Дыхательный газообмен. Газообмен при физических нагрузках

Обновлено: 04.05.2024

При физических нагрузках необходимое повышение газообмена происходит автоматически за счет более глубокого и учащенного дыхания. Любое произвольное регулирование дыхания мешает его автоматической регулировке. При слабо развитой дыхательной мускулатуре могут появляться некоторые сбои в дыхании. Вовлечение в этот процесс вспомогательных дыхательных мышц особого положительного эффекта не дает.

Как же правильно дышать при мышечной нагрузке? Вопрос весьма распространенный и однозначного ответа не имеет. Одни авторы советуют дышать через нос, другие через нос и рот, третьи через рот.

При дыхании через нос во время мышечной работы сопротивление дыхательных путей становится в 1,5–4 раза больше, чем при дыхании через рот, т.к. возрастает кровоток в слизистой оболочке носа, что ведет к разбуханию ее и усилению секреции. Как следствие этого увеличивается механическая работа аппарата дыхания. Так, даже в состоянии покоя она в 2 раза больше, чем при дыхании ртом. Во время же мышечной работы затраты энергии на носовое дыхание многократно возрастают, что ведет к снижению работоспособности. Поэтому, несмотря на преимущества дыхания через нос, при тяжелой физической нагрузке (или при выполнении некоторых физических упражнений) часто приходится дышать ртом. Следовательно, при физических нагрузках следует дышать как можно дольше носом, переход на ротовое дыхание при увеличении нагрузок происходит автоматически. Этот переход регулируется состоянием системы кровообращения, возможности которой определяют физическую работоспособность человека. Недостаточность системы кровообращения можно улучшить правильным дыханием, для чего необходимо усвоить следующие положения:

  • дыхание и движение должны быть взаимосвязаны, так как объем дыхания зависит от нагрузки, которую испытывает на себе система кровообращения (при увеличении нагрузки, соответственно увеличивается объем дыхания);
  • при более сильном мышечном напряжении (поднятии тяжестей) следует задерживать дыхание, так как при больших нагрузках возникает опасность сжатия грудной клетки, для предупреждения этого необходимо полностью наполнить воздухом легкие, задержать дыхание, и сильно напрячь грудную клетку; при расслаблении издать легкий стон.

Преодолеть одышку можно следующим образом:

  1. Быстро вдохнув ртом воздух, задержать дыхание как можно дольше, оставив рот открытым (как при зевоте). Одновременно объем талии должен увеличиться.
  2. Быстро и резко выдохнуть воздух через рот.
  3. Сразу же сделать вдох, как указано в п. 1.

Приветствую Вас уважаемый посетитель. Здоровье одна из самых больших жизненных ценностей. К сожалению, сегодня человек должен постоянно заниматься укреплением своего здоровья. Это объясняется тем, что мы нарушили связи с окружающим миром, остро встают экологические проблемы. В пище много вредных для здоровья компонентов. Многие ведут малоподвижный образ жизни, при этом постоянно подвергаются стрессам. Результат — ослабление иммунитета. загрязнение организма и как следствие различные болезни. Укрепление здоровья является жизненной необходимостью для большинства людей.

Дыхательный газообмен. Газообмен при физических нагрузках

Газообмен в легких. Диффузия газов и газообмен

После поступления свежего воздуха в альвеолы начинается следующий этап дыхательного процесса: диффузия кислорода из альвеол в кровь и диффузия двуокиси углерода в обратном направлении — из крови в альвеолы. Процесс диффузии представляет собой беспорядочное движение молекул, прокладывающих себе дорогу через дыхательную мембрану и жидкости во всех направлениях. Однако в физиологии дыхания нас интересуют не только основные механизмы диффузии, но и ее скорость, что представляет собой намного более сложную проблему и потребует более глубоких знаний в области физики диффузии и обмена газов.

Физические основы диффузии и парциальные давления газов

Все газы, представляющие интерес для физиологии дыхания, являются простыми молекулами, которые свободно перемещаются в смеси. Этот процесс называют диффузией. Это справедливо и для газов, растворенных в жидкостях и тканях тела.

Для процесса диффузии необходимо наличие источника энергии. Энергия производится кинетическим движением самих молекул. При температуре выше абсолютного нуля молекулы находятся в постоянном движении. Это значит, что свободные молекулы, не связанные с другими молекулами, двигаются линейно на высокой скорости до встречи с другими молекулами. После столкновения их движение получит новое направление — до следующего столкновения. Таким образом, молекулы находятся в быстром и случайном движении среди себе подобных.

а) Диффузия газа одном направлении. Влияние градиента концентрации. Если в емкости или в растворе концентрация одного газа в одной зоне высокая, а в другой — низкая (для облегчения понимания просим вас изучить рисунок ниже), то суммарная диффузия газа будет направлена от зоны с высокой концентрацией в зону с низкой концентрацией: на рисунке в зоне А находится больше молекул, способных двигаться в направлении зоны Б, чем молекул, которые могут переместиться в обратном направлении, поэтому диффузия в каждом из направлений пропорциональна концентрации молекул, что на рисунке демонстрирует длина стрелок.

Газообмен в легких. Диффузия газов и газообмен

Диффузия кислорода из одной зоны (А) в другую (Б). Разница в длине стрелок представляет величину конечной диффузии

б) Давление газов в газовой смеси. Парциальные давления отдельных газов. Давление создается множественными ударами движущихся молекул о поверхность, поэтому давление газа на поверхности дыхательных ходов и альвеол пропорционально суммарной силе ударов о поверхность всех молекул данного газа в данный момент, т.е. давление газа прямо пропорционально концентрации молекул газа.

В физиологии дыхания мы имеем дело со смесями газов, состоящих главным образом из кислорода, азота и двуокиси углерода. Скорость диффузии каждого из них прямо пропорциональна давлению, создаваемому только этим газом, и это давление называют парциальным давлением данного газа. Далее приводим объяснение концепции парциального давления.

Воздух состоит примерно из 79% азота и 21% кислорода. Общее давление этой смеси на уровне моря равно 760 мм рт. ст. Из приведенного ранее объяснения молекулярных основ возникновения давления ясно, что доля каждого газа в давлении их смеси находится в прямой пропорции с его концентрацией, поэтому 79% из 760 мм рт. ст. давления воздуха создается азотом (600 мм рт. ст.) и 21% — кислородом (160 мм рт. ст.). Таким образом, парциальное давление азота в смеси составляет 600 мм рт. ст., парциальное давление кислорода — 160 мм рт.ст., а общее давление (760 мм рт. ст.) является суммой отдельных парциальных давлений. Парциальное давление отдельных газов обозначают PCO2, PO2, PN2, PH2O, PHe и т.д.

Видео физиология газообмена в легких и транспорта газов кровью - профессор, д.м.н. П.Е. Умрюхин

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Диффузия газов через дыхательную мембрану. Дыхательная мембрана легких

а) Дыхательная единица. На рисунке ниже показана дыхательная единица (называемая также дыхательной долькой), состоящая из дыхательной бронхиолы, альвеолярных ходов, преддверий и альвеол. В двух легких содержатся около 300 млн альвеол, каждая из них имеет диаметр в среднем около 0,2 мм. Стенки альвеолы очень тонкие, и между альвеолами расположена почти непрерывная сеть из соединяющихся между собой капилляров (для облегчения понимания просим вас изучить рисунок ниже). Из-за большого пространства переплетенных капилляров о кровотоке в стенках альвеол иногда говорят, как о «слое» текущей крови. Очевидно, что альвеолярные газы находятся на очень близком расстоянии от крови в легочных капиллярах.

Дыхательная единица A. Вид поверхности альвеолярной стенки с капиллярами.
Б. Разрез альвеолярных стенок и сосудов в них

Обмен газов между альвеолярным воздухом и кровью происходит не только в самих альвеолах, но и во всех терминальных частях легких. Все участвующие в этом мембраны вместе называют дыхательной мембраной, или легочной мембраной.

б) Дыхательная мембрана. На рисунке ниже слева показана ультраструктура разреза респираторной мембраны, а справа — эритроцит.

Диффузия газов через дыхательную мембрану. Дыхательная мембрана легких

Ультраструктура альвеолярной дыхательной мембраны (разрез)

Показана диффузия кислорода из альвеолы в эритроцит и диффузия двуокиси углерода в противоположную сторону. Обратите внимание на слои, составляющие дыхательную мембрану.

1. Слой жидкости, выстилающий альвеолу и содержащий сурфактант, снижающий поверхностное натяжение альвеолярной жидкости.

2. Составленный из тонких эпителиальных клеток альвеолярный эпителий.

3. Эпителиальная базальная мембрана.

4. Тонкое интерстициальное пространство между альвеолярным эпителием и мембраной капилляра.

5. Базальная мембрана капилляра, которая во многих местах сливается с базальной мембраной альвеолярного эпителия.

6. Эндотелий капилляра.

Несмотря на большое количество слоев, общая толщина дыхательной мембраны в некоторых местах не превышает 0,2 мкм, а в среднем составляет около 0,6 мкм, кроме мест, где расположены клеточные ядра. В гистологических исследованиях было установлено, что общая площадь поверхности дыхательной мембраны у здорового взрослого мужчины составляет около 70 м . Общее количество крови в капиллярах легких колеблется от 60 до 140 мл. Представив это малое количество крови распределенным на всю площадь пола в помещении размером в 70 м , легко понять, почему дыхательный обмен кислорода и двуокиси углерода происходит с такой быстротой.

Средний диаметр легочных капилляров составляет около 5 мкм, и это означает, что эритроциты должны продавливаться через них. Обычно мембрана эритроцита соприкасается со стенкой капилляра, поэтому кислород и двуокись углерода при диффузии из альвеолы в эритроцит не должны проходить через значительное количество плазмы, что также увеличивает скорость диффузии.

в) Факторы, влияющие на скорость диффузии газов через дыхательную мембрану. Возвращаясь к приведенным ранее разъяснениям механизмов диффузии газов в воде, можно сказать, что те же принципы и математические формулы можно использовать при объяснении диффузии газов через дыхательную мембрану. Факторами, определяющими скорость прохождения газа через мембрану, являются:

(1) толщина мембраны;

(2) площадь поверхности мембраны;

(3) коэффициент диффузии газа в мембране,

(4) градиент парциального давления газа между двумя сторонами мембраны.

Толщина дыхательной мембраны может иногда становиться больше, например в результате появления в интерстициальном пространстве мембраны и в альвеолах отечной жидкости, поэтому дыхательные газы должны диффундировать не только через мембрану, но и через эту жидкость. Кроме того, при некоторых болезнях легких возникает фиброз легких, что может увеличивать толщину некоторых участков дыхательной мембраны. Скорость диффузии через мембрану обратно пропорциональна толщине мембраны, поэтому любой фактор, способный увеличить нормальную толщину мембраны более чем в 2-3 раза, может существенно изменить процесс обмена газов.

Площадь поверхности дыхательной мембраны может значительно уменьшаться при воздействии многих факторов. Например, удаление одного легкого уменьшает общую площадь дыхательной мембраны в 2 раза. При эмфиземе многие альвеолы соединяются, и альвеолярные стенки разрушаются. Образуются новые альвеолярные камеры, которые намного больше обычных, но общая площадь поверхности дыхательной мембраны часто снижается примерно в 5 раз из-за разрушения альвеолярных стенок. Когда общая площадь поверхности снижается до 1/3-1/4 доли нормальной поверхности, обмен газов через мембрану даже в условиях покоя сильно замедляется, а во время спортивных соревнований и других больших физических нагрузок даже малейшее уменьшение площади поверхности легких может вызвать серьезные нарушения дыхательного газообмена.

Величина коэффициента диффузии при переходе каждого газа через дыхательную мембрану находится в прямой зависимости от растворимости газа в мембране и в обратной зависимости от квадратного корня молекулярной массы этого газа. Скорость диффузии газа в дыхательной мембране по причинам, объясненным ранее, почти равна таковой в воде, поэтому при данном градиенте давления двуокись углерода диффундирует примерно в 20 раз быстрее, чем кислород, а кислород — в 2 раза быстрее азота.

Градиент давления между сторонами дыхательной мембраны представляет собой разницу между парциальным давлением газа в альвеолах и капиллярной крови легких. Парциальное давление является мерой общего количества молекул данного газа, которые ударяются о единицу площади альвеолярной поверхности мембраны в единицу времени. Напряжение газа в крови — это количество молекул, стремящихся к выходу из крови в обратном направлении, поэтому разница между этими давлениями является мерой суммарной тенденции движения молекул газа через мембрану. Если парциальное давление газа в альвеолах больше, чем его напряжение в крови, как это бывает с кислородом, диффузия совершается в направлении из альвеол в кровь; если напряжение газа в крови больше его парциального давления в альвеолах, что справедливо для двуокиси углерода, то происходит диффузия газа из крови в альвеолы.

Способность выполнять полезную физическую работу под водой и безопасность такой работы на разных глубинах зависят в большей части от показателей дыхательной функции водолазов. Настоящая глава посвящена проверке некоторых из этих показателей, изучению их взаимосвязи с условиями окружающей среды и их смысловой оценке.

Энергия, необходимая для жизненных процессов и выполнения организмом физической работы, почти полностью образуется вследствие химических реакций окислительных обменных процессов. Кислород для обменных реакций должен поступать в организм непрерывно, причем в зависимости от потребностей в нем. Подобным образом двуокись углерода должна удаляться из организма практически также быстро как и образуется в результате обменных реакций.

Когда поступление кислорода и удаление двуокиси углерода затрудняются вследствие различных причин или при использовании дыхательных аппаратов, то физическая активность водолаза соответственно снижается. Серьезные нарушения обмена кислорода и двуокиси углерода могут угрожать жизни.

Дыхательный газообмен включает множество стадий. Он начинается с вдыхания соответствующей газовой смеси, которая в легких отдает в кровь кислород. Затем в процесс включается транспорт газа кровью и диффузия, в результате которой кислород доставляется к конкретным участкам протекания реакций метаболического окисления. Таким образом, понятие дыхательного газообмена может включать энергопродуцирующие реакции, протекающие внутри клеток.
Далее начинается транспортировка двуокиси углерода из клеток в легкие, в результате которой соответственное количество С02 выводится наружу.

дыхательный газообмен

В данном разделе сайта основное внимание уделяется дыхательным реакциям организма, связанным с физической активностью. Действительно, влияние подводной среды и повышенного окружающего давления на процесс дыхания совершенно очевидно.

Вначале рассмотрим вопрос о метаболической значимости различных типов и уровней физической активности организма. В свою очередь конкретный уровень энергетических затрат организма определяет соответствующую скорость потребления кислорода и образования двуокиси углерода. Это требует определенной интенсивности альвеолярной вентиляции.

Дыхательное мертвое пространство и наличие С02 во вдыхаемом воздухе определяют необходимый уровень общей легочной вентиляции, обеспечивающий требуемый минутный объем эффективной альвеолярной вентиляции. Наиболее распространенным нарушением функции легких в гипербарических условиях подводной, среды является недостаточность альвеолярной вентиляции. Серьезное последствие этого нарушения заключается в повышении парциального давления С02 в альвеолярном газе и артериальной крови. Общей причиной недостаточности легочной и альвеолярной вентиляции считают повышение плотности газа.

Возрастание усилий, затрачиваемых на дыхание, или затруднение выдыхания газа, или то и другое вместе могут послужить причиной ограничения вентиляторной способности легких. Трудно определить, что важнее при повышенном давлении окружающей среды: нарушения внутрилегочного распределения газа или диффузии.

В настоящем разделе сайта авторы пытаются обобщить современную информацию о респираторных эффектах у человека, возникающих под водой и в условиях высокого давления газовой среды, а также уточнить сведения о их влиянии на работоспособность и безопасность водолазов.
Некоторые вопросы подробнее рассматриваются в других главах и здесь будут упомянуты в связи с необходимостью установить их связь с функцией дыхания.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Абишева З.С. 1 Асан Г.К. 1 Искакова У.Б. 1 Исмагулова Т.М. 1 Раисов Т.К. 1 Жетписбаева Г.Д. 1 Журунова М.С. 1 Даутова М.Б. 1

В работе представлены данные по оценке функционального состояния дыхательной системы у студентов занимающихся и не занимающихся спортом при физической нагрузке. В результате исследований установлено, что уровень функционального состояния дыхательной системы всех испытуемых соответствует удовлетворительной адаптации. Несмотря на не которое снижение резервных возможностей респираторной системы проявляются достаточно высокие функциональные возможности регуляторных систем организма.


1. Карпов В.Ю. Влияние физкульторно-спортивного опыта студентов на их адаптацию к обучению в вузе // Физическая культура: воспитание, образование, тренировка. – 2005. – №1.-43-46.

5. Агаджанян Н.А. Экологическая физиология: проблема адаптации и стратегия выживания / Х Междунар. симпоз. «Эколого-физиологические проблемы адаптации». – М., 2001. – С. 5-12.

7. Копытова Н.С., Гудков А.Б. Сезонные изменения функционального состояния системы внешнего дыхания у жителей Европейского Севера России // Экология человека. – 2007.

Уровень соматического здоровья человека определяет энергопотенциал индивида и развитие качества общей выносливости. Физиологической основной являются аэробные возможности, отражающие способности организма доставлять и использовать кислород для энергопродукции при физической работе. Формирование здоровья зависит от наследственности, образа жизни, наличием и выраженностью экзогенных факторов риска и т.д.

Факторами, отрицательно влияющими на состояние организма студентов, являются несоответствие методик обучения возрастным и функциональном возможностям, стрессоры нерациональная организация учебного процесса и питания [1].

В условиях ограниченности адаптационных резервов, свойственной молодому организму, любое увеличение нагрузки, умственной или физической, можно рассматривать как стрессорное воздействие, носящее длительный и устойчивый характер.

Для оценки адаптации студентов к учебным нагрузкам мы исследовали показатели дыхательной системы. В результате установлено, что уровень функционального состояния респираторной системы всех испытуемых соответствует удовлетворительной адаптации. Несмотря на некоторое снижение резервных возможностей дыхательной системы, проявляются достаточно высокие функциональные возможности регуляторных систем организма, что обеспечивает резистентность защитных сил и успешную реализацию функциональных возможности в условиях напряженной умственной и мышечной работы, которую испытывают студенты в процессе учебной деятельности.

Вегетативная нервная система играет важное значение в сохранении постоянства гомеостаза при различных воздействиях окружающей среды. Роль ее заключается в регуляции обмена веществ, возбудимости и автоматии периферических органов и ЦНС [2].

Адаптация организма к физической нагрузке также как и к другим стрессовым факторам обеспечивается регуляторным влиянием нейрогуморальных механизмов симпатической и парасимпатической нервной систем и железами внутренней секреции. Благодаря регуляторному воздействию этих систем, а также изменение метаболических процессов, обеспечивает поддержание гомеостаза в изменившихся условиях. Продолжающееся воздействие на организм стрессовых факторов в свою очередь может влиять на функциональные возможности систем регуляции и изменять адаптационные резервы организма.

Материалы и методы исследования

Исследования проводилось на модуле валеологии, Казахского национального медицинского университете им. С.Д. Асфендиярова. Объектом исследования являлись студенты 1 курса (58 студента). Для оценки функционального состояния организма все студенты были разделены на 2 группы: занимающихся и не занимающихся спортом, у которых определяли следующие показатели дыхательной системы: частота дыхания (ЧД), объем дыхания (ОД), минутный объем дыхания (МОД), жизненная емкость легких (ЖЕЛ), резервный объем вдоха (РОвд), резервный объем выдоха (РОвыд), общую емкость вдоха (ОЕвд).

Эти показатели определяли в нормальных условиях (в спокойном состоянии) и после физической нагрузки. В качестве физической нагрузки применяли Гарвардский степ-тест. Гарвардский степ- тест представляет собой способ для оценки физической работоспособности кардиореспираторной системы.

Результаты исследования и их обсуждение

Полученные данные свидетельствуют о том, что повседневные физические нагрузки обеспечивают экономную функцию дыхательной системы, в состоянии покоя и после нагрузки. Физические нагрузки, как фактор адаптации обеспечивает повышение резистентности организма к экстремальным состояниям.

По результатам исследования у студентов, не занимающихся спортом в обычных условиях частота дыхания в среднем составила 16 раз/мин, после нагрузки 21 раз/мин, среднее значение жизненной емкости легких составил 3,0 л, после нагрузки 3,7 л. У вышеназванных студентов минутный объем дыхания в состоянии покоя в среднем составил 8,5 литров, а при нагрузке 19 л. Дыхательной объем, резервный объем вдоха, резервный объем выдоха, и общая емкость вдоха составляют следующие величины соответственно: 0,6; 1,4; 1,0; и 2 литров в покое. После нагрузки 0,7; 1,8; 1,5; 2,5 л.

У студентов, занимающихся спортом в нормальных условиях частота дыхания в среднем 12 раз/мин, после нагрузки 18 раз/мин, значение жизненной емкости легких составило в среднем 4,8 л., после нагрузки – 5,5 л. У занимающихся спортом студентов минутный объем дыхания находился в покое составил 11 л, после нагрузки – 23,7 л. Легочные объемы в покое, то (дыхательный объем, резервный объем вдоха, резервный объем выдоха, и общая емкость вдоха) были равны следующим показателям соответственно: 0,8; 2,1; 1,9 и 2,9 литров, после нагрузки – 1,1; 2,3; 3,1;3,4 л.

По результатам исследований у студентов, занимающихся и не занимающихся спортом была отмечена разница в физиологических показателях дыхательной системы: функций респираторной системы у спортсменов соответствовали физиологическим закономерностям изменения, а у студентов, не занимающихся спортом показатели дыхания соответствовали обычным значениям. Интенсификация внешнего дыхания наблюдается в основном от углубления дыхания. У людей, занимающихся спортом дыхательные движения бывают на высоком уровне.

Согласно литературным источникам по сравнению с нетренированными людьми у спортсменов наблюдается увеличение ЖЕЛ. Есть данные, что чем выше ЖЕЛ на работу аппарата внешнего дыхания расходуется меньше силы [3].

Этот показатель является важным для оценки функциональных показателей жизненного индекса. Высокий жизненный индекс наблюдается у людей, которые занимаются спортом. У тренированных спортсменов в спокойном состоянии происходит физиологическая экономичность функций. У спортсменов ЧД 12 раз/мин, МОД – 11 л/мин. У здоровых людей частота дыхания в спокойном состоянии в среднем 16 раз мин, при интенсивной мышечной работе МОД у здорового взрослого человека из-за повышения частоты дыхания и ДОР может составить 120 л/мин, у тренированных спортсменов воздухообмен в легких может достичь 150 л/мин и выше. Это говорит о больших резервных возможностях системы дыхания.

Таким образом, работа мышц является результатом учащения дыхания. При учащении дыхания у спортсменов растет и глубина дыхания. Что, является рациональным способом приспособления к нагрузке аппарата дыхания. Под действием физических упражнений резервные возможности дыхания повышаются [4]. При систематических спортивных упражнениях у спортсменов улучшается нейрогуморальная регуляция дыхания, работа дыхательной системы в ходе физической нагрузки начинает работать согласовано с другими системами организма.

Воздухообмен в легких повышается в зависимости от проделанной работы и в результате окислительно-восстановительных процессов в организме. При интенсивной работе газообмен в легких может возрасти до 100/мин и выше по сравнению 6-9 л/мин в состоянии покоя и соответственно возрастает потребность в кислороде. Таким образом, физические упражнения способствует адаптации тканей к гипоксии, тем самым обеспечивая интенсивную работу клеток организма при недостатке кислорода.

Работа мышц приводит к возрастанию глубины и частоты дыхания, что в свою очередь повышает газообмен в легких и обеспечивает кислородную потребность.

У взрослого человека при работе мышц в связи c учащением дыхания возрастает газообмен в легких. Физические упражнения или занятия спортом увеличивают объем газообмена в легких. Как показали некоторые авторы при физической нагрузке у спортсменов интенсивность внешнего дыхания в значительной степени зависят от глубины и в меньшей степени зависят от возрастания частоты дыхания.

По получению данным можно сделать вывод, что уровень показателей дыхания определяют структурно-функциональные адаптационные реакции, происходящие под воздействием физической нагрузки в организме спортсмена [5].

Спортивные упражнения повышают силу мышц, и еще оказывают влияние на адаптацию к состояниям окружающей среды [6]. Под воздействием мышечных нагрузок повышается частота сокращения сердца, мышца сердца сокращается быстрее, давление крови повышается. Во время работы мышц частота дыхания повышается, дыхание углубляется, улучшается свойство газообмена легких. Это приводит к функциональному улучшению кардиореспираторной системы [7]. Для студентов занимающихся спортом характерно увеличение резервных возможностей и экономичность функций дыхательной системы.

Читайте также: