Ионизирующее излучение. Процесс радиоактивного распада

Обновлено: 04.12.2022

Настоящий материал – обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.

Опасность РАДИАЦИИ реальная и мнимая

«Один из первых открытых природных радиоактивных элементов был назван «радием»
- в переводе с латинского-испускающий лучи, излучающий».

Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.

Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.

Однако, в природе существует явление, на которое человек из-за отсутствия необходимых органов чувств не может мгновенно реагировать - это радиоактивность. Радиоактивность - не новое явление; радиоактивность и сопутствующие ей излучения (т.н. ионизирующие) существовали во Вселенной всегда. Радиоактивные материалы входят в состав Земли и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества.

Самое неприятное свойство радиоактивного (ионизирующего) излучения - его воздействие на ткани живого организма, поэтому необходимы соответствующие измерительные приборы, которые предоставляли бы оперативную информацию для принятия полезных решений до того, когда пройдет продолжительное время и проявятся нежелательные или даже губительные последствия.что его воздействие человек начнет ощущать не сразу, а лишь по прошествии некоторого времени. Поэтому информацию о наличии излучения и его мощности необходимо получить как можно раньше.
Однако, хватит загадок. Поговорим о том, что же такое радиация и ионизирующее (т. е. радиоактивное) излучение.

Ионизирующее излучение


Любая среда состоит из мельчайших нейтральных частиц-атомов, которые состоят из положительно заряженных ядер и окружающих их отрицательно заряженных электронов. Каждый атом похож на солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам «планеты» - электроны.
Ядро атома состоит из нескольких элементарных частиц-протонов и нейтронов, удерживаемых ядерными силами.

Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.

Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.

радиоактивный распад ядер

Число присутствующих в ядре нейтральных частиц (нейтронов) может быть разным при одинаковом числе протонов. Такие атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разновидностям одного и того же химического элемента, называемым «изотопами» данного элемента. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так уран-238 содержит 92 протона и 146 нейтронов; в уране 235 тоже 92 протона, но 143 нейтрона. Все изотопы химического элемента образуют группу «нуклидов». Некоторые нуклиды стабильны, т.е. не претерпевают никаких превращений, другие же, испускающие частицы нестабильны и превращаются в другие нуклиды. В качестве примера возьмем атом урана - 238. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов -«альфа-частица (альфа)». Уран-238 превращается, таким образом, в элемент, в ядре которого содержится 90 протонов и 144 нейтрона - торий-234. Но торий-234 тоже нестабилен: один из его нейтронов превращается в протон, и торий-234 превращается в элемент, в ядре которого содержится 91 протон и 143 нейтрона. Это превращение сказывается и на движущихся по своим орбитам электронах (бета): один из них становится как бы лишним, не имеющим пары (протона), поэтому он покидает атом. Цепочка многочисленных превращений, сопровождающаяся альфа- или бета- излучениями, завершается стабильным нуклидом свинца. Разумеется, существует много подобных цепочек самопроизвольных превращений (распадов) разных нуклидов. Период полураспада, есть отрезок времени, за который исходное число радиоактивных ядер в среднем уменьшается в два раза.
При каждом акте распада высвобождается энергия, которая и передается в виде излучения. Часто нестабильный нуклид оказывается в возбужденном состоянии и при этом испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию энергии в виде гамма-излучения (гамма-кванта). Как и в случае рентгеновских лучей (отличающихся от гамма-излучения только частотой) при этом не происходит испускания каких-либо частиц. Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам нуклид радионуклидом.

Различные виды излучений сопровождаются высвобождением разного количества энергии и обладают различной проникающей способностью; поэтому они оказывают неодинаковое воздействие на ткани живого организма. Альфа-излучение, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа - частицы, не попадут внутрь организма через открытую рану, с пищей, водой или с вдыхаемым воздухом или паром, например, в бане; тогда они становятся чрезвычайно опасными. Бета - частица обладает большей проникающей способностью: она проходит в ткани организма на глубину один-два сантиметра и более, в зависимости от величины энергии. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита. Ионизирующее излучение характеризуется рядом измеряемых физических величин. К ним следует отнести энергетические величины. На первый взгляд может показаться, что их бывает достаточно для регистрации и оценки воздействия ионизирующего излучения на живые организмы и человека. Однако, эти энергетические величины не отражают физиологического воздействия ионизирующего излучения на человеческий организм и другие живые ткани, субъективны, и для разных людей различны. Поэтому используются усредненные величины.

Альфа-, Бета-, Гама- излучение

Источники радиации

Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.

Установлено, что из всех естественных источников радиации наибольшую опасность представляет радон -тяжелый газ без вкуса, запаха и при этом невидимый; со своими дочерними продуктами.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для различных точек земного шара. Как ни парадоксально это может показаться на первый взгляд, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из стройматериалов, радон накапливается в помещении. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения. Проблема радона особенно важна для малоэтажных домов с тщательной герметизацией помещений (с целью сохранения тепла) и использованием глинозема в качестве добавки к строительным материалам (т.н. «шведская проблема»). Самые распространенные стройматериалы - дерево, кирпич и бетон - выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья, фосфогипса.

Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.

Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).

В природный газ радон проникает под землей. В результате предварительной переработки и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона в помещении может заметно возрасти, если кухонные плиты и другие нагревательные газовые приборы не снабжены вытяжкой. При наличии же приточно - вытяжной вентиляции, которая сообщается с наружным воздухом, концентрации радона в этих случаях не происходит. Это относится и к дому в целом -ориентируясь на показания детекторов радона можно установить режим вентиляции помещений, полностью исключающий угрозу здоровью. Однако, учитывая, что выделение радона из грунта имеет сезонный характер, нужно контролировать эффективность вентиляции три-четыре раза в год, не допуская превышения норм концентрации радона.

Другие источники радиации, к сожалению обладающие потенциальной опасностью, созданы самим человеком. Источники искусственной радиации - это созданные с помощью ядерных реакторов и ускорителей искусственные радионуклиды, пучки нейтронов и заряженных частиц. Они получили название техногенных источников ионизирующего излучения. Оказалось, что наряду с опасным для человека характером, радиацию можно поставить на службу человеку. Вот далеко не полный перечень областей применения радиации: медицина, промышленность, сельское хозяйство, химия, наука и т.д. Успокаивающим фактором является контролируемый характер всех мероприятий, связанных с получением и применением искусственной радиации.

Особняком по своему воздействию на человека стоят испытания ядерного оружия в атмосфере, аварии на АЭС и ядерных реакторах и результаты их работы, проявляющиеся в радиоактивных осадках и радиоактивных отходах. Однако только чрезвычайные ситуации, типа Чернобыльской аварии, могут оказать неконтролируемое воздействие на человека.
Остальные работы легко контролируются на профессиональном уровне.

При выпадении радиоактивных осадков в некоторых местностях Земли радиация может попадать внутрь организма человека непосредственно через с/х продукцию и питание. Обезопасить себя и своих близких от этой опасности очень просто. При покупке молока, овощей, фруктов, зелени, да и любых других продуктов совсем не лишним будет включить дозиметр и поднести его к покупаемой продукции. Радиации не видно - но прибор мгновенно определит наличие радиоактивного загрязнения. Такова наша жизнь в третьем тысячелетии - дозиметр становится атрибутом повседневной жизни, как носовой платок, зубная щетка, мыло.

ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА

Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.

Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.

Коэффициент радиационного риска

Следует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.

Заряженные частицы.

Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).

Электрические взаимодействия.

За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения.

И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как "свободные радикалы".

Химические изменения.

В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты.

Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ

Для информации, а не для запугивания, особенно людей, решивших посвятить себя работе с ионизирующим излучением, следует знать предельно допустимые дозы. Единицы измерения радиоактивности приведены в таблице 1. По заключению Международной комиссии по радиационной защите на 1990 г. вредные эффекты могут наступать при эквивалентных дозах не менее 1,5 Зв (150 бэр) полученных в течение года, а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. Различают хроническую и острую (при однократном массивном воздействии) формы этой болезни. Острую лучевую болезнь по тяжести подразделяют на четыре степени, начиная от дозы 1-2 Зв (100-200 бэр, 1-я степень) до дозы более 6 Зв (600 бэр, 4-я степень). Четвертая степень может закончиться летальным исходом.

Дозы, получаемые в обычных условиях, ничтожны по сравнению с указанными. Мощность эквивалентной дозы, создаваемой естественным излучением, колеблется от 0,05 до 0,2 мкЗв/ч, т.е. от 0,44 до 1,75 мЗв/год (44-175 мбэр/год).
При медицинских диагностических процедурах - рентгеновских снимках и т.п. - человек получает еще примерно 1,4 мЗв/год.

Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).

Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.

Согласно гигиеническим нормативам НРБ-96 (1996 г.) допустимые уровни мощности дозы при внешнем облучении всего тела от техногенных источников для помещения постоянного пребывания лиц из персонала - 10 мкГр/ч, для жилых помещений и территории, где постоянно находятся лица из населения - 0,1 мкГр/ч (0,1 мкЗв/ч, 10 мкР/ч).

ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ

Несколько слов о регистрации и дозиметрии ионизирующего излучения. Существуют различные методы регистрации и дозиметрии: ионизационный (связанный с прохождением ионизирующего излучения в газах), полупроводниковый (в котором газ заменен твердым телом), сцинтиляционный, люминесцентный, фотографический. Эти методы положены в основу работы дозиметров радиации. Среди газонаполненных датчиков ионизирующего излучения можно отметить ионизационные камеры, камеры деления, пропорциональные счетчики и счетчики Гейгера-Мюллера. Последние относительно просты, наиболее дешевы, не критичны к условиям работы, что и обусловило их широкое применение в профессиональной дозиметрической аппаратуре, предназначенной для обнаружения и оценки бета- и гамма-излучения. Когда датчиком служит счетчик Гейгера-Мюллера, любая вызывающая ионизацию частица, попадающая в чувствительный объем счетчика, становится причиной самостоятельного разряда. Именно попадающая в чувствительный объем! Поэтому не регистрируются альфа -частицы, т.к. они туда не могут проникнуть. Даже при регистрации бета - частиц необходимо приблизить детектор к объекту, чтобы убедиться в отсутствии излучения, т.к. в воздухе энергия этих частиц может быть ослаблена, они могут не преодолеть корпус прибора, не попадут в чувствительный элемент и не будут обнаружены.

Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании "Кварта-Рад"

Ионизирующее излучение. Процесс радиоактивного распада

Для понимания действия ионизирующих излучений на организм человека и в целях осуществления оздоровительных мероприятий по защите в каждом конкретном случае нужно иметь известное представление о радиоактивных элементах и свойствах различных видов излучения.

Под радиоактивностью понимают самопроизвольное превращение ядер атомов с последующим изменением их физических и химических свойств. Элементы, атомные ядра которых самопроизвольно распадаются, называются радиоактивными. В настоящее время известно около 50 естественных и свыше 700 искусственных радиоактивных элементов. Изотопы — это атомы с одним и тем же порядковым номером (Z), но имеющие различные массовые числа (А).

Радиоактивные элементы при распаде испускают три вида излучений: альфа (а)-, бета(b)- и гамма (у)-лучи. Искусственно полученные изотопы, помимо указанных излучений, могут испускать позитронное (b+) излучение. В большинстве случаев радиоактивные ядра испускают только один определенный вид излучения а-, b- или позитронное, при этом распад часто сопровождается у-излучением.
При распаде вещества, излучающего а-частицы, после вылета ее из ядра атомный номер вновь образованного ядра становится меньше исходного на 2 единицы, а массовое число — на 4 единицы.

Такой тип превращения характерен для естественных радиоактивных элементов с большим порядковым номером. После вылета из ядра радиоактивного элемента Р-частицы атомный номер вновь образованного атома увеличивается на единицу, а атомный вес практически не изменяется. Испускание b-частицы сопровождается вылетом частицы, не обладающей зарядом, называемой нейтрино (y). Этот тип распада характерен как для естественных, так и для искусственных радиоактивных элементов.

ионизирующее излучение

Процесс радиоактивного распада

Каждый радиоактивный атом при распаде превращается в другой атом — стабильный, или радиоактивный. За определенный промежуток времени, например 1 секунду, распадается постоянная часть от общего числа атомов элемента. Активность определенного количества радиоэлемента может уменьшаться очень быстро — за секунду или доли секунды, или более медленно — днями, годами. У каждого радиоактивного элемента своя скорость изменения активности. Для характеристики скорости радиоактивного распада принято пользоваться величиной периода полураспада (Т). Это промежуток времени, в течение которого активность радиоактивного элемента уменьшается наполовину.

Период полураспада данного радиоэлемента является постоянной величиной, не зависящей от химического или физического состояния изотопа. Период полураспада не изменяется под влиянием температуры, давления, химического состояния или при каких-либо других физических воздействиях.

При оценке условий работы с тем или иным радиоактивным элементом и при разработке оздоровительных мероприятий необходимо учитывать его период полураспада. Например, если одежда или поверхность рабочего стола загрязнена радиоактивным элементом с коротким периодом полураспада Т, равным нескольким секундам или минутам, то очистка их не вызывает затруднений. Начальная величина загрязнения значительно снизится или совершенно исчезнет, если радиоизотоп при споем распаде переходит в стабильный, нерадиоактивный элемент.

Естественные радиоактивные элементы, за малым исключением, имеют последовательные превращения и образуют целые семейства (например, семейства урана, тория и др.).
В условиях работы с ионизирующей радиацией гигиеническое значение имеют не только а- и b-лучи, но также рентгеновы и улучи, нейтроны и ряд других (протоны, мезоны и т. д.).

Позитрон и гамма-лучи в радиоактивном излучении

Позитрон (Р+)—частица, которая образуется при распаде некоторых искусственных радиоактивных изотопов. Средняя продолжительность ее жизни приблизительно равна 1,5*10-7 секунды. Отличается от электрона лишь положительным знаком заряда. Позитрон после задержки в веществе соединяется с каким-либо электроном, в результате чего образуется два фотона. Свойства позитронного излучения весьма сходны с таковыми обычного р-излучения, но в магнитном и электрическом полях позитроны отклоняются в противоположном направлении по сравнению с электронами. Позитронный b-распад всегда сопровождается у-излучением.
Биологическое действие позитрон-частиц ничем не отличается от действия электронов тех же энергий.

Гамма(у)-лучи — кванты энергии (фотоны), испускаемые ядрами атомов со скоростью распространения света в виде жестких электромагнитных колебаний. Длины волн у-излучения находятся в пределах от 1,5 X (жесткие у-лучи) до 104Х (мягкие у-лучи). Энергия у-лучей может колебаться от 0,05 до 10 MeV и более. Мягкие у-лучи имеют энергию порядка до 0,2 MeV и соответственно лучи средней жесткости 0,2—1 MeV, жесткие у-лучи—1 —10 MeV и сверхжесткие лучи — свыше 10 MeV.

у-лучи, попадая на фотографическую пластинку или пленку, вызывают фотохимическую реакцию. Подобно световым и рентгеновым лучам у-лучи вызывают свечение (люминесценцию) некоторых веществ, ионизацию воздуха и газов, делая их электропроводными. При у-излучении атомное ядро не изменяет своего заряда и массового числа, у-лучи являются наиболее проникающим видом излучения. При прохождении их через вещество наблюдается ряд явлений, а именно фотоэлектрический эффект, эффект Комптона или образование электронных пар.

радиоактивное излучение

у-лучи, испускаемые радиоактивными ядрами, при взаимодействии с легкими веществами (вода, ткань) теряют свою энергию в основном путем соударения с электронами. В тех случаях, когда у-квант передает всю свою энергию электрону, такое соударение называют фотоэлектрическим эффектом. Это явление встречается в тех случаях, когда у-лучи обладают небольшой энергией. Когда у-квант передает электрону только часть своей энергии и после соударения изменяет направление своего движения, такой эффект называют эффектом Комптона.

Наиболее часто этот эффект наблюдается у у-лучей со средней величиной энергии. Если у-лучи обладают большой энергией (более 1,2 MeV), то при взаимодействии с тяжелыми веществами существенное значение имеет процесс образования пар. В результате этого процесса у-квант превращается в пару частиц: электрон и позитрон. Однако при взаимодействии у-лучей даже большой энергии с легкими веществами потеря энергии за счет эффекта образования пар мала.

Ионизирующее действие у-лучей обусловлено главным образом быстрыми электронами, которые выбиваются у-квантами при прохождении через вещества и, так же как и b-частицы, расходуют свою энергию на ионизацию. Вследствие малой поглощаемости у-лучей образуемые ими ионы распределяются на большом расстоянии.

у-лучи представляют наибольшую опасность при внешнем облучении и требуют устройства специальной защиты из материалов, хорошо поглощающих лучи, — свинец, бетон, вода и др. Для снижения интенсивности у-излучений необходимо также учитывать расстояние. Известно, что интенсивность у-излучения снижается прямо пропорционально квадрату расстояния. При работе с у-источниками возникает необходимость дистанционного управления и применение манипуляторов.

Виды радиоактивных излучений


Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.


Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение - это излучение энергии.

Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации


характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение)5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации


Что такое радиоактивность?



Радиоактивный распад - это путь ядра к достижению стабильности посредством испускания высокоэнергетического излучения и субатомных частиц. Это явление называется радиоактивностью.

Реакция нашего мозга на слово «радиоактивность» часто сводится к миру супергероев, которые кружат по городу, превращаются в человеческий огненный шар или сокрушают негодяев. Или, возможно, ваш мозг вызывает очень темный пост-апокалиптический мир после ядерных осадков.

Однако 120 лет назад мир воспринимал радиоактивность совершенно по-другому. На самом деле, он считался чудесным резервуаром здоровья и жизненной силы. Радиоактивные элементы, такие как радий, стали появляться в качестве ингредиентов во всем - от зубной пасты и циферблатов часов до воды и масла!

Итак, что случилось? Как такое, казалось бы, чудесное открытие превратилось в монстра под нашей кроватью, который пугает людей по всему миру?

Почему некоторые элементы радиоактивны?

Представьте, что вы случайно вдохнули пыльцу и ждете чиха. Держитесь за это чувство. Это то, что определенные атомы испытывают все время - стремление избавиться от лишнего и восстановить стабильность.

Все, что мы видим вокруг себя, в основном состоит из элементов со стабильными атомами (это означает, что ваш деревянный стол, насыщенный углеродом, сам по себе не распадется на что-то другое). Субатомный компонент, отвечающий за поддержание стабильности атома, - это его ядро.

Внутри ядра есть положительно заряженные протоны и нейтральные нейтроны. Эти "нуклоны" удерживаются вместе клеем, называемым сильным ядерным взаимодействием. Эта сильная сила нейтрализует отталкивающую электростатическую силу одинаково заряженных протонов и поддерживает стабильность ядра. Ядерная сила имеет короткий диапазон действия и зависит от соотношения нейтронов и протонов в ядре.

Однако мы видим, что баланс между силами начинает нарушаться, когда количество нейтронов превышает количество протонов. Пример: углерод-12 с 6 n и 6 p является стабильным изотопом, а углерод-14 имеет 8 n и 6 p, что делает его нестабильным изотопом. Или, возможно, ядро превышает пороговое количество нейтронов и протонов, которое сильная ядерная сила может комфортно удерживать вместе, например, любое ядро тяжелее Висмута-209. Эти сценарии приводят к появлению нестабильных изотопов элементов.

Подобно тому, как ваше тело посредством серии расширений и сокращений вытесняет раздражающее вещество во время чихания, нестабильные изотопы элементов выбрасывают различные частицы или формы энергии, чтобы восстановить баланс между силами в их ядрах. В процессе достижения стабильности они превращаются в новое ядро.

Это свойство превращения в нечто новое для достижения стабильности - то, что мы называем радиоактивностью, а процесс, посредством которого она преобразуется, называется радиоактивным распадом.

Как ядро ​​подвергается радиоактивному распаду?

Ядро может подвергнуться ядерному или радиоактивному распаду из-за испускания альфа-, бета- или гамма-излучения (а иногда и комбинации всех трех).

Альфа-частица - это в основном ядро ​​гелия, состоящее из 2 протонов и 2 нейтронов.

Альфа-частицы относительно тяжелые. Они могут перемещаться по воздуху всего на несколько сантиметров и их легко остановить листом бумаги или пластика.

Бета-частица - это электрон или позитрон, высвобождаемый ядром очень тяжелого элемента в результате преобразования нейтронов в протоны и наоборот.

Бета-частицы обладают большей энергией и проникающей способностью, чем альфа-частицы, но обладают меньшей ионизацией по своей природе. Они могут путешествовать по воздуху, но их можно остановить с помощью тонкого листа металла или даже защитной одежды.

Наконец, самая энергичная и смертельная форма радиоактивного распада: гамма-лучи.

Это форма высокоэнергетического света, излучаемого ядром, которое остается в более высоком энергетическом состоянии после того, как произошел процесс альфа- и бета-распада, но все же должно вернуться в более стабильное более низкое энергетическое состояние.

Ядро может подвергнуться всем этим распадам спонтанно и превратиться в стабильную форму за секунды, а может потребоваться дни, годы или даже столетия. Эта скорость определяется периодом полураспада радиоактивного вещества, то есть количеством времени, которое требуется радиоактивному веществу для распада до половины своего первоначального значения.

Нельзя говорить о радиоактивности без упоминания Марии Кюри. Ее запечатанная свинцом и сильно радиоактивная лаборатория, записные книжки, кулинарные книги и мебель были заражены радием и будут заражены в течение следующих 12 000 лет или около того. Тем не менее они являются свидетельством ее вклада в эту область и причиной двух Нобелевских премий.

Лабораторная тетрадь Марии Кюри.

Открытие радиоактивности и радиоактивных элементов Марией и Пьером Кюри вместе с Анри Беккерелем в начале 1900-х годов открыло дверь в совершенно новую область атомной физики. Этот шаг вперед в конечном итоге привел к открытию различных компонентов атомов и ядерной энергии.

Радиоактивные элементы, такие как уран-235 и плутоний-239, бомбардируются нейтронами, которые выделяют огромное количество энергии. При правильном манипулировании внутри ядерного реактора это топливо может действовать как длительный источник энергии. Килограмм урана-235 может произвести почти 24 миллиона киловатт-часов энергии путем ядерного деления, тогда как 1 кг угля может произвести только 8 киловатт-часов энергии. Правильное использование этого источника энергии может решить глобальную проблему увеличения выбросов углекислого газа.

Однако "ахиллесовой пятой" здесь является безопасная утилизация использованного радиоактивного топлива и широко распространенный страх перед ядерными авариями.

То, что произошло на Чернобыльском реакторе несколько десятилетий назад, по сей день потрясает человечество. Один инцидент, связанный с расплавлением реактора, и целые акры земли стали непригодными для проживания в течение нескольких поколений, не говоря уже о тысячах жизней, подвергшихся неизгладимым последствиям радиационного отравления.

Власти построили вокруг реактора саркофаг из бетона, чтобы предотвратить утечку радиации в атмосферу. Кроме того, остатки реактора находятся внутри защитной оболочки с толстыми стальными стенками.

Реактор Фукусима, пострадавший от цунами в 2011 году, вынудил эвакуировать тысячи людей в радиусе 20 км от места происшествия. Власти все еще очищают прилегающую территорию, а также убирают и утилизируют верхний слой почвы в пострадавшем регионе.

Эффекты радиоактивности

Вредное воздействие радиоактивных веществ может повлиять на наш организм косвенно через радиационное облучение или напрямую через контакт или проглатывание.

Радиационное воздействие

В целом радиация не опасна. Свет, отражающийся от отражающей поверхности, микроволны, нагревающие нашу пищу, или сигналы, принимаемые нашими телефонами, - все это разные формы излучения, но есть один вид излучения, который особенно вреден для всех биологических форм - ионизирующее или ядерное излучение.

Радиоактивный материал в процессе распада испускает ионизирующее излучение, которое может легко превратить нейтральные атомы в положительно заряженные ионы, сбивая их электроны. Когда живое существо подвергается такому высокоэнергетическому излучению, оно не делает человека радиоактивным или сверхмощным, но делает его склонным к радиационному отравлению.

Радиационное отравление ядерным излучением может легко повредить молекулярную структуру ДНК и нанести вред живым клеткам. Тяжелая или продолжительная доза может оказаться смертельной, поскольку эти лучи являются канцерогенными.

Радиоактивное загрязнение

Поскольку радиоактивное вещество находится в непосредственном контакте с внутренней или внешней частью тела, такая форма проникновения увеличивает опасность в два раза. Оно не только подвергает организм воздействию радиационного отравления, но и вызывает внутренние повреждения, воздействуя на определенные части тела.

Наше тело принимает радиоактивный радий за кальций при приеме внутрь. Затем он продолжает заменять кальций в нашем организме радием, что приводит к некрозу костей и зубов. При попадании внутрь уран в основном поражает почки.

Всегда ли радиоактивность вредна?

В токсикологии есть поговорка, что "доза делает любую вещь не ядовитой". Хотя воздействие нерегулируемых количеств радиоактивного материала может вызвать серьезные генетические мутации и рак, при регулировании они также могут вылечить рак. Радиоактивный йод используется в лучевой терапии для лечения рака и для визуализации щитовидной железы. Радиоактивный технеций используется для обнаружения пороков сердца, костей и других органов.

Радиоактивный Углерод-14 используется в углеродном датировании, которое помогает нам определить возраст вещей, которые когда-то были живыми или состояли из биологического материала. В некоторых странах свежие продукты даже облучают перед упаковкой, чтобы убить любые микробы на поверхности фруктов и овощей. Крошечное количество америция-241 используется в сигнализаторах дыма, которые помогают спасать тысячи жизней каждый год.

Человечество и радиоактивность мирно сосуществовали на протяжении веков. Воздух, которым мы дышим, бананы в наших коктейлях и указатели выхода содержат радиоактивные элементы… но в безопасных количествах! Технически, мы тоже радиоактивны, так как в нашем организме есть очень незначительные количества радиоактивных изотопов калия и углерода. Радиоактивность есть повсюду, и жизнь навсегда остается в долгу перед ней за то, что она держит наше земное ядро поджаренным и обеспечивает нам защиту под уютным магнитным пузырьком.

Однако гипотетически, если вы в конечном итоге отправляетесь в поход в неизвестную страну, и счетчик Гейгера в вашей сумке начинает издавать громкий треск, вам, вероятно, следует просто начать бежать!

Читайте также: