают с таким расчетом, чтобы они, растворяя ока­лину, как можно меньше действовали на металл.

В технологии отбеливания используются два варианта:

1) ручное (с помощью инструментов) погружение отбеливаемого металла в емкость с отбелом;

Растворы, применяемые для снятия окалины, имеют различный состав.

Отбел оказывает химическое воздействие не только на слой окали­ны, растворяя его, но и на металл. Поэтому процедура снятия ока­лины предполагает следующее: в подогретый до кипения отбел зуб­ной техник помещает на 0,5-1 мин протез и сразу же промывает его водой для удаления остатков отбела. Следует помнить, что при при­готовлении раствора отбела в воду наливают кислоту, а не наоборот.

Электроотбеливание предполагает очистку поверхности ме­таллического каркаса от окалины и остатков огнеупорной массы электролитическим способом. Этому процессу предшествует грубая ме­ханическая очистка каркаса протеза с помощью вращающейся метал­лической щетки или в пескоструйном аппарате.

После этого отливку помещают в специальный ковш и очищают от окалины химическим способом, а именно кипячением в расплаве гидроксида натрия, имеющего низкую температуру плавления. Ки­пячение можно проводить на газовой или электрической плите, уста­новленной в вентиляционном шкафу. К каркасу протеза фиксируется а нод. Катод помещается в ванну с раствором электролита. Процесс отбеливания продолжается 1-3 мин при силе тока в 7-9 ампер и притемпературе отбела, равной 20-22° С. При проведении злектроотбеливания нужно строго соблюдать правила электробезопасности.

Основными компонентами электролитов являются кис­лоты (ортофосфорная и серная), которые под действием постоянного тока в несколько раз увеличивают свою активность.

Используя названные составы и увеличивая плотность тока припрохождении через электролит, проводится:

— электрошлифование, т. е. сглаживание поверхности металличе­ского каркаса путем равномерного истончения металла, при кото­ром вес отливки может уменьшиться на 20% [Соснин Г. П., 1981];

— электрополирование, т. е. получение зеркальной поверхности металлического каркаса при нахождении в этиленгликолевых элек­тролитах в течение 5-7 мин при плотности тока 5-6 А/дм 2 .

Для очистки и электрополирования металлических зубных проте­зов используется отечественная установка Катунь, имеющая ванночку для заливки 18% раствором соляной кислоты. В кислоту погружают протез, фиксированный пластмассовым зажимом на вертикальной штан­ге, служащей анодом. Время травления составляет 10 мин, при плотно­сти тока 0,4 А/см 2 . Следует помнить, что работа установки Катунь дол­жна проводиться при условии достаточной вентиляции. При отсутствии условий для вентиляции предлагается [Петрикас О. А., 1998] использо­вание специальных растворов с пониженной токсичностью:

— соляная кислота 260 мл/л + поваренная соль 104 г/л + щаве­левая кислота 42 г/л (при плотности тока 0,5 А/см 2 и экспозиции 6,4 мин);

— соляная кислота 276 мл/л + поваренная соль 92 г/л (при плот­ности тока 0,6 А/см 2 и экспозиции 10 мин).

Для электрохимической полировки многие фирмы производят специальное оборудование. Так, например, фирмой «Шулер-Дентал* (Германия) выпускаются аппараты Электропол, Унопол и Вариант для электрохимической полировки и аппараты для золочения Ауро-Плат и Квик-Плат.

В аппарате Электропол имеются две встроенные в корпус и изолированные друг от друга ванночки объемом по 1,5 л. Заполнение ванночек электролитом проводится раздельно. Каждая ванночка имеет свой пульт управления (сила тока, таймер), что позволяет, проводить одновременную полировку двух каркасов дуговых (бюгельных) протезов. При этом каркас фиксированный в специальные зажимы, совершает вращательные движения. Аппарат имеет пласт­массовый корпус, металлические кислотостойкие части.

Аппарат Вариант отличается от вышеназванного тем, что две ван­ночки для электролита находятся вне корпуса прибора.

Подобный Варианту аппарат Унопол меньшей мощности (80 Вт) предназначен для электрохимической полировки одного каркаса ду­гового (бюгельного) протеза. Для проведения полировки необходи­ма сила тока 3,5-4,5 А, а электролит должен быть подогрет до тем­пературы 35-45° С.

Ауро-Плат — аппарат для ускоренного золочения кламмеров, кар­касов дуговых (бюгельных) протезов и сплава для металлокерамики. При этом каркасы протезов фиксируются вне аппарата с помощью электродов-зажимов типа «крокодил». Одновременно с процессом обезжиривания поверхности каркаса происходит золочение (рис. 38).

Для этого разработана специальная жидкость, в которой содер­жание золота составляет 2 г/л. Она не требует предварительной под­готовки, обладает высокой химической устойчивостью, экономиче­ски выгодна. Скорость осаждения золота составляет 0,2 мкм/мин при силе тока в 300 мА.

Другой аппарат для ускоренного золочения, Квик-Плат, имеет ван­ночку объемом 1,25 л вне корпуса прибора. Этот аппарат особенно пригоден для золочения готовых дуговых и мостовидных протезов, коронок. При этом отпадают необходимость электролитического обезжиривания и предварительного золочения. Плавная регулиров­ка силы тока (до 3 А), наличие амперметра позволяют контролиро­вать силу тока и скорость осаждения при золочении. Содержание золота в жидкости Квик-Плат составляет 2 г/л.

Для соединения элементов протезов в единую конструкцию исполь­зуется, в частности, паяние.

Паяние — процесс получения неразъемного соединения путем нагрева места паяния и заполнения зазора между соединяемыми деталями расплавленным припоем с его последующей кристаллизацией.

Припой — металл или сплав, заполняющий зазор между соединяемыми деталями при паянии.

Существует различная техника паяния: в пламени, печи. При работе с каркасами до нанесения и обжига керамической массы предпочтительнее использовать паяние в пламени. Паяние в печи применяет ся на объектах, уже облицованных керамикой. Прочность пайки можно проверить различными методами с помощью растяжения и изгиба.

Физико-механические свойства припоя (цвет, узкий температурный интервал плавления, стойкость против коррозии) должны максимально соответствовать таковым у сплава, из которого сделаны требующие соединения элементы каркаса протеза. Во время паяния соединяемые места принимают температуру расплавленного припоя. Поэтому температура плавления припоя должна быть ниже температуры плавления спаиваемых частей на 50-100° С, так как в противном случае паяние привело бы к частичному расплавлению спаиваемых деталей протеза. Расплавленный припой обладает текучестью, которая увеличивается с повышением температуры, т. е. припой течет в направлении от холодных частей к горячим. Фактически на этом свойстве и основано использование пламени горелки в процессе паяния. В месте соприкосновения деталей и припоя происходит диффузия одного металла в другой. Скорость диффузии зависит главным образом от материала протеза и припоя, а также от температуры. Все это вместе взятое й определяет структуру полученного шва, которая может быть в виде, твердого раствора, химического соединения или механической смеси.

Твердый раствор является наиболее благоприятной структурой и считается лучшим видом паяния. Шов хорошо противостоит корро зии и получается прочным. При этом максимальная прочность шва будет при использовании минимального количества припоя. Следует помнить, что прочность большинства припоев ниже прочное соединяемых металлов, хотя прочность шва за счет диффузии выше

Расплавлять припой в процессе паяния необходимо как можно быстрее, а после получения шва источник нагрева (горелку) необходимо немедленно удалить.

Так как паяние чаще происходит при нагревании открытым пламенем, то на поверхности спаиваемых металлов может образовать пленка окислов, которая препятствует диффузии припоя. Особенно усиленно образуется эта пленка у сплавов, содержащих хром, отличающихся высокой способностью пассивироваться, т. е. покрыватся окисной пленкой. Поэтому в процессе паяния необходимо не только расплавить припой и заставить разлиться по поверхностям, но и не допустить образования окисной пленки к моменту дост­ижения рабочей температуры в спаиваемых деталях. Это достига­ется применением различных паяльных веществ или флюсов.

Флюс — химическое вещество (бура, борная кислота, хлористые и фтористые соли), служащее для растворения окислов, образующих­ся на спаиваемых поверхностях металлов при паянии.

Наибольшее распространение в качестве флюса получила бура, белое кристаллическое вещество . Ее добывают из при­родных месторождений или получают из борной кислоты взаимодей­ствием с кристаллической содой. При нагревании она постепенно теря­ет воду, а температура ее плавления достигает 741° С. Кроме того, бура поглощает кислород, препятствуя тем самым образованию на поверх­ности металла окислов, и способствует лучшему растеканию припоя.

Флюсы, как и окалину, удаляют с поверхности металлов отбелами.

Кроме паяния, используется другой вид соединения элементов протеза в единую конструкцию — сварка, при которой расплавлен­ные элементы (детали) протеза сливаются и образуют однородное монолитное соединение.

Сварка— процесс получения неразъемного соединения деталей кон­струкции при их местном или общем нагреве, пластическом дефор­мировании или при совместном действии того и другого в результате установления межатомных связей в месте их соединения.

В промышленности существуют способы сварки, при которых материал расплавляется (дуговая, электрошлаковая, электроннолу­чевая, плазменная, лазерная, газовая и др.), нагревается и пласти­чески деформируется (контактная, высокочастотная, газопрессовая и др.) или деформируется без нагрева (холодная, взрывом и др.); способ диффузионного соединения в вакууме.

В отличие от паяных соединений сварные швы отличаются со­вершенно однородной структурой, так как используемый присадоч­ный материал имеет такое же химическое строение и свойства, что и свариваемые детали. Другими словами, в этой технологической опе­рации используется тот же самый сплав, который был использован при получении соединяемых элементов протеза.

Кроме того, сварные швы обладают более высокой прочностью и устойчивостью к коррозии. В отличие от них в области паяния возни­кает коррозия. Это объясняется разницей напряжения между сплавом и припоем.

К преимуществам плазменной микросварки, применяе­мой в ортопедической стоматологии, например, с помощью установ­ки типа Микро-PW 10, следует отнести следующие:

— плазменная микроструя, в которой в качестве плазмообразующего газа применяется аргон, соединяет самые твердые металлы, например сплавы на основе Сг,Со,Мо, в узких пределах зоны плавления (даже вблизи пластмассовых частей) путем слияния расплавленной заготовки без применения дорогостоящих припоя и флюса;

— значительно большая прочность по сравнению с паянием;

— отсутствие остатков флюсов на сварном шве.

Между электропроводящей заготовкой и плазменной струей образуется электрическая дуга большой плотности энергии и высокой температуры. Прибор является настольным, достаточно удобным в использовании. Диапазон настройки сварочного тока (0,3-10 А) можно регулировать в процессе работы с помощью ножного управления.

Место сварки защищается от окисления с помощью среды защитного газа (аргон/водород, 5-8% Н2). Показаниями к применению микроплазменной сварки является соединение литых элементов протеза в единую конструкцию как при его изготовлении, так и при реставрации.

Сварочный столик фирмы «Брандере» в настоящее время отвечает требованиям зубных техников, пользующихся микроплазменной сваркой. На столике имеются регулятор потока газа и подвижный рукав (крепление) для точечной сварки. Столик снабжен двумя-тремя сочленениями, которые дают возможность безупречного достижения контактов.

Подвижная сварочная пластина над сочленением может использоваться в различных рабочих положениях. Сварочный столик сконструирован таким образом, что может употребляться как рабочая подставка для сварки частей протеза из чистого титана.

Фирма «L-TEC» выпускает прибор для сварки PWM-6, в котором качество сварочного соединения превышает таковое, получаемое при1 всех других способах соединения. Тепловое воздействие плазменной дуги на обрабатываемые объекты является незначительным. В качестве защитного газа используют аргон, что позволяет избежать образования окислов на поверхности свариваемых объектов. Метод сварки обеспечивает получение стабильных размеров соединяемых деталей и экономию припоя.

Аппарат точечной электросварки Дентафикс для всех сплавов из высококачественной стали дает возможность регулировать время сварки от 0,1 до 1,0 с и десятикратно понижать силу тока.

Другим видом сварки, применяемым в ортопедической стоматологии, является лазерная. Лазерная установка Хаас Лазер 44Р фирмы «Хереус Кульцер» (Германия) обеспечивает глубину сварки низкоуглеродистых кобальто-хромо-молибденовых сплавов до 2 мм при возможности изменений диаметра фокуса от 0,3 мм до 2 мм. На дисплее установки во время сварки отражаются все рабочие параметры.

Коррозия, виды. Значение при применении металлических восстановительных конструкций в стоматологии

Металлы и сплавы применяемые, в зубопротезировании имеют, контакт с организмом, в результате чего металл находится в сложной, часто меняющейся среде.

Коррозия – (лат. Corrosion – разъедание) разрушение твердых тел, вызванное химическими или электрохимическими процессами при взаимодействии с внешней средой.

В результате коррозии металлическое изделие может потерять ряд своих полезных технических свойств. Коррозия понижает прочность и пластичность металла, портит поверхность металла, ухудшает его электрические и др. свойства.

Зуботехнические материалы должны обладать повышенной стойкостью к жидкости полости рта и среде, возникающей в полости рта при принятии пищи.

Коррозии благоприятствуют температурные условия и знакопеременные нагрузки, испытываемые металлическими зубными конструкциями. Из многочисленных сплавов для изготовления зубных протезов пригодными оказались лишь немногие - золотые, платиновые, хромокобальтовые, нержавеющая сталь и др.

Стойкость металлов может нарушиться под влиянием следующих причин:

1) характер поверхности

2) включения в состав металла

3) режим термической обработки

4) напряжение в металле

На грубой шероховатой поверхности процесс коррозии начинается раньше и протекает более интенсивно. Включения и напряжения приводят к возникновению электрохимической коррозии. Неправильный режим термической обработки, например, нержавеющей стали, может вызвать межкристаллическую коррозию.

Формы коррозийных разрушений.

НАЗВАНИЕ КОРРОЗИИ МЕСТО ЛОКАЛИЗАЦИИ ПРИЧИНА ВОЗНИКНОВЕНИЯ СТЕПЕНЬ РАЗРУШЕНИЯ
РАВНОМЕРНАЯ (ОБЩАЯ) Вся поверхность, чаще в сплавах образующих твердые растворы. Взаимодействие с внешней средой. Менее опасный и медленно протекающий процесс. Мало влияет на механическую прочность изделия.
МЕСТНАЯ Приводит к разрушению отдельных участков металла в виде пятен и точечных поражений различной глубины. Возникает в случае неоднородной поверхности при наличии включений в металл или внутреннего напряжения Наиболее опасен, т.к. приводит к резкому ухудшению механических свойств металла.
МЕЖКРИСТАЛ-ЛИЧЕСКАЯ Процесс протекает в глубине вещества не вызывая внешнего изменения изделия. При этом нарушается связь между кристаллами и коррозия проникает вглубь металла. Основная причина нарушение технологических процессов литья, штамповки, паяния, термической обработки и др. Наиболее опасный вид коррозии, настолько ослабляет изделие, что оно легко ломается руками.

Процессы коррозии делятся на два вида: химическую и электрохимическую коррозию.

Химическая коррозия – взаимодействие металла с агрессивными средами, не проводящими электрического тока. Так, сильное нагревание железа в присутствии кислорода воздуха сопровождается образованием оксидов (окалины).

Электрохимическая коррозия –взаимодействия металла с агрессивными средами под действием электролита. В условиях полости рта металлы находятся во влажной среде ротовой полости. Последняя, являясь электролитом, создает условия для электрохимической коррозии.

При ношении протезов может наблюдаться электрохимическая коррозия. Химическая и электрохимическая коррозия могут протекать одновременно.

Коррозия стальных протезов. Принципы коррозии стальных зубных протезов

По данным Д. Г. Туфанова (1969) и М. Andreas (1960), в агрессивных средах нержавеющая сталь с припоем подвергается контактной коррозии. При этом большое значение имеет соотношение площадей контактируемыx металлов.
Сочетание большой поверхности катода (нержавеющая сталь) с небольшой поверхностью анода (припой) вызывает значительное растворение металлов — припоя.

На рисунке представлена зависимость разности почернений (AS) микропримесей железа, меди, никеля, хрома от времени испытания (Т) нержавеющей стали с припоем в искусственной среде.

Из рисунка видно, что содержание анализируемых примесей в искусственной среде с увеличением времени испытания возрастает. Особенно ярко эта зависимость выражена у марганца, железа, меди, никеля, меньше — у хрома.

Это связано с разной химической активностью этих металлов, определяемой разными электрохимическими потенциалами. Характер кривых показывает, что коррозия имеет временные стадии активизации и замедления.
Таким образом, по данным спектрографических исследований, нержавеющая сталь с припоем в искусственной среде, близкой к условиям полости рта, подвергается коррозии.

коррозия стальных протезов

Исследовали на коррозию также 4 образца серебряно-палладиевого сплава (спецсплав) массой 1,5028; 1,5692; 1,5519 и 1,3822 г (общая масса 6,001 г). Масса испытуемых образцов спецсплава после опыта не изменилась. Время испытания с целью уточнения пассивирующего процесса 5 мес. Отбор проб для исследования проводили через 6 дней в течение 1-го месяца, затем через каждые 2 нед. Взято 12 проб, проведено 24 спектральных анализа.

На рисунке показано, что в течение 1-го месяца значительно увеличивается содержание серебра в испытуемой среде. Затем выделение серебра несколько замедляется. Это явление можно объяснить первоначальным действием слабокислой среды на переход серебра из спецсплава в среду с последующей пассивацией (образование окисной пленки на поверхности испытуемых образцов).
Коррозия усиливается с увеличением времени испытания. Корродируется основной компонент — серебро.

Анализ с учетом потенциалов показывает, что потенциалы серебра уменьшаются в присутствии веществ, содержащих ионы хлора, брома, молекулы аммиака и др. В этом случае ЭДС серебряно-палладиевого сплава должна увеличиваться, а коррозионный процесс — активироваться. Однако в слабокислой и нейтральной среде потенциал серебра резко увеличивается в присутствии кислорода (может достигать 2 В). В этом случае (дыхание преимущественно через рот) ЭДС коррозионного гальванического элемента уменьшается и наблюдается временное затухание коррозионного процесса или перераспределение катодных и анодных участков, т. е. временно палладий становится анодным участком и на его поверхности могут образовываться твердые или мягкие наросты, имеющие большие силы сцепления (адгезии) с поверхностью палладия.

Химико-спектральный анализ является достоверным тестом для оценки коррозионной устойчивости сплавов металлов в биологических средах. В модельных опытах методом химико-спектрального анализа было показано, что гальванопара золото — хромокобальт корродирует и приводит к накоплению в искусственной слюне (рН 5,5) иионов хрома, никеля, железа. Железо входит в состав хромокобальтового сплава в количестве 0,5%, хром — 25—28%, никель — около 4%. В модели слюны рН 7,0 и 8,0 ионы хрома и никеля не обнаруживаются, а ионы железа присутствуют в концентрации 1*10-5%.

Клинические исследования биологических сред (слюна, кровь, моча, слизистые оболочки и т. д.) на микроэлементы у лиц, имеющих в полости рта металлические конструкции, подтверждают модельные опыты и выявляют процессы коррозии протеза в полости рта.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Коррозия мостовидных протезов. Влияние слюны на нержавеющую сталь

Продуктами электрохимических реакций являются ионы металлов (микроэлементы), поступающие в слюну из корродирующих сплавов. Динамика изменения микроэлементов состава слюны находится в прямой зависимости от степени электрохимических процессов в полости рта. Высокие концентрации микроэлементов установлены нами в слюне, лиц с аллергическим и токсическим стоматитом, вызванным протезом (400 человек) из нержавеющей стали, по сравнению с нормой (50 человек).
Наиболее выраженные колебания обнаружены в содержании железа, никеля, меди, серебра, хрома, титана.

Изменение количественного содержания микроэлементов в слюне тесно связано с процессами коррозии мостовидных протезов из нержавеющей стали. Это установлено нами при исследовании снятого паяного протеза из нержавеющей стали после работы его в полости рта. С этой целью обследовано 30 человек в возрасте от 35 до 58 лет. Первую группу составили 8 больных, у которых мостовидные протезы были сняты по причине отрыва промежуточных частей в местах пайки (10 протезов).

Во вторую группу вошло 22 больных с парестезией полости рта (16) и аллергией на металлические протезы (6). У этих больных протезы снимали после установления причинной зависимости заболеваемости от металлических конструкций. Снято и исследовано более 35 протезов. Диагноз заболевания ставился на основании данных клинических и лабораторных исследований (спектральный анализ слюны, анализ крови, аллергологические тесты).

Снятые мостовидные протезы из нержавеющей стали исследовали на сканирующем электронном микроскопе микрозондовым анализатором. В каждом протезе изучали три зоны: припой, контакт припоя с коронкой и припой с промежуточной (литой) частью. Всего исследовано 90 зон мостовидных протезов, проведено 30 спектральных анализов слюны.

При исследовании припоя у больных первой группы обнаружены сетка коррозионных трещин и межкристаллитная коррозия, что свидетельстует об одновременном действии механических напряжений и коррозионной среды. Как известно, межкристаллитная коррозия возникает при совместном действии агрессивной среды и внутренних напряжений. В полости рта протезы в значительной степени подвержены электрохимической коррозии, усиленной вследствие взаимодействия разнородных металлов (сталь — припой).

коррозия зубных протезов

У больных этой группы отмечена большая протяженность мостовидных протезов, построенных без учета состояния пародонта опорных зубов и зубов-антагонистов. В этом случае напряжения в металле усиливают коррозионный процесс. Усилению коррозии способствует также наличие зазоров вследствие некачественного выполнения шва, вызывающих щелевую коррозию [Жук Н. Т., 1976]. Нарушение температуры пайки в интервале 450—850° С приводит к межкристаллитной коррозии. При этом по границам зерен происходит выделение карбидов .

В зоне контакта припоя с коронкой отмечается коррозионное растрескивание и механическое разрушение. В литой части мостовидного протеза (третья зона) коррозионный процесс выражен очень слабо. При осмотре больных второй группы мостовидные протезы в местах паек (припой) имели толстые, большие по площади, пористые окисные пленки. Известно, что коррозии противостоят только весьма тонкие пассивирующие слои. Мостовидные протезы после их снятия разрушали механическим способом на границе коронка — припой.

При исследовании зоны излома на сканирующем электронном микроскопе обнаружено несколько крупных пор. Поверхностные поры, сообщающиеся со средой полости рта, и поры внутри шва (припоя) содержали продукты коррозии и являлись очагом щелевой коррозии. Структура припоя пористая, поверхность ее совпадает с составляющими эвтектики серебро — медь. Однако характер распределения медных и марганцевых включений в припое не всегда равномерен: встречаются большие и малые скопления марганца, меди и участки, где включения отсутствуют. Серебряные включения распределены в припое равномерно.

Наличие в структуре отдельных микрообластей, богатых медью, характеризуется пониженным сопротивлением коррозии. Известно также, что включения обусловливают степень выраженности электрохимических реакций в полости рта, так как их электродные потенциалы различны.

Таким образом, в полости рта протезы из нержавеющей стали подвергаются коррозии. В поверхностных порах припоя наблюдается щелевая коррозия. Продукты ее (микропримеси железа, меди, марганца, серебра и др.) поступают в полость рта, что подтверждается данными спектрального анализа слюны. Процесс этот во времени является постоянным. Коррозия происходит на всей глубине припоя. В зоне, прилегающей к коронкам, припой корродирует в меньшей степени.

В литой структуре стали коррозия выражена слабо. Возникновению межкристаллитной коррозии способствуют механические напряжения в металле, значительная протяженность протезов, нарушения конфигурации паяного шва и образование зазоров.
Мостовидные протезы с межкристаллитной коррозией в полости рта способны разрушаться по шву (пайки).

Коррозионные свойства слюны. Влияние слюны на зубные протезы

Опыт работы с серебряно-палладиевым сплавом показал не только положительные физико-химические и механические, но главным образом активные биологические качества его. Именно эти качества позволяют считать серебряно-палладиевый сплав представителем нового направления материаловедения — биологического. В последние годы биологическое материаловедение получило интенсивное развитие. Создаются, например, новые сплавы на основе золота, палладия и серебра.

Эти сплавы электрохимически нейтральны относительно друг друга, так как окислительно-восстановительные потенциалы золота (+1,42 В), серебра ( + 0,8 В) и палладия (+ 1,2 В) приблизительно равны. Электрохимическая индифферентность составляющих компонентов сплавов для зубных протезов является необходимым условием биологического материаловедения.

С этой целью неблагородные сплавы (нержавеющая сталь, хромокобальт) покрывают слоем благородных, химически бездеятельных металлов (золото, палладий, нитридтитан) — методом гальванопластики, вакуумного напыления и др. Высокие прочностные свойства и электрохимическая индифферрентность достигаются разработкой и внедрением в практику фарфоровых масс «Гамма», «Сикор», МК. для изготовления коронок и металлокерамики.

В нейтральной среде (рН 7,0) электрохимическая реакция сопровождается избытком водородных ионов, т. е. повышенной кислотностью. Это явление подтверждается и клинически: у больных, имеющих протезы из нержавеющей стали или хромокобальтового сплава, появляется чувство кислоты, жжения в полости рта. Оно может несколько стихать или усиливаться во время приема пищи (растительная пища создает кислую среду, белковая — щелочную). По-видимому, таким больным следует рекомендовать белковую пищу для нейтрализации избытка водородных ионов.
В кислотной среде происходит выраженный процесс растворения металлического протеза — анодных участков.

коррозия зубных протезов

Таким образом, анодные реакции коррозии протезов характеризуются изменением электродных потенциалов вследствие перехода ионов металлов из твердой фазы (металлические протезы) в жидкую (слюну). Эти положения были подтверждены нами в эксперименте и клинике ортопедической стоматологии.

Нержавеющая сталь, предложенная в 30-х годах для зубного протезирования, испытывалась на коррозийную стойкость. Д. Н. Цитрин и В. Н. Дятлова (1934) определяли степень коррозии, учитывая потерю массы и изменение вида испытуемой детали. Потери массы были крайне незначительны и определялись весовым методом. Внешний вид образцов не менялся. На основании этих данных авторы пришли к выводу, что нержавеющая сталь является удовлетворительным сплавом для зубного протезирования.

Однако из электрохимии известно, что коррозия определяется также и качеством и количеством компонентов, выходящих в среду из испытуемых (образцов) сплавов металлов. Нами разработан и применен метод химико-спектрального анализа для определения процессов коррозии в искусственной среде. При составлении искусственной среды мы руководствовались данными литературы о химическом составе слюны человека.

Искусственную среду помещали в прибор, представляющий собой кварцевый сообщающийся сосуд, покрытый теплоизоляционным слоем для поддержания постоянной температуры. Нагревание (37°С) жидкости в сосуде осуществляли электрическим током, подведенным под теплоизоляционный слой через лабораторный автотрансформатор ТИП-1. В одном колене сосуда находилась мешалка для перемешивания и соединения с электромотором, в другом — штатив для испытуемых образцов, в основании сосуда — кран для забора проб. Сосуд закрывали пробками из фторопласта.

Общее количество искусственной среды составляло 1000 г. Для анализа брали 8 см3 испытуемой жидкости, делили на две пробы (4 см3) и определяли среднее значение. Отбор проб проводили через каждые 6 дней. Взято 15 проб, проведено 30 анализов, изучено 150 спектрограмм. Спектральный анализ выявил коррозионные изменения в испытуемой среде. Исследование на коррозию проводили и при рН среды 5,5 (максимальный сдвиг рН, возможный в полости рта), и при температуре 37° С. Для испытания на коррозию были взяты три мостовидных протеза из нержавеющей стали с припоем (масса до опыта 6,92 г, после опыта 6,86 г), потери составили 0,06 г (0,87%). Время испытания 3 мес (2100 ч). В течение этого времени определяли качественную и количественную характеристику коррозионного процесса.

При осмотре (до опыта) мостовидные протезы в местах паек вследствие образования окисных продуктов имели потемнения, наружная поверхность была отполированной, блестящей. Перед началом исследования мостовидные протезы тщательно полировали. Внутренняя поверхность коронок матовая. После опыта в местах паек коронок и промежуточной части поверхность зелено-синяя, образовалась окисная пленка в виде «наростов», после снятия которой обнаружены кратерообразные углубления («язвы»).

Механическое надламывание в этих местах привело к разлому коронки. Поверхность полированной части мостовидных протезов стала тусклой, внутри коронок появилась окисная пленка темно-желтого цвета. Эти явления можно объяснить процессом коррозии.

Читайте также: